七年级上学期期末考试数学试题(含答案)

合集下载

人教版七年级上学期数学《期末考试卷》及答案解析

人教版七年级上学期数学《期末考试卷》及答案解析
14.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是______.
[答案]相等
[解析]
[分析]
根据“等角的余角相等”即可得解.
[详解]解:∵∠1+∠2=90°,∠1+∠3=90°,
∴∠2=∠3(等角的余角相等).
故答案为:相等.
[点睛]本题主要考查余角,解此题的关键在于熟练掌握其知识点.
9.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()
A.点MB.格点NC.格点PD.格点Q
[答案]后对应点到旋转中心的距离相等来判断所求的旋转中心.
[详解]解:如图,连接N和两个三角形的对应点;
发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;
[详解]∵a2+2ab=-8,b2+2ab=14,
∴a2+2ab+b2+2ab=a2+4ab+b2=6,
a2+2ab-(b2+2ab)=a2-b2=-8-14=-22.
[答案]B
[解析]
分析]
先把y的值代入关于y的方程求得m的值,然后将m的值代入关于x的方程得到关于x的一元一次方程,然后求解方程即可.
[详解]解:把y=1代入方程得:2﹣ (m﹣1)=2,
去分母得:6﹣m+1=6,
解得:m=1,
把m=1代入方程得:x﹣3﹣2=1,
解得:x=6,
故选:B.
[点睛]本题主要考查一元一次方程,解此题 关键在于熟练掌握一元一次方程的解与解一元一次方程的一般步骤.
[详解]解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,

人教版七年级上学期数学《期末测试题》含答案解析

人教版七年级上学期数学《期末测试题》含答案解析
8.如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()
A. 1,﹣3,0B. 0,﹣3,1C. ﹣3,0,1D. ﹣3,1,0
[答案]A
[解析]
使得它们折成正方体后相对的面上两个数互为相反数,则A与-1,B与3;C与0互为相反数.
17.计算:
(1)﹣8﹣3×(﹣12)+8;
(2)﹣6× ﹣|(﹣8)÷2|
18.(1)化简:
(2)先化简,再求值: ,其中 , .
19.解方程
(1)
(2)
20.为了某校七年级学生对 《最强大脑》、 《朗读者》、 《中国诗词大会》、 《极限挑战》四个电视节目的喜爱情况,随机抽取了 位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2)
7.若 的和是单项式,则 的值是()
A.1B.-1C.2D.0
[答案]A
[解析]
[分析]
和是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项 相同字母的指数相等可得出x、y的值.
[详解]解:由 的和是单项式,
则x+2=1,y=2,
解得x=−1,y=2,
则xy=(−1)2=1,
故选A.
[点睛]本题考查同类项的知识,属于基础题,注意同类项的相同字母的指数相同.
(2)当 _________秒时, ;
(3)若点 、 与线段 同时移动,点 以每秒2个单位长度的速度向数轴的正方向移动,点 以每秒1个单位长度的速度向数轴的负方向移动.在移动过程中,当 时, 的值为__________.

精品解析七年级上学期期末考试数学试题(含答案) (共4套)

精品解析七年级上学期期末考试数学试题(含答案) (共4套)

