函数的定义域解析与练习及答案

合集下载

函数定义域的求法练习题含答案_

函数定义域的求法练习题含答案_

函数定义域的求法练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 函数f(x)=√1−2x+√x+2的定义域为( )A.(−2,0]B.(−2,1]C.(−∞,−2)∪(−2,0]D.(−∞,−2)∪(−2,1]2. 函数f(x)=lg(x−3)+√4−x的定义域为()A.[3,4];B.(3,4];C.(3,4);D.[3,4)3. 函数f(x)=√2−2x+1log3x的定义域为()A.{x|0<x<1}B.{x|x<1}C.{x|0<x≤1}D.{x|x>1}4. 函数f(x)=ln(x−x2)的定义域为()A.(0, 1)B.[0, 1]C.(0, 1]D.[0, 1)5. 已知f(x)的定义域为[−2, 1],函数f(3x−1)的定义域为( )A.(−7, 2)B.(−13,23) C.[−7, 2] D.[−13,23]6. 函数y=√1−3x的定义域为( )A.(0, 1]B.[0, +∞)C.(−1, 0]D.(−∞, 0]7. 已知函数f(x)=ln(x+3)√x−3,则函数f(x)的定义域为()A.(3,+∞)B.(−3,3)C.(−∞,−3)D.(−∞,3)8. 函数f(x)=√x+1的定义域为()A.[−1,5)B.[−1,5]C.(−1,5]D.(−1,5)9. 函数f(x)=1ax2+4ax+3的定义域为(−∞, +∞),则实数a的取值范围是( )A.(−∞, +∞)B.[0,34)C.(34,+∞)D.[0,34]10. 已知函数f(x)的定义域为[−2, 3],则函数g(x)=2√x 2−x−2的定义域为( )A.(−∞, −1)∪(2, +∞)B.[−6, −1)∪(2, 3]C.[−2, −1)∪(2, 3]D.[−√5,−1)∪(2,√5]11. 函数f (x +1)的定义域为[0,1],则f (x 2)的定义域为________.12. 已知函数 f [(12)x]的定义域为[1,2],则函数f (2x )的定义域为________.13. 函数f (x )=ln (x−1)x−2的定义域为________.14. 函数f (x )=√6+x−x 2ln x 的定义域为________.15. 函数f (x )=√x −3的定义域为________.16. 函数y =√4−x 2的定义域是________.17. 若函数f(x −1)的定义域为[−3, 3],则f(x)的定义域为________.18. 函数f(x)=√x −1+lg (3−x)的定义域为________.19. 已知函数f(x)=log 2(2−x)−log 2(2+x). (1)求函数f(x)的定义域;(2)试判断函数f(x)的奇偶性;(3)求不等式f(x)>1的解集.20. 求下列函数的定义域.(1)f(x)=√√3−2cos x;(2)f(x)=1.1−tan x21. 求下列函数的定义域.(1)f(x)=√3x+6;x−1(2)f(x)=√|x|−2+(x−3)0.22. 求下列函数的定义域:(1)f(x)=6;x2−3x+2(2)f(x)=√4−x.x−123. 设函数f(x)=√3−x+√x的定义域为集合M,函数g(x)=x2−2x+2.(1)求函数g(x)在x∈M时的值域;(2)若对于任意x∈R都有g(x)≥mx−2成立,求实数m的取值范围.24. 已知函数f(x)=√(x+1)(x−2)的定义域为集合A,B={x|x<a或x>a+1}.(1)求集合A;(2)若A⊆B,求实数a的取值范围.25. 设全集为R,函数f(x)=√−2x2+5x+3的定义域为A,集合B={x|x2+a<0}.