函数的定义域、解析式测试题学生版

合集下载

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。

因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。

⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。

然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。

函数测试试卷(含解析).doc

函数测试试卷(含解析).doc

•、选择题(12题每题5分,共60分)1.函数/(x) = -^L + lg(3x + l)的定义域是0 A/1 -X2.给出下列三个等式:f (xy) =f (x) +f (y), f (x+y) =f (x) f (y), f(x+y)二"]¥"叭1- fix) fly)不满足英中任何一个等式的是()A. f (x) =3XB. f (x) =sinxC. f (x) =log2xD. f (x) =tanx3.已知函数/(X)关于直线x = -2对称,周期为2,当xe[-3,-2]时,/(x) = (x + 2)2,则/(」)=()A. 0B. —C. —D. 14 164.函数f (x)二的图象大致是()5.已知函数f(x)的定义域为R.当x〈0时,/(%) = x3-l ;当—15x51时,/(-x) = -f(x):当x>^时,•则f⑹二()(A) -2 (B) -1 (C) 0 (D) 2a x,(x > 1)6.已知函数/(x) = \ a在R上为增函数,则a的取值范围是( )(4-紗+ 2,(Ml)A. [5,9)B. [5,9]C. [4,8)D. [4,8]7.已知定义在R上的函数/(兀)是奇函数,且于(兀)在(一也0)上是减函数,/(2)=05<?(X)=/(X+2),则不等式xg(x)< 0的解集是()A. (―oo, —2]U[2,+<xjB. [―4, —2]U[0,+oo)c. (―00,—4]U[—2,+co) D. (YO,-4]U[0,+ocj阶段性测试试卷A・(一亍+°°)D. (-co,-)下列函数中B(£)8.已知定义的R上的函数/(x)满足f(x + l) = /(1-x)且在[1,4-00)上是增函数,不等式/(or+2)< /(x-1)对任意xe[-;l]fH 成立,则实数d的取值范围是()A. [-3,-1]B. [―2,0]C. [-5,-1]D. [-2,1]9.已知函数/*(兀)=-x2 + ax(a G /?,/?G /?),对任意实数兀都有/(l-x) = /(l + x)成立,若存在xe[-l,l]时,使得/(兀)—b = 0有解,则实数b的取值范国是( )A. (-1,0)B. [-3,1]C. (-3,1)D.不能确定10.已知函数f(x) = lnx-ax2 + or恰冇两个零点,则实数a的取值范围为()A. (一8, 0)B. (0, +8)C. (0, 1) U (1, +8)D. (—8, 0) U {1}11.已知a=log2*, b=305 , c=0.53 ,则有()A. a>b>cB. b> c> aC. c>b> aD. c>a>b12.定义在/?上的徜函数/(x)满足/(x + 2)-/(x) = 0 , K在[-1,0]上单调递增,设= /(log32),19 一b = /(log j 2), <? = /(一),则a, b , c的人小关系是( )27 12A. a>b>cB. a>obC. b> c> aD. ob>a二、填空题(每题5分,共30分)13.已知y = f(x) + x2是奇函数,且/(I) = 1,若gd ⑴+ 2,贝ijg(-l)= ___________________14./(x) = 2若/(x0)>l则如的取值范围是.y]x,X> 015.已知函数y = f(x-2)定义域是[0,4],则y=/(E)的定义域是.X— 1X + /716.若函数f(x)=—;——w (-oo,b)U(b + 2,+oo)是奇函数,贝^ia + b = .2x -11 —Y 1 —兀?17.已知f(—) = —则/(兀)的解析式为f(x)= ___________________________1+ 兀1 + x18.已知/(兀)是R上的偶函数,对xwR都有/(x + 6) = f(x) + /(3)成立,若/(1) = 2,则/(2011)=_ 三、解答题(共5道题,)19. ( 12分)设f(x)是定义在实数集R上的函数H. y(-x) = -/(4 /(X)在[0, + oo)是减函数H f(m-1)+ /(m-3)<0,求实数m 的取值范围.20. (12分)定义在非零实数集上的函数/(力满足/(^) = /(x) + /(j),且/(朗是区间(0,+8)上的递增函数.求:(1) /(1),/(一1)的值;(2)求证:/(-X)= /(X); (3)解不等式/(2) + /(x--)<0.21.(12分)求f(x) = x2 -2ax-\在区间[0,2]上的最大值和最小值。

