江苏省盐城市大丰区2017_2018学年八年级数学上册知识点总结
苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)知识点总结:第一章:三角形全等全等三角形的定义是指能够完全重合的两个三角形。
全等三角形的形状和大小完全相等,与位置无关。
一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。
三角形全等不因位置发生变化而改变。
全等三角形的性质包括对应边相等、对应角相等,周长相等、面积相等,以及对应边上的对应中线、角平分线、高线分别相等。
全等三角形的判定有边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)、斜边、直角边公理(HL)。
证明两个三角形全等的基本思路是已知两边时找第三边(SSS),找夹角(SAS),或找是否有直角(HL);已知一边一角时找一角(AAS或ASA),或找夹边(SAS);已知两角时找夹边(ASA),或找其它边(AAS)。
第二章:轴对称轴对称图形是指关于直线对称的两个图形。
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
线段的垂直平分线的性质定理是线段垂直平分线上的点到线段两个端点的距离相等。
判定定理是到线段两个端点距离相等的点在这条线段的垂直平分线上。
三角形三条边的垂直平分线的交点到三个顶点的距离相等。
角的角平分线的性质定理是角平分线上的点到角两边的距离相等。
判定定理是到角两个边距离相等的点在这个角的角平分线上。
三角形三个角的角平分线的交点到三条边的距离相等。
等腰三角形的性质定理是两个底角相等(等边对等角)。
和立方1、定义:开平方和立方是数学中常见的运算。
2、表示方法:开平方用符号√,立方用符号³表示。
3、性质:1)开平方和立方的结果都是实数。
2)开平方和立方运算具有可逆性,即可以进行反向运算。
三、实数的分类1、定义:实数是数学中的一种数值,包括有理数和无理数。
2、分类:1)有理数:可以表示为两个整数之比的数,包括整数、分数和小数。
2017初二上数学知识点2017初二上数学复习要点

2017初二上数学知识点(一)1.对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。
2.对事情进行判断的句子叫做命题(分真命题与假命题)。
3.每个命题是由条件和结论两部分组成。
4.要说明一个命题是假命题,通常举出一个例子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
5.把原命题的结论作为命题的条件,原命题的条件作为命题的结论,所组成的命题叫原命题的逆命题。
2017初二上数学知识点(二)同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也叫同类项。
判断几个单项式或项,是否是同类项的两个标准:①所含字母相同。
②相同字母的次数也相同。
判断同类项时与系数无关,与字母排列的顺序也无关。
合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项步骤:⑴.准确的找出同类项。
⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
⑶.写出合并后的结果。
合并同类项时注意:(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。
(2)不要漏掉不能合并的项。
(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
(4)不是同类项千万不能进行合并。
2017初二上数学知识点(三)一、平均数、中位数、众数的概念1.平均数平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
苏教版数学八年级上册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根 一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;…等;(4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
注意a 的双重非负性:a≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
苏教版初中8年级数学上册知识点汇总

苏教版初中八年级数学上册知识点汇总知识点总结一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
八年级数学上册全册知识点