(1)当a=−4时,求A∪B;(2)若A∩B=B,求实数a的取值范围.参考答案与试题解析 函数定义域的求法练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 A【考点】函数的定义域及其求法 【解析】本题主要考查函数定义域问题,根据定义域的要求进行求解即可 【解答】解:由{1−2x ≥0,x +2>0,解得−2<x ≤0, 所以函数f (x )=√1−2x √x+2的定义域为(−2,0].故选A . 2.【答案】 C【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】 略 3.【答案】 A【考点】函数的定义域及其求法 【解析】根据函数成立的条件即可求函数的定义域. 【解答】解:要使函数有意义,则{2−2x ≥0,log 3x ≠0,x >0,即{x ≤1,x ≠1,x >0,得0<x <1,即函数的定义域为{x|0<x <1},故选A . 4. 【答案】 A【考点】函数的定义域及其求法【解析】根据对数函数的性质,求出函数的定义域即可.【解答】解:由题意得x−x2>0,即x(x−1)<0,解得0<x<1,故函数的定义域是(0, 1).故选A.5.【答案】D【考点】函数的定义域及其求法【解析】根据函数定义域的求法,直接解不等式−2≤3x−1≤1,即可求函数y=f(3x−1)的定义域.【解答】解:∵函数y=f(x)的定义域为[−2, 1],∴−2≤3x−1≤1,解得:−13≤x≤23,即x∈[−13, 23],故函数y=f(3x−1)的定义域为[−13, 2 3 ].故选D.6.【答案】D【考点】函数的定义域及其求法【解析】利用函数定义域的求法求函数的定义域.【解答】解:要使函数有意义,则有1−3x≥0,即3x≤1,所以x≤0,故函数的定义域为(−∞, 0].故选D.7.【答案】A【考点】函数的定义域及其求法【解析】无【解答】解:要使函数f(x)=ln(x+3)√x−3有意义,则有{x +3>0,x −3>0,解得x >3,所以函数f (x )的定义域为(3,+∞). 故选A . 8. 【答案】 D【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】解:由题可知,{−3x +15>0,x +1>0,解得−1<x <5. 故选D . 9.【答案】 B【考点】与二次函数相关的复合函数问题 函数的定义域及其求法【解析】根据函数的定义域的定义,即ax 2+4ax +3≠0的解集为R ,即方程ax 2+4ax +3=0无解,根据二次函数的性质,即可得到 答案. 【解答】解:由题意,函数的定义域为(−∞,+∞), 即ax 2+4ax +3≠0的解集为R , 即方程ax 2+4ax +3=0无解.当a =0时,3=0,此时无解,符合题意; 当a ≠0时,Δ=(4a )2−4a ×3<0, 即16a 2−12a <0,所以0<a <34. 综上可得,实数a 的取值范围是[0,34). 故选B . 10. 【答案】 D【考点】函数的定义域及其求法 【解析】根据f(x)的定义域即可得出,要使得函数g(x)有意义,则需满足{−2≤3−x 2≤3x 2−x −2>0,解出x 的范围即可. 【解答】解:∵ f(x)的定义域为[−2, 3],∴ 要使g(x)有意义,则{−2≤3−x 2≤3,x 2−x −2>0,解得−√5≤x <−1或2<x ≤√5,∴ g(x)的定义域为[−√5,−1)∪(2,√5]. 故选D .二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 ) 11.【答案】[−√2,−1]∪[1,√2] 【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】解:∵ f (x +1)的定义域为[0,1], 即0≤x ≤1, ∴ 1≤x +1≤2.