七年级数学(上)期末考试试题一、选择题(每小题2,共12分)1. 下列方程中,是一元一次方程的是()A. =3B. x2+1=5C. x=0D. x+2y=3【答案】C故选C.2. 若a>1,则a,﹣a,从大到小排列正确的是()A. a>﹣a>B. a>>﹣aC. >﹣a>aD. >﹣a>a>【答案】B【解析】∵a>1,∴﹣a<0,0<<1,∴a>>﹣a,故选B.3. 下列各式中,正确的是()A. ﹣(2x+5)=2x+5B. ﹣(4x﹣2)=﹣2x+2C. ﹣a+b=﹣(a﹣b)D. 2﹣3x=(3x+2)【答案】C【解析】A、原式=﹣2x﹣5,故A选项错误;B、原式=﹣2x+1,故B选项错误;C、原式=﹣(a﹣b),故C选项正确;D、原式=﹣(3x﹣2),故D选项错误,故选C.4. 由5个大小相同的正方体组成的几何体如图所示,从正面看到的图形是()A. B. C. D.【答案】A【解析】从正面看易得下面一层有3个正方形,上面一层中间有一个正方形,故选A.5. 在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A. 69°B. 111°C. 159°D. 141°【答案】D【解析】试题分析:如下图,由题意得:∠1=54°,∠2=15°,计算出∠3=90°-54°=36°,再计算∠AOB=36°+90°+15°=141°.故选:D.考点:方位角6. 下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A. ①②B. ②③C. ②④D. ③④【答案】D【解析】①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确,故选D.【点睛】本题考查了直线、射线、线段;两点间的距离;余角和补角等知识,注意基本概念的掌握是解题的关键.二、填空题(每小题3分,共24分)7. 单项式﹣x2y的次数是_____.【答案】3【解析】单项式的次数是指所有字母指数的和,2+1=3,所以单项式﹣x2y的次数是3,故答案为:3.8. 阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书_____本.【答案】19【解析】由题意可得20﹣3+1﹣1+2=19本.9. 科学家们发现,太空中距离银河系约2500000光年之遥的仙女星系正在向银河系靠近.其中2500000用科学记数法表示为_____.【答案】2.5×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,2500000用科学记数法表示为2.5×106,故答案为2.5×106.10. 如果我们将一副三角尺按如图所示的位置摆放,并且已知∠a=118°28',那么∠B的度数为_____.【答案】61°32'【解析】∠β=180°﹣∠α=180°﹣118°28'=61°32',故答案为:61°32'.【点睛】本题考查了平角的定义,熟知平角的定义是解题的关键.11. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为:两点之间线段最短.12. 已知,m,n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2013pq+的值为_____.【答案】2017【解析】由题意可知,m+n=0,pq=1,x=±2,∴ +2013pq+=0+2013×1+(±2)2=0+2013+4=2017,故答案为:2017.13. 一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为_____元.【解析】设成本价为x元,则,解得x=200.14. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为_____cm.(用含a的代数式表示)【答案】(4a+16)【解析】根据题意得,长方形的宽为(a+4)﹣(a+1)=3,则拼成得长方形的周长为:2(a+4+a+1+3)=2(2a+8)=(4a+16)cm,故答案为:(4a+16).【点睛】本题主要考查了整式加减的应用,关键是根据题意列出式子.三、解答题(一)(每小题5分,共20分)15. 计算:(2a2b﹣5ab)﹣2(﹣ab+a2b)【答案】﹣3ab【解析】试题分析:去括号后合并同类项即可得.试题解析:原式=2a2b﹣5ab+2ab﹣2a2b=﹣3ab.16. 解方程:﹣=2.【答案】﹣12【解析】试题分析:按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.试题解析:去分母得,3(x+2)﹣2(2x﹣3)=24,去括号得,3x+6﹣4x+6=24,移项得,3x+6﹣4x+6=24,合并同类项得,﹣x=12,系数化为1得,x=﹣12.17. 计算:﹣14﹣(﹣2)3×﹣16×(﹣+)学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...试题解析:原式=﹣14﹣(﹣8)×﹣8+4﹣6=﹣14+2﹣10=﹣22.18. 已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.【答案】110°【解析】试题分析:首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数.试题解析:∵OC平分∠DOB,∴∠BOD=2∠BOC =2×35°=70°,又∵∠AOB=180°,∴∠AOD=∠AOB﹣∠DOB=180°﹣70°=110°.【点睛】本题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.四、解答题(二)(每小题7分,共28分)19. 如图,C、D是线段AB上的两点,若CB=4cm,DB=7cm,且D是AC的中点,求AB的长.【答案】10cm【解析】试题分析:根据CB=4cm,DB=7cm可求出DC的长,再根据D是AC的中点可得出AD的长,再根据AB=AD+DB即可求出答案.试题解析:∵CB=4cm,DB=7cm,∴DC=DB﹣CB=3cm,又∵D是AC的中点,∴AD=DC=3cm,∴AB=AD+DB=10cm.20. 列方程解应用题:在某中学矩形的“我的中国梦”征文活动中,七年级和八年级共收到118篇,且七年级收到的征文篇数比八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【答案】38篇【解析】试题分析:根据“七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇” 设八年级收到的征文有x篇,则七年级收到的征文有(x-2)篇;根据“七年级和八年级共收到征文118篇”列方程,解出方程即可.试题解析:设八年级收到的征文有x篇,则七年级收到的征文有(x﹣2)篇,根据题意得:(x﹣2)+x=118,解得:x=80,∴x﹣2=38,答:七年级收到的征文有38篇.21. 已知m、x、y满足:(1)﹣2ab m与4ab3是同类项;(2)(x﹣5)2+|y﹣|=0.求代数式:2(x2﹣3y2)﹣3()的值.【答案】【解析】试题分析:由同类项的定义可得m的值,由非负数之和为0,非负数分别为0可得出x、y的值,代入所求式子中计算即可得到结果.试题解析:∵﹣2ab m与4ab3是同类项,(x﹣5)2+|y﹣|=0,∴m=3,x=5,y=,则原式=2x2﹣6y2﹣2x2+3y2+3m=﹣3y2+3m=﹣+9=.22. 如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.【答案】(1) 8+2x (2) 14【解析】试题分析:根据图形可知:阴影部分的面积可用长方形的面积减去两个直角三角形的面积.试题解析:(1)由图形可知:S=4×8-×4×8-×4(4-x)=16-8+2x=8+2x(2)将x=3代入上式,S=8+2×3=14五、解答题(三)(每小题8分,共16分)23. 某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【答案】(1) 75千克(2) 495元【解析】试题分析:(1)首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;(2)根据每种水果的利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克。