函数的三要素学生版

函数的三要素学生版

一、函数与映射的基本概念判断1. 设:f M N →是集合M 到N 的映射,下列说法正确的是A 、M 中每一个元素在N 中必有象B 、N 中每一个元素在M 中必有原象C 、N 中每一个元素在M 中的原象是唯一的D 、N 是M 中所在元素的象的集合2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个5. 以下各组函数表示同一函数是________________(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x (3)f (x )=x1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。

二、函数的定义域1.求下列函数的定义域(1)2161x x y -+=;(2)34x y x +=-2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。

(2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域(3)已知)1(+x f 的定义域为)32[,-,求2f x y -的定义域。

3. 求函数()f x =4. 若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )A 、(-∞,+∞)B 、(0,43] C 、(43,+∞) D 、[0, 43) 变式:已知函数8m mx 6mx y 2++-=的定义域为R 求实数m 的取值范围。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

高一数学《函数的定义域值域》练习题解析版

高一数学《函数的定义域值域》练习题解析版

高一数学《函数的定义域值域》练习题(一)1.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( )A .21x x +B .212x x +-C .212x x +D .21x x+-2.函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21C .2D .43.函数y = )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]4.设函数,2)2(),0()4(.0,2,0,0,)(2-=-=-⎩⎨⎧>≤≤++=f f f x x x c bx x x f 若则关于x 的方程xx f =)(解的个数为( )A .1B .2C .3D .45、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 - 7.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()(A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,78.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______。

第1讲 函数的定义域、解析式及分段函数 - 学生版

第1讲  函数的定义域、解析式及分段函数 - 学生版

D.[-1,1)∪(1,2 015] )
5.若函数 y=f(x)的定义域是[0,2],则函数 g(x)= A.[0,1] B.[0,1) C.[0,1)∪(1,4]
角度 3:已知定义域求参数问题 【例】 (1)若函数 f(x)=
x 2 2ax a 的定义域为 R,则 a 的取值范围为________.
3.若函数 f(x)= ax2+abx+b的定义域为{x|1≤x≤2},则 a+b 的值为________. 题型 2 函数解析式的求法
求函数解析式的常见方法 待定系数法 若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根 据题设条件,列出方程组,解出待定系数即可 已知 f(h(x))=g(x), 求 f(x)时, 往往可设 h(x)=t, 从中解出 x, 代入 g(x)进行换元, 求出 f(t)的解析式,再将 t 替换为 x 即可 已知 f(h(x))=g(x), 求 f(x)的问题, 往往把右边的 g(x)整理构造成只含 h(x)的式子, 用 x 将 h(x)替换 已知 f(x)满足某个等式,这个等式除 f(x)是未知量外,还有其他未知量,如 f(- 函数方程法 1 x ), f x , 则可根据已知等式再构造其他等式组成方程组, 通过解方程组求出 f(x)
)
fx2-1 (2)已知函数 y=f(x)的定义域是[0,8],则函数 g(x)= 的定义域为________. 2-log2x+1
第 2 页 共 11 页
万家学子教育
黄金数学工作室
【对应训练】 1.(2017·唐山模拟)已知函数 f(x)的定义域是[0,2],则函数 g(x)=f 是________. 2.已知函数 f(x)的定义域为[0,1],值域为[1,2],则函数 f(x+2)的定义域为________,值域为 ________. 1 ,2 3.若函数 y=f(2x)的定义域为 2 ,则 y=f(log2x)的定义域为________. fx+1 4.若函数 y=f(x)的定义域是[1,2 016],则函数 g(x)= 的定义域是( x-1 A.[0,2 015] B.[0,1)∪(1,2 015] C.(1,2 016] f2x 的定义域是( ln x D.(0,1) ) x+ 1 1 x- + f 2 2 的定义域