∵ f (x +1)与f (x 2)是同一个对应关系f , ∴ x 2与x +1的取值范围相同, 即1≤x 2≤2,整理,得x 2−2≤0,x 2−1≥0, 解得−√2≤x ≤√2,x ≥1或x ≤−1, ∴ −√2≤x ≤−1,1≤x ≤√2,∴ f (x 2)的定义域为[−√2,−1]∪[1,√2]. 故答案为:[−√2,−1]∪[1,√2]. 12.【答案】 [−2,−1] 【考点】抽象函数及其应用 函数的定义域及其求法 【解析】由题意可知x ∈[1,2],(12)x∈[12,14],故有2x ∈[12,14],解得x 的范围,可得函数f (2x )的定义域. 【解答】解:∵ 函数f [(12)x]的定义域为[1,2], 即x ∈[1,2], ∴ (12)x∈[14,12], ∴ 2x ∈[14,12], 解得x ∈[−2,−1],∴ 函数f (2x )的定义域为[−2,−1]. 故答案为:[−2,−1]. 13.【答案】(1,2)∪(2,+∞) 【考点】函数的定义域及其求法 【解析】由条件可得{x −2≠0x −1>0,求解即可.【解答】解:要使函数有意义, 则{x −2≠0,x −1>0,解得1<x <2或x >2,即函数的定义域为(1,2)∪(2,+∞). 故答案为:(1,2)∪(2,+∞). 14.【答案】 (0,1)∪(1,3] 【考点】函数的定义域及其求法 【解析】根据二次根式的被开方数为非负数,分母不为零,对数的真数大于零,列不等式组求解即可. 【解答】解:要使函数有意义,则6+x −x 2≥0且ln x ≠0且x >0, 解得x ∈(0,1)∪(1,3]. 故答案为:(0,1)∪(1,3]. 15.【答案】 {x|x ≥3} 【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】解:由题意得x −3≥0,解得x ≥3.故函数f (x )=√x −3的定义域为{x|x ≥3}. 故答案为:{x|x ≥3}. 16. 【答案】 (−1,2) 【考点】函数的定义域及其求法 对数函数的定义域 【解析】 此题暂无解析 【解答】解:由题意得{4−x 2>0,x +1>0,解得−1<x <2,∴ 函数y =√4−x 2的定义域是(−1,2).故答案为:(−1,2). 17.【答案】 [−4, 2] 【考点】函数的定义域及其求法 【解析】f(x −1)的定义域为[−3, 3],是指的x 的范围是[−3, 3],由此求出x −1的范围得到f(x)的定义域. 【解答】解:∵ f(x −1)的定义域为[−3, 3],即−3≤x ≤3. ∴ −4≤x −1≤2,即函数f(x)定义域为[−4, 2]. 故答案为:[−4, 2]. 18.【答案】 [1,3) 【考点】函数的定义域及其求法 【解析】由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组得答案. 【解答】解:∵ f(x)=√x −1+lg (3−x), ∴ {x −1≥0,3−x >0,解得1≤x <3,∴ 函数f(x)=√x −1+lg (3−x)的定义域为[1, 3). 故答案为:[1,3).三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 ) 19.【答案】解:(1)∵ f(x)=log 2(2−x)−log 2(2+x), ∴ {2−x >0,2+x >0,解得−2<x <2,∴ f(x)的定义域是(−2, 2);(2)∵ 函数f (x )的定义域为(−2,2).