河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。

最新人教新版七年级上学期数学期末考试试卷(附答卷)

最新人教新版七年级上学期数学期末考试试卷(附答卷)

最新人教新版七年级上学期数学期末考试试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、﹣2021的相反数是()A.2021B.﹣2021C.D.﹣2、下列运算不正确的是()A.4a﹣2a=2B.2(a+2b)=2a+4bC.7ab﹣(﹣3ab)=10ab D.﹣a2﹣a2=﹣2a23、已知a,b,c三个数在数轴上的位置如图所示,则下列结论正确的是()A.c<a B.a+c<0C.a﹣c>0D.abc>04、数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线5、已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣266、如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°7、如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④8、已知关于x,y的多项式mx2+2xy﹣x与3x2﹣2nxy+3y的差不含二次项,求n m 的值()A.﹣1B.1C.3D.﹣39、《九章算术》中有这样一道数学问题,原文如下:清明游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:清明时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,人刚好坐满,问:大小船各有几只?若设有x只小船,则可列方程为()A.4x+6(8﹣x)=38B.6x+4(8﹣x)=38C.4x+6x=38D.8x+6x=3810、如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337二、填空题(每小题3分,满分18分)11、一次数学测试,如果95分为优秀,以95分为基准简记,例如106分记为+11分,那么86分应记为分.12、一个正方体展开图如图所示,若相对面上标记的两个数均互为相反数,则xy的值为.13、已知一个锐角为30°51',则它的余角的度数为.14、已知关于x的方程ax=3x+b﹣2(a,b为常数)有无数个解,则a﹣b=15、某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.16、已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1).(2)﹣14﹣(﹣2)3﹣2×(﹣3).18、先化简,再求值:5x2﹣2xy+3(xy+2)﹣1,其中x=﹣2,y=1.19、解下列方程:(1)4x﹣3=2﹣5x;(2).20、如图,点A、O、B在同一直线上,OC平分∠AOB,若∠COD=28°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.21、如图,点C为线段AB上一点(AC>BC),D在线段BC上,BD=2CD,点E为AB的中点.(1)若AD=8,当EC=2.5CD时,求CD的长.(2)若AC=3BC,求的值.22、如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题:(1)用含a、b的代数式表示小江家的住房总面积S;(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a、b的代数式表示铺设地砖的总费用W;(3)在(2)的条件下,当a=6,b=4时,求W的值.23、某商场经销A,B两种商品,其中A种商品每件进价30元,利润率为40%;B种商品每件售价60元,利润率为50%(利润率=).(1)A种商品每件售价为元,B种商品每件进价为元;(2)若该商场同时购进A,B两种商品共50件,恰好总进价为1650元,求购进A种商品多少件?(3)小明准备到商场团购A种商品,当团购数量不超过5件时,按照原售价购买,当团购数量超过5件时,超出部分按照原价8折购买,最终小明团购均价为36.4元/件,求小明团购了多少件A商品?24、若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足|x﹣y|=1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“美好方程”.例如:方程2x+1=5的解是x=2,方程y﹣1=0的解是y=1,因为|x﹣y|=1,方程2x+1=5与方程y﹣1=0是“美好方程”.(1)请判断方程5x﹣3=2与方程2(y+1)=3是不是“美好方程”,并说明理由;(2)若关于x的方程﹣x=2k+1与关于y的方程4y﹣1=3是“美好方程”,请求出k的值;(3)若无论m取任何有理数,关于x的方程=m(a,b为常数)与关于y的方程y+1=2y﹣5都是“美好方程”,求ab的值.25、已知∠AOD=40°,射线OC从OD出发,绕点O以20°/秒的速度逆时针旋转,旋转时间为t秒(t≤7).射线OE、OF分别平分∠AOC、∠AOD.(1)如图①,如果t=4秒,求∠EOA的度数;(2)如图①,若射线OC旋转时间为t秒,求∠EOF的度数(用含t的代数式表示);(3)射线OC从OD出发时,射线OB也同时从OA出发,绕点O以10°/秒的速度逆时针旋转,射线OC、OB在旋转过程中(t≤7),若∠BOD=∠EOB,请你借助图②和备用图进行分析后,求出的值.。