2012届高考数学第一轮复习精品试题:函数-学生版

2012届高考数学第一轮复习精品试题:函数-学生版

2012届高考数学第一轮复习精品试题:函数§2.1.1 函数的概念和图象经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,]4-∞C . 4[,)3+∞D .4(,3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( ) A .(1),(2),(3) B .(1),(3),(4) C .(2),(4) D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆++∈,、. 若13k ∆=,则函数()fx k x=∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.§2.1.2 函数的简单性质经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数1()x f x -=是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个 A .1 B .2 C .3 D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为( )5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是(,)22y x +-,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。

高一数学《函数的定义域值域》练习题

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题、函数值域的求法1、直接法:例1:求函数y .x26x 10的值域。

例2:求函数y 、、x 1的值域。

2、配方法:例1:求函数y x2 4x 2 (x [ 1,1])的值域。

例2:求函数y2X 2x 5,x [ 1,2]的值域。

2例3:求函数y 2x 5x 6的值域。

3、分离常数法:1 x例1 :求函数y-------- 的值域。

2x 52X X例2:求函数y —的值域.X X 1例3:求函数y 得值域•y 3x 24、换元法:例1:求函数y 2x , 1 2x的值域。

例2:求函数y x x 1的值域。

5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。

例1:求函数y x 、1 2x的值域。

例2:求函数f x . 1 x - 1 x的值域。

例3:求函数y ・x 1 x 1的值域。

6、 数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求 得函数值域,是一种求值域的重要方法。

当函数解析式具有某种明显的几何意义 (如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。

例1:求函数y |x 3| | x 5|的值域。

7、 非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。

例1、(1)求函数y 16 x 2的值域。

⑵求函数y ^2—3的值域。

x 1二、函数定义域例1:已知函数f(x)的定义域为 1,5,求f(3x 5)的定义域.例2:若f(x)的定义域为3,5,求(x) f ( x) f (2x例3:求下列函数的定义域:三、解析式的求法1、配凑法例1:已知:f(x 1) x 2 3x 2,求 f(x);① f(x) 1 x 2 ; ② f(x) .3x 2 ; ③f(x)x 112求下列函数的定义域: ④f(x) .^4 x 21例4:⑤5)的定义域.• x 2 3x 4 =1② f(x)133x 7④ f (x)(x 1)01 21例2 :已知f(x -) x — (x 0),求f (x)的解析式.x x2、换元法(注意:使用换元法要注意t的范围限制,这是一个极易忽略的地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义域、解析式测试题一、已知解析式求定义域(每小题5分,共20分)
1、函数f(x)=
1
1-2x
的定义域是__________(用区间表示).
2、函数f(x)=f(x)=(x+1)0
|x|-x
.的定义域为________.(用区间表示)
3、y=2x+3-
1
2-x

1
x
的定义域为__________(用区间表示)
4、若函数y=f(x)的定义域是[0,2],则函数g(x)=f(2x)
x-1
的定义域是__________(用区间表示)
二、复合函数的定义域(每小题5分,共20分)
(1)已知函数y=f(2x+1)的定义域为[1,2],求函数y=f(x)的定义域.
(2)已知函数y=f(x)的定义域为[1,2],求函数y=f(2x-3)的定义域.
(3)已知函数y=f(2x-1)的定义域为[1,2],求函数y=f(1-x)的定义域.
(4)知函数f x()的定义域为[1,1]
-,且函数()()()
F x f x m f x m
=+--的定义域存在,求实数m的取值范围。

三、求解析式的方法(每小题10分,共60分)
1、已知f(x+1)=x+2x,求f(x).
2、已知f(x)为二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x)的表达
式.
3、已知:2f (x )+f (1x
)=3x ,x ≠0,求f (x ).
4、设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的表达式.
5、已知函数f (x )满足f ⎝
⎛⎭⎪⎫x -1x =x 2+1x 2,则f (x )的表达式。

6、已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.。

相关文档
最新文档