且f(−x)=log 2(2+x)−log 2(2−x) =−[log 2(2−x)−log 2(2+x)] =−f(x),∴ f(x)是定义域(−2, 2)上的奇函数; (3)∵ f(x)=log 2(2−x)−log 2(2+x)=log 22−x 2+x>1,∴ {−2<x <2,2−x 2+x>2,解得−2<x <−23∴ 不等式f(x)>1的解集是(−2, −23). 【考点】函数的定义域及其求法 函数单调性的判断与证明 指、对数不等式的解法【解析】(1)根据对数函数的定义,列出关于自变量x 的不等式组,求出f(x)的定义域; (2)由函数奇偶性的定义,判定f(x)在定义域上的奇偶性;(3)化简f(x),根据对数函数的单调性以及定义域,求出不等式f(x)>1的解集. 【解答】解:(1)∵ f(x)=log 2(2−x)−log 2(2+x), ∴ {2−x >0,2+x >0,解得−2<x <2,∴ f(x)的定义域是(−2, 2);(2)∵ 函数f (x )的定义域为(−2,2). 且f(−x)=log 2(2+x)−log 2(2−x) =−[log 2(2−x)−log 2(2+x)] =−f(x),∴ f(x)是定义域(−2, 2)上的奇函数; (3)∵ f(x)=log 2(2−x)−log 2(2+x)=log 22−x 2+x>1,∴ {−2<x <2,2−x 2+x >2,解得−2<x <−23∴ 不等式f(x)>1的解集是(−2, −23).20. 【答案】解:(1)由被开方数为非负数可得√3−2cos x ≥0, 解得cos x ≤√32,所以π6+2kπ≤x ≤11π6+2kπ,k ∈Z , 所以f (x )的定义域为[π6+2kπ,11π6+2kπ] k ∈Z .(2)由分式的分母不为零且正切函数中x ≠π2+kπ,k ∈Z ,可得1−tan x ≠0且x ≠π2+kπ,解得x ≠π4+kπ且x ≠π2+kπ,k ∈Z . 所以f (x )的定义域为{x|x ≠π2+kπ且x ≠π4+kπ,k ∈Z}.【考点】函数的定义域及其求法【解析】此题暂无解析【解答】解:(1)由被开方数为非负数可得√3−2cos x ≥0,解得cos x ≤√32, 所以π6+2kπ≤x ≤11π6+2kπ,k ∈Z , 所以f (x )的定义域为[π6+2kπ,11π6+2kπ] k ∈Z .(2)由分式的分母不为零且正切函数中x ≠π2+kπ,k ∈Z ,可得1−tan x ≠0且x ≠π2+kπ, 解得x ≠π4+kπ且x ≠π2+kπ,k ∈Z .所以f (x )的定义域为{x|x ≠π2+kπ且x ≠π4+kπ,k ∈Z}.21.【答案】解:(1)由题意得:{3x +6≥0,x −1≠0,解得x ≥−2且x ≠−1,所以函数f (x )的定义域为{x ∣x ≥−2且x ≠1}.(2)由题意得:{|x |−2≥0,x −3≠0,解得x <−2或x >2且x ≠3,故f (x )的定义域为{x ∣x <−2或x >2且x ≠3}.【考点】函数的定义域及其求法【解析】(1)由分母不为零,偶次根式底数为非负数,构造不等式组即可解出.(2)由偶次根式底数为非负数,零指数幂底数不为零,构造不等式组即可解出.【解答】解:(1)由题意得:{3x +6≥0,x −1≠0,解得x ≥−2且x ≠−1,所以函数f (x )的定义域为{x ∣x ≥−2且x ≠1}.(2)由题意得:{|x |−2≥0,x −3≠0,解得x <−2或x >2且x ≠3,故f (x )的定义域为{x ∣x <−2或x >2且x ≠3}.22.【答案】(1)∵ f(x)=6x 2−3x+2,∴ x 2−3x +2≠0,解得x ≠1且x ≠2,∴ f(x)的定义域为(−∞,1)∪(1,2)∪(2,+∞).(2)∵ f(x)=√4−x x−1, ∴ {4−x ≥0,x −1≠0,解得x ≤4且x ≠1,∴ f(x)的定义域为(−∞,1)∪(1,4].