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。

2022-2023学年七年级上学期数学期末检测试题(含答案)

2022-2023学年七年级上学期数学期末检测试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.32.(3分)单项式x2yz2的次数为()A.B.6C.5D.33.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×1066.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.20229.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是.12.(4分)比较大小:﹣﹣.(用“>”“=”或“<”连接)13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=.14.(4分)已知a2+a=3,则2a2+2a+2020的值为.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要根火柴棍,第n个图形需要根火柴棍.三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE 的度数是.(直接写出结果)25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动秒追上点R,此时点P在数轴上表示的数是.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.3【解答】解:﹣是分数,且小于0,是负分数,故选:C.2.(3分)单项式x2yz2的次数为()A.B.6C.5D.3【解答】解:单项式的次数是:2+1+2=5.故选:C.3.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线【解答】解:2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是两点之间,线段最短,故选:B.4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c【解答】解:A、由3m﹣1=5得到3m=5+1,故A符合题意;B、由3x=﹣6得到x=﹣2,故B不符合题意;C、由ac=bc(c≠0)得到a=b,故C不符合题意;D、由a=b得到a+c=b+c,故D不符合题意;故选:A.5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×106【解答】解:36000000=3.6×107.故选:A.6.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y【解答】解:个位数字是y,十位数字是x,这个两位数可表示为10x+y.故选:D.7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“志”相对的字是“事”;“者”相对的字是“成”;“有”相对的字是“竟”.故选:A.8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2022=(﹣2+1)2022=1.故选:B.9.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)【解答】解:根据题意得20×0.8x=25(x﹣27).故选:B.10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2【解答】解:∵3AB=6,∴AB=2,∵B为原点,A,B,C三点在数轴上从左向右排列,∴点A在原点左侧,∴点A表示的数是﹣2,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是﹣2022.【解答】解:2022的相反数是:﹣2022.故答案为:﹣2022.12.(4分)比较大小:﹣>﹣.(用“>”“=”或“<”连接)【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=﹣2.【解答】解:把x=2代入方程得6﹣10=2a,解得a=﹣2.故答案是:﹣2.14.(4分)已知a2+a=3,则2a2+2a+2020的值为2026.【解答】解:当a2+a=3,2a2+2a+2020=2(a2+a)+2020=2×3+2020=6+2020=2026.故答案为:2026.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是115°.【解答】解:∵∠AOC=∠DOE=90°,∠AOE=65°,∴∠AOD=∠DOE﹣∠AOE=90°﹣65°=25°,∴∠COD=∠AOC+∠AOD=90°+25°=115°,故答案为:115°.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要9根火柴棍,第n个图形需要(2n+1)根火柴棍.【解答】解:设第n个图形需要a n(n为正整数)根火柴棒,观察发现规律:第1个图形需要火柴棍:3=1×2+1,第2个图形需要火柴棍:5=2×2+1;第3个图形需要火柴棍:7=3×2+1,第4个图形需要火柴棍:4×2+1=9,……,∴第n个图形需要火柴棍:2n+1.