八年级数学上册全册知识点第一章:有理数1.1 有理数的概念有理数包括整数和分数,它们可以表示为有限小数或无限循环小数。
有理数的大小可以通过大小比较和绝对值计算。
1.2 有理数的四则运算有理数的加减乘除可以通过化简分数、通分、约分、去括号、合并同类项、移项、变形等方法来进行。
1.3 有理数的应用有理数在日常生活中广泛应用,比如表示温度、货币、距离、重量等。
第二章:代数式2.1 代数式的概念代数式是由数字、字母及其组合形成的式子,它可以表示一个数或一组数。
2.2 代数式的加减乘除代数式的加减乘除可以通过加减同类项、乘法分配律、合并同类项、化简等方法来进行。
2.3 代数式的应用代数式在数学、物理、化学等学科中有广泛应用,比如解方程、表示函数、推导公式等。
第三章:方程与不等式3.1 方程的概念方程是等式的一种特殊形式,它将未知数与已知数以某种关系相等。
3.2 解一元一次方程解一元一次方程需要运用化简、移项、变形、判断等方法。
3.3 不等式的概念和解法不等式是含有 <、>、≤、≥ 等符号的式子,解不等式需要运用加减乘除、移项、变形、取反等方法。
第四章:比例与分数4.1 比例的概念比例是指两个同类量之间的量的比值,可以用于构建等比例、等角比例、正比例等模型。
4.2 分数的基础概念分数的基础概念包括真分数、假分数、带分数、化简分数、约分等。
4.3 分数运算和分数的应用分数的加减乘除需要运用通分、化简分数、约分等方法,分数在日常生活中也有广泛应用,比如表示比例、计算面积等。
第五章:三角形5.1 三角形的定义与分类三角形是由三条线段连接形成的图形,根据边长和角度不同可以进行分类,包括等边三角形、等腰三角形、直角三角形等。
5.2 三角形的性质三角形有很多性质,包括内角和为180度、任一两边之和大于第三边等。
5.3 三角形的面积、周长计算三角形的面积可以用海伦公式、高度公式、正弦定理、余弦定理等方法计算得出,周长则可以根据边长之和计算得出。
八年级上数学全面知识点总结

八年级上数学全面知识点总结数学是一门基础学科,也是一门抽象的科学,需要我们在学习中不断地思考和探索。
作为初中阶段学习数学的学生,八年级上学期的数学知识涉及到了代数、几何与数据统计三方面的内容。
下面就对它们进行一个全面的总结。
一、代数代数是数学中一个重要的分支,是研究用字母代表数的基础知识。
在八年级上学期,我们主要学习了代数中的基本运算、多项式乘法公式、因式分解、一元一次方程式、含有括号的方程式等内容。
1. 代数的基本运算在代数中,四则混合运算是非常常见的,我们都非常熟悉,可以熟练完成,同时也是进行复杂的代数式子的基础。
四则混合运算指的是加减乘除四种运算混合运用而成的运算。
在代数中的基础四则混合运算,可以运用结合律、交换律、分配律等运算法则方便地进行计算。
2. 多项式乘法公式多项式乘法公式是指在代数式子中,对两个多项式进行乘法运算时所采用的一种方便快捷的公式。
它是初中代数的必修知识,是一种非常常见的代数运算。
我们可以运用这种公式,快速计算多项式的乘法运算,提高我们计算的效率。
3. 因式分解因式分解指的是,将一个多项式化成因数的乘积的一种方法。
因式分解的要求比较高,需要了解到有各种各样的代数公式,并且需要运用到不断的推导化简和运算。
4. 一元一次方程式一元一次方程式是指,在代数中,只有一个未知数,且该未知数在方程式中的次数为 1 的方程式。
在八年级上学期,我们学习了一元一次方程式的解法,解一元一次方程式常用的方法是移项、配方和消元法,我们可以根据方程式的要求,选取不同的解法来求出方程的解。
二、几何几何是数学中一个独特的分支,它研究的一些基本概念与辅助工具不仅仅适用于数学,还包括自然界中的许多事物。
在八年级上学期,我们主要学习了平面几何中的相似、勾股定理等内容。
1. 相似在平面几何中,相似是非常基础和重要的概念。
相似是指两个几何体形状相似,对应角度相等,对应角度相似,且所对应的边成比例。
利用相似可以求解很多难点。
江苏省盐城市大丰区2017-2018学年八年级数学上册 应知应会的知识点

应知应会的知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫2做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.311.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.43.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)在三角形中,5有三条边相等的三角形叫做等边三角形7.三角形的内角和定理及推论:6.全等三角形的判定:AC = EG78BAD=是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,10而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD是角平分线)(3)已知三角形中线(若AD是BC的中线)(4) 已知等腰三角形ABC中,AB=AC(5)其它本文档仅供文库使用。
(完整版)苏教版八年级数学全册知识点总结,推荐文档

(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长×高=ah五、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab六、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积 S菱形=底边长×高=两条对角线乘积的一半七.正方形1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)正方形四条边都相等,对边平行①;BAC ABD S S ∆∆=②;BOC AOD S S ∆∆=③BCDADC S S ∆∆=八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角。