【考点】函数的定义域及其求法【解析】;.【解答】(1)∵ f(x)=6x 2−3x+2,∴ x 2−3x +2≠0,解得x ≠1且x ≠2,∴ f(x)的定义域为(−∞,1)∪(1,2)∪(2,+∞).(2)∵ f(x)=√4−x x−1, ∴ {4−x ≥0,x −1≠0,解得x ≤4且x ≠1,∴ f(x)的定义域为(−∞,1)∪(1,4].23.【答案】解:(1)由{3−x ≥0,x ≥0得{x ≤3,x ≥0, 所以M ={x|0≤x ≤3}.因为g (x )=x 2−2x +2=(x −1)2+1,x ∈[0,3],所以g (x )max =g (3)=5,g (x )min =g (1)=1,所以函数g (x )在x ∈M 时的值域为[1,5].(2)由任意x ∈R 都有g (x )≥mx −2成立得,x 2−(m +2)x +4≥0对x ∈R 恒成立,所以Δ=(m +2)2−16≤0,解得−6≤m ≤2,所以实数m 的取值范围为[−6,2].【考点】函数的值域及其求法函数的定义域及其求法一元二次不等式的解法【解析】(1)答案未提供解析.(2)答案未提供解析.【解答】解:(1)由{3−x ≥0,x ≥0得{x ≤3,x ≥0, 所以M ={x|0≤x ≤3}.因为g (x )=x 2−2x +2=(x −1)2+1,x ∈[0,3],所以g (x )max =g (3)=5,g (x )min =g (1)=1,所以函数g (x )在x ∈M 时的值域为[1,5].(2)由任意x ∈R 都有g (x )≥mx −2成立得,x 2−(m +2)x +4≥0对x ∈R 恒成立,所以Δ=(m +2)2−16≤0,解得−6≤m ≤2,所以实数m 的取值范围为[−6,2].24.【答案】解:(1)由(x +1)(x −2)≥0得:x ≤−1或x ≥2,所以A =(−∞, −1]∪[2, +∞).(2)A =(−∞, −1]∪[2, +∞),B ={x|x <a 或x >a +1},因为A ⊆B ,所以{a >−1,a +1<2,解得:−1<a <1,所以实数a 的取值范围是(−1, 1).【考点】集合关系中的参数取值问题一元二次不等式的解法函数的定义域及其求法【解析】(1)根据题目中使函数有意义的x的值解分式不等式求得函数的定义域A;(2)由若A⊆B,根据两个集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(1)由(x+1)(x−2)≥0得:x≤−1或x≥2,所以A=(−∞, −1]∪[2, +∞).(2)A=(−∞, −1]∪[2, +∞),B={x|x<a或x>a+1},因为A⊆B,所以{a>−1,a+1<2,解得:−1<a<1,所以实数a的取值范围是(−1, 1).25.【答案】解:(1)由−2x2+5x+3≥0,解得:−12≤x≤3,故A=[−12, 3],当a=−4时,x2−4<0,解得:−2<x<2,故B=(−2, 2),故A∪B=(−2, 3];(2)若A∩B=B,则B⊆A,①当a<0时,(−√−a, √−a)⊆[−12, 3],即−14≤a<0;②当a≥0时,B为⌀,符合题意.∴a∈[−14, +∞).【考点】函数的定义域及其求法并集及其运算集合的包含关系判断及应用【解析】(1)解不等式分别求出集合A、B,求出A、B的交集即可;(2)根据A、B的包含关系,得到关于a的不等式,解出即可.【解答】解:(1)由−2x2+5x+3≥0,解得:−12≤x≤3,故A=[−12, 3],当a=−4时,x2−4<0,解得:−2<x<2,故B=(−2, 2),故A∪B=(−2, 3];(2)若A∩B=B,则B⊆A,, 3],①当a<0时,(−√−a, √−a)⊆[−12≤a<0;即−14②当a≥0时,B为⌀,符合题意.∴a∈[−1, +∞).4。