故答案为:9,(2n+1).三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.【解答】解:(1)原式=×(﹣63)﹣×(﹣63)﹣×(﹣63)=﹣7+18+12=23;(2)原式=﹣4×(﹣)﹣(﹣27)÷9=3+3=6.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.【解答】解:(1)6﹣3x=2(2﹣x),去括号,得6﹣3x=4﹣2x,移项,得2x﹣3x=4﹣6,合并同类项,得﹣x=﹣2,系数化为1,得x=2;(2)﹣1=,去分母,得3(3x﹣1)﹣6=2(4x﹣7),去括号,得9x﹣3﹣6=8x﹣14,移项,得9x﹣8x=3+6﹣14,合并同类项,得x=﹣5.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.【解答】解:3ab﹣2(ab﹣a2b)﹣3a2b=3ab﹣2ab+3a2b﹣3a2b=ab,当a=2,b=﹣1时,原式=2×(﹣1)=﹣2.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).【解答】解:从正面看从左面看从上面看21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.【解答】解:(1)10×5+(﹣0.25+0.15﹣0.05+0.2﹣0.1﹣0.2﹣0.1+0.05+0+0.1)=50+(﹣0.2)=49.8(千克),答:这10箱红阳猕猴桃的质量为49.8千克;(2)49.8÷10=4.98(千克),答:这10箱红阳猕猴桃的平均质量为4.98千克.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=2a﹣b.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.【解答】解:(1)由作图可知,AD=2a,DB=b,∴AB=AD﹣DB=2a﹣b.故答案为:2a﹣b;(2)∵E为线段AC的中点,F为线段BD的中点,a=10,b=8,∴AE=AC=a=5,FD=BD=b=4,由(1)可知,AD=2a=20,∴EF=AD﹣AE﹣DF=20﹣5﹣4=11.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?【解答】解:设计划调配36座的新能源客车x辆,则该校七年级共有(36x+2)名学生,根据题意得:36x+2=22(x+4)﹣2,解得:x=6,∴36x+2=36×6+2=218.答:计划调配36座的新能源客车6辆,该校七年级共有218名学生.24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE的度数是45°.(直接写出结果)【解答】解:(1)∵∠BOC=30°,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=30°+90°=120°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×120°=60°,∠COE=∠BOC=×30°=15°,∴∠DOE=∠COD﹣∠COE=60°﹣15°=45°;即∠DOE的度数是45°;(2)45°,理由如下:∵∠BOC=α,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=α+90°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×(α+90°)=α+45°,∠COE=∠BOC=α,∴∠DOE=∠COD﹣∠COE=α+45°﹣α=45°.故答案为:45°.25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.【解答】解:(1)0.5×220+0.55×(420﹣220)+0.8×(450﹣420)=0.5×220+0.55×200+0.8×30=110+110+24=244(元).答:小明家八月份应交244元电费;(2)根据题意得:该户居民该月应交电费0.5×220+0.55(a﹣220)=(0.55a﹣11)元.(3)根据题意得:0.55a﹣11=176,解得:a=340.答:小刚家该月用电340度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动3秒追上点R,此时点P在数轴上表示的数是2.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?【解答】解:(1)设点P、R运动时间是t秒,则运动后P表示的数是﹣4+3t,R运动后表示的数是2+t,根据题意得:﹣4+3t=2+t,解得t=3,∴点P运动3秒追上点R,此时点P在数轴上表示的数是﹣4+3×3=5,故答案为:3,5;(2)当点P、R运动时间为t秒时,点P在数轴上表示的数是﹣4+2t,点Q在数轴上表示的数是2﹣t,根据题意得:|(﹣4+2t)﹣(2﹣t)|=4,化简得:3t﹣6=4或3t﹣6=﹣4,解得t=或t=,答:当t=秒或秒时,点P、R两点间的距离为4个单位.。