定义域值域练习题

定义域值域练习题

定义域值域练习题定义域和值域是数学中的重要概念,它们在函数的研究和应用中起着至关重要的作用。

通过练习题的形式来加深对定义域和值域的理解,可以帮助我们更好地掌握这一概念。

1. 练习题一:给定函数f(x) = √(x+2),求函数的定义域和值域。

解析:对于函数f(x) = √(x+2),由于根号下的表达式不能为负数,所以x+2≥0,即x≥-2。

因此,函数的定义域为[-2, +∞)。

对于值域,我们可以观察到随着x的增大,函数值也随之增大,且函数值没有上界。

因此,函数的值域为[0, +∞)。

2. 练习题二:给定函数g(x) = 1/(x-3),求函数的定义域和值域。

解析:对于函数g(x) = 1/(x-3),由于分母不能为零,所以x-3≠0,即x≠3。

因此,函数的定义域为(-∞, 3)∪(3, +∞)。

对于值域,我们可以观察到随着x的增大或减小,函数值也随之增大或减小。

但由于定义域中不包含x=3,所以函数的值域为(-∞, 0)∪(0, +∞)。

3. 练习题三:给定函数h(x) = e^x,求函数的定义域和值域。

解析:对于函数h(x) = e^x,指数函数e^x对于所有实数x都有定义。

因此,函数的定义域为(-∞, +∞)。

对于值域,我们可以观察到指数函数e^x的特点是随着x的增大,函数值也随之增大,且函数值没有下界。

因此,函数的值域为(0, +∞)。

通过以上练习题,我们可以看出定义域和值域的求解是通过对函数表达式的分析和观察来完成的。

对于定义域,我们需要注意函数中出现的分母不能为零,根号下的表达式不能为负数等限制条件。

对于值域,我们需要观察函数随着自变量的变化而变化的规律,以确定函数值的范围。

在实际应用中,对于函数的定义域和值域的求解有助于我们理解函数的性质和特点,进而在问题求解中进行合理的取值范围的设定。

例如,在经济学中,对于某个经济指标的函数,我们可以通过求解其定义域和值域来确定该指标的有效范围和变化趋势,从而作出合理的经济决策。

《高数学必修》函数的概念定义域值域练习题含答案

《高数学必修》函数的概念定义域值域练习题含答案

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

函数概念练习题(含解析)

函数概念练习题(含解析)

2
, y
2x 1 的值域为 , 2
x3
2,
.
(4)令
x 1 t ,则 t 0 且 x t2 1, y 2
t2 1
t 2t 2 t 2 2 t
1 4
2
15 , 8
则当 t
1 4
时,
ymin
15 8

y
2x
x
1
的值域为
15 8
,
.
18.(1) R
(2){x∣1 x 4}
A. f (x) x0 与 g(x) 1
B. f (x) x 与 g(x) x2 x
C.
f
x
1,x 0, 1,x 0 与
g
x
x x
,x
1,x
0
0, D.
f
(x)
(x 1)2 与 g(x) x 1
6.若函数
f
2x 1 的定义域为1,1 ,则函数 y
f
x 1
的定义域为(

x 1
A. 1, 2
x 不是同一函数. 故选:C. 9.A 【分析】根据题意,由换元法,结合二次函数的最值,即可得到结果.
【详解】设 t 3 x ,则 t 0 ,即 x 3 t2 ,所以 y f t 2 3 t2 4t 2 t 12 8,
因为 t 0 ,所以当 t 1时,函数取得最大值为 8 . 故选:A 10.C 【分析】把自变量直接代入解析式即可求解.
x 1
故选:D
7.C
【分析】逐个求解函数的定义域判断即可
【详解】对于 A,由 x 0 ,得函数的定义域为[0, ) ,所以 A 错误,
答案第 2页,共 6页
对于 B,由 x 1 0 ,得 x 1 ,所以函数的定义域为 (,1) (1,) ,所以 B 错误,

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

必修一数学定义域值域解析式求法例题习题含答案

必修一数学定义域值域解析式求法例题习题含答案

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合 (2)求函数定义域的注意事项☉分式分母不为零;☉偶次根式的被开方数大于等于零; ☉零次幂的底数不为零;☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()f x =( ) A.(-∞,4)B.[4,+∞)C.(-∞,4]D.(-∞,1)∪(1,4]【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =(-∞,1)∪(1,4]故选:D例2.函数y =的定义域为(){|11}x x x ≥≤-或{|11}x x -≤≤【答案】D 【解析】函数y =可知:2210{ 10x x -≥-≥,解得:1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(?2,2),得:2113x -≤-≤, 故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是()[)0,1[]0,1[)(]0,11,4⋃()0,1【答案】A Q 函数()y f x =的定义域是[]0,2,022{ 10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是()[]1,4-[]0,16[]2,2-[]1,4【答案】C 【解析】解:由条件知:()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是()A .[]052,[]-14,[]-55,[]-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A}叫做函数的值域。