人教版数学七年级上学期《期末考试试题》及答案解析

请解答上述问题.
21.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.
(1)求∠DOB的度数;
(2)OF是∠AOD的角平分线吗?为什么?
22.(1)由大小相同 小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一个几何体,使得它的俯视图和左视图与你在方格中所画的一致,则这样的几何体最少要个小立方块,最多要个小立方块.
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题(每小题3分,满分24分)
1. 的倒数是()
A. B. C. D.
2.“比 的3倍大5的数”用代数式表示为()
A. B. C. D.
3.下列计算结果正确的是()
[答案]7或-7
[解析]
[分析]
设输入的数为x,根据程序列出方程求解即可.
[详解]解:设输入的数为x,则有:
当y=3时,得:
,
解得
故答案为7或-7
[点睛]本题考查了计算程序和列方程求解,能理解程序图是解题关键.
14.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=______.
[详解]主视图与左视图是长方形,所以该几何体是柱体,
又因为俯视图是圆,
所以该几何体是圆柱,
故选C
[点睛]本题考查了由三视图确定几何体的形状,熟练掌握常见几何体的三视图是解题的关键.
6.下列说法正确的个数是()
①射线MN与射线NM是同一条射线;
②两点确定一条直线;
③两点之间直线最短;
④若2AB=AC,则点B是AC的中点

人教版七年级数学(上)期末测试题 含答案

A. B. C. D.人教版七年级数学(上)期末测试题一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B . 13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( ) A .5x =15-3(x -1) B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题 10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.nn m n12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看 从左面看 从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)AB mnx(1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2b )22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛- (4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y (3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。

广东省茂名市直属学校2023-2024学年七年级上学期期末数学试题(含解析)

.六棱柱.圆柱.四棱
.圆锥
.要调查下列问题,适合采用全面调查(普查)的是(
.对全国中学生视力状况的调查
月份人均网上购物的次数
A .
B .
C .
A .块
B .二、填空题(本大题共5小题,每小题15.如图,周长为个单位长度的圆片上有一点右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,运动情况依次记录如表:计次第次
第滚动周数
AD BD AB +=BD CD CB -=6a (5a +2124-1
+
三、解答题(一)(本大题共3小题,每小题8分,共16.计算:(1)______,______(1)这次抽样调查的总人数是______,组所在扇形的圆心角的大小是______;
x =y =B
AC BD
(1)比较线段与的大小,并说明理由;
AB=cm BC=cm x
(1)______,______(用含的代数式表示);
x
(3)解:(人)答:该市每周校外锻炼身体时长不少于20.(1),理由见解析;
(2);
(3)当在点时,到点的距离和最小,最小值为150405000019000500
+⨯=6AC BD =18AD =P B 、、A B C
∴当在点时,为,此时的最小值P B PB 0PA PB PC ++PA =+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4题
第8题
数 学 试 题
一、选择题(每小题3分,共24分) 1.已知1.0,1,2
1
=-=-
=c b a ,则a 、b 、c 的大小关系是
( )
A .c a b <<
B .c b a <<
C .b a c <<
D .a b c <<
2.2008年5月12日,在我国四川省汶川县发生里氏8.0级强烈地震.面对地震灾害,中央和各级政府快速作出反
应,为地震灾区提供大量资金用于救助和灾后重建,据统计,截止5月31日,各级政府共投入抗震救灾资金22 600 000 000元人民币,22 600 000 000用科学记数法表示为
( )
A .1022.610⨯
B .112.2610⨯
C .102.2610⨯
D .822610⨯ 3.在下面的图形中是正方体的展开图的是
( )
4.如图,直线AB 、CD 相交于点O ,∠AOD +∠BOC =236°,
则∠BOC 为 ( ) A .114° B .118°
C .72°
D .108°
5.表示“a 与b 的两数和的平方”的代数式是
( ) A .a 2+b 2
B .a +b 2
C .a 2+b
D .(a +b )2 6.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计
算出x 的是
( ) A .10x +20=100 B .10x -20=100
C .20-10x =100
D .20x +10=100
7.在有理数 6.1-,32
-
,()1--,()22-,()3
5-,()()3569.8-⨯⨯-⨯-中,负数出现的频数和频率分别是
( )
A .4,
23
B .5,
56
C .3,
12
D .6,1
8.如图,把长方形ABCD 沿EF 对折后使两部分重叠,若∠1=50°,
则∠AEF 为 ( ) A .110°
B .115°
C .120°
D .130°
A .
B .
C .
D .
城区每年年底绿地面积统计图
2004
2005 2006
2007 60 56 51 48
年份
绿地面积(公顷)