定义域练习题及解答

定义域练习题及解答

函数的定义域练习题一、知识要点:1 •函数的定义域问题常从以下几方面考虑:① 分式的分母不等于 0;② 偶次根式的被开方数非负;③ 对数式的真数大于零,底数大于零且不等于1 ;④ 指数为0时,底数不等于0 •2•已知f[g(x)]的定义域,求f(x)的定义域;已知 f(x)的定义域,求f[g(x)]的定义域. 二、例题分析:1 •求下列函数的定义域:① f(x)= 3x2 lg(3x 1):② f(x)=—1 "(X —1)—:③ f(x) 」 耳-x J_x 2-3x+4 log (2x41)(32 - 4x )④ y 二 2x 2 -x log 2(1 -x)若函数f(2x )的定义域为[-1,1],求f(log 2X)的定义域.三、练习:F 列各题中表示同一函数的是(x 设函数f (x)=二x +1 kx 7 当k 为何值时,函数八kx 二二的定义域是一切实数?A . 2x 匕 y =——与y = xB .C .D . x 2 -1 (x 1)与 y = x 1(x1,则 f A)xA. f(x)B. - f(x)C.D.f (x) f(-X)1 -x2 13.右函数g(x) —1 —2x, f 2(x 工0),则f (_)=x 2A. 1B. 3C. 15D.304 .右2x € R,函数f (x)是y = 2- x,y = x这两个函数中的最小者,A. 2B. 1C. -1D.无最大值x -2, (x H10)5.设f 则f(5)的值为[f[f(x+6)],(x<10)则f (x) |max A. 1 0 B. 1 1 C. 12 D. 1 3R 的函数满足 f(a b)二 f(a)f(b)(a,b R),且 f (x)>0,若 f(1)g 则 f (-2)=(13.解下列各题:④已知函数f (x)的定义域是 0,11,求g(x)二f (x • a) • f (x - a)(——<a <0)的定义域.14.如图,有一块半椭圆形钢板,其长半轴长为 2r,短半轴长为r .计划将此钢板切割成等腰梯形的形状 ,下底AB 是半椭圆的短轴,上底 CD 的端点在椭圆上.记CD = 2x ,梯形面积为S .(1)求面积S 以x 为自变量的函数式,并写出其定义域; (2)求面积S 的最大值.解(1)依题意,以AB 的中点O 为原点建立直角坐标系O-xy (如图), 则点C 的横坐标为x,点C 的纵坐标y 满足方程2 2x y— 厂 1(y > 0),r 4r------ 1 ---------------------------A. 2B.4 1C.- 2 1D.- 4 二、填空题 设函数 f(X) 1 x 2 1 -1(x 一 0), 若f (a) > a.则实数a 的取值范围是 (x ::: 0). •函数y X -2 x2-4的定义域 已知函数 2 X f(x) 「 1 + X 1 1 1 ,则f(1) f ⑵匕)f(3) q f(4) f 輕 10.已知函数 x f(x) (ab = 0),且f(2) =1.f(x)二x 有唯一解,则函数 y = f (x)的解析式为 ax +b 11•若函数y 二f(x)的定义域为 丄,2,则f(log 2X)的定义域为 IL 2 三、解答题 12•求下列函数的定义域: ① y U 「X lg(x 2 — 2x -8):② y 二 log 1(4x 3):③ y = . 2x - 1 (x - 3)0 ; V 2 ④ y 「log °.3(2x -3) 2x 4 飞―、5—|x| log 3(x-2) 6.已知定义域为①已知函数f (x)的定义域为 '-I, 1, 求f(3x -5)的定义域.②已知函数f (X 2 -2x 2)的定义域为 0,1, 求函数f (x)的定义域.③若f (x)的定义域为〔-3,51,求「(x) = f (-x) • f(2x • 5)的定义域.解得y=2 r2-X2(0<x<r).S= - (2x+2r) • 2 . r2 _X2=2(x+r) • r2- X2,其定义域为{x|O<x<r}.2 2 2 2(2)记f(x)=4(x+r) (r -x ),0<x<r,则f' (x)=8(x+r) (r-2x).1r令f' (x)=0,得x= r.因为当0<x< 时,f' (x)>0;2 2r 1当一<x<r时,f ' (x)<0,所以f ( r )是f(x)的最大值.2 2因此,当x=^r时,S也取得最大值,最大值为心)。