B
A
书店
二、填空题(每空3分,共18分)
9.3
5
-的倒数是___________.
10.若3
2m
x y 与2
3n
x y -是同类项,则m n +=____________. 11.如图,从学校A 到书店B 最近的路线是①号路线,
其道理用几何知识解释应是__________________________. 12.3点30分时,时针与分针的夹角为 °.
13.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =145°,则∠BOC =______°.
14.某轮船上午8时在A 处,测得灯塔S 在北偏东60°的方向上,向东行驶至中午12时,该轮船在B 处,测
得灯塔S 在北偏西30°的方向上,则∠ASB = °. 三、解答题(每小题4分,共52分,)
15.(1)6618912-+-; (2)3
0(5)55÷---; (3)11148()6412
⨯-+-.
16.化简: (1)5423+-+a a ; (2) )3
1
23()31(221y x y x x +-+--.
17.解方程:(1)x +8=2x -7 ; (2)()()()4238152x x x +=--- (3) 421
123
x x -+-=.
18.如图,O 是直线AB 上一点,OC 为任意一条射线,
OD 平分∠BOC ,OE 平分∠AOC .
(1)OD 与OE 的位置关系是 . (2分)
(2)∠EOC 的余角是 .(2分)
19.美化城市,改善人们的居住环境已成为城市建设的一项重要内容。

某市区近几年来,通过拆迁旧房,植草,栽
树,修建公园等措施,使城区绿地面积不断增加,
⑴根据图中所提供的信息,回答问题:2007年底的绿地面积为________公顷,比2006年底增加了________公顷;在2005年,2006年,2007年这三年中,绿地面积增加最多的是_____年.(3分)
⑵为满足城市发展的需要,准备从2007年起每年比上一年增加绿地面积10%,求2009年底绿地面积将是多少公
第11题
第13题
顷?(1分)
20.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.
下面是部分推理过程,请你将其补充完整:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°.( )
∴AD∥EG,()
∴∠1=∠2,()
∴ =∠3.(两直线平行,同位角相等)
又∵∠E=∠1,(已知)
∴∠2=∠3,()
∴AD平分∠BAC.()
21.如图所示,(1)将方格纸中的三角形向左平行移动7格,再向上平行移动1格.画出平行移动后的图形.(2)若每个小方格的边长为1,求这个三角形的面积.
22.某广告公司要印刷海报,有两种选择:甲印刷厂的条件是每份海报定价2元,按8折收费,另收900元制版费;
乙印刷厂的条件是每份海报定价2元,而制版费900元则按8折收取.
(1)若一次印刷x份,分别用代数式表示甲、乙两个印刷厂的收费;
(2)如果广告公司需印刷1000份,应该选择哪一个印刷厂比较便宜?
23.如图,已知M是线段AB的中点,点N在线段MB上,MN=3
5
AM,若MN=3cm,求线段AB的长.(不写依
据)
四、解答题(24、25题6分
24.用棋子摆出下列一组图形(圆圈即为棋子):
(1)
(2)(3)
(1)填写下表:
(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含n 的代数式表示) (3)如果某一图形共有99枚棋子,你知道它是第
个图形吗?
25. 在平整的地面上,有若干个完全相同的棱长为10cm 的小正方体
堆成一个几何体,如图所示.
(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图. 正视图 左视图 俯视图
(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时
如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm 2?
(注:此时表面不含与地面接触部分)
参考答案
一、1-8ACCBDAAB
二、9.-5/3 10. 5 11.两点之间线段最短 12.75 13.35 14.90
三、
15.①45②-130③0 16. ①-a+7 ②-3x+y 17. ①15②-2③4/7
18.互相垂直;∠COD∠BOD 19.60,4,2006 ,72.6 20.50, 30%
21.15 22.1.6x+900,2x+720,甲
23.10
24.①6;9;12,②3n+3③32
25.垂直定义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线定义。

26.①10,②1,2,3③4 增加 400。

相关文档
最新文档