函数的定义域解析与练习及答案

函数的定义域解析与练习及答案

函数的定义域1、已知函数式求定义域:例1、求下列函数的定义域:(1);(2);(3);(4);(5).解:(1),即;(2),即;(3)且,即.(4)要使函数有意义,应满足,即.∴函数的定义域为.(5)要使函数有意义,应满足,即.∴函数的定义域为.点拨:要求使函数表达式有意义的自变量的取值范围,可考虑用到不等式或不等式组,然后借助于数轴进行求解.2、求抽象函数的定义域讲解:求解抽象函数的定义域时一定要严格遵循原始函数的定义域,不管“”中的“x”被什么代换,它们都得首先遵循这一“规则”,在这一“规则”之下再去求解具体的x的范围.例2、已知的定义域为,求,的定义域.解:∵的定义域为,∴,∴,即的定义域为,由,∴,即的定义域为.点拨:若的定义域为,则的定义域是的解集.例3、已知的定义域为,求,的定义域.解:∵的定义域为,∴即的定义域为.又∵的定义域为,∴,∴即的定义域为.点拨:已知的定义域,则当时,y=kx+b的函数值的取值集合就是的定义域.例4、已知函数的定义域是[a,b],其中a<0<b,且|a|>b,求函数的定义域.解答:∵函数的定义域为[a,b],∴a≤x≤b,若使有意义,必须有a≤-x≤b即有-b≤x≤-a.∵a<0<b,且|a|>b,∴a<-b且b<-a.∴的定义域为.点拨:若的定义域为及的定义域分别为A、B,则有借助于数轴分析可求得.3、函数定义域的逆用讲解:已知函数的定义域求解其中参数的取值范围时,若定义域为R时,可采用判别式法,若定义域为R的一个真子集时,可采用分离变量法.例5、已知函数的定义域是R,求实数k的取值范围.解答:①当k=0时,函数,显然它的定义域是R;②当k≠0时,由函数y的定义域为R可知,不等式对一切实数x均成立,因此一定有.解得0<k≤1,∴0≤k≤1.点拨:此题是已知函数y的定义域,据此逆向求解函数中参数k的取值,需要将问题准确转化成不等式问题.例6、半径为R的圆内接等腰梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x的函数关系式,并写出它的定义域.解:如图所示,AB=2R,CD在⊙O在半圆周上.设腰AD=BC=x,作DE⊥AB.垂足为E,连BD.由Rt△ADE∽Rt△ABD,练习:一、选择题1、函数的定义域是A.[-2,2] B.{-2,2} C.(-∞,-2)∪(2,+∞) D.(-2,2)2、若函数的定义域为[-1,2],则函数的定义域是A. B.[-1,2] C.[-1,5] D.3、已知函数的定义域为A,的定义域为B,若=.则实数m的取值范围是A.(-3,-1) B.(-2,4) C.[-2,4] D.[-1,3]二、填空题4、已知函数的定义域为[-1,2],那么函数的定义域是__________.5、若函数的定义域为R,则实数m的取值范围是__________.三、解答题6、求下列函数的定义域:①②③y=lg(a x-2·3x)(a>0且a≠1)7、解答下列各题:(1)已知的定义域为[0,1],求及的定义域.(2)设的定义域是[-2,3),求的定义域.8、已知函数的定义域为[-1,1],求(a>0)的定义域.9、设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围.答案:一.1.B 2.C 3.D提示:1、得x2=4,x=±2.3、由x2-2x-8≥0得A={x|x≥4或x≤-2}.由1-|x-m|>0得,B={x|m-1<x<1+m},∵.二.4.解析:由得≤x≤1.5.解析:当m=0,,定义域为R,当m≠0,由的定义域为R知抛物线y=mx2+4mx+3与x轴无交点,即Δ=16m2-12m<0,解得.综上可知m∈.6.解:①.②.③∵a x-2·3x>0,∴()x>2.当a>3时,此函数的定义域为(log2,+∞);当0<a<3且a≠1时,函数定义域为(-∞,log2).当a=3时,函数无意义.7.解:(1)设的定义域为[0,1],∴0≤t≤1.当t=x2,可得0≤x2≤1,∴-1≤x≤1,∴的定义域为[-1,1].同理,由得,∴的定义域是.(2)∵的定义域是[-2,3),∴-2≤x<3-3≤x-1<2,即的定义域是[-3,2).由,∴函数的定义域为.8.解:须使和都有意义.使有意义则;使有意义则.当时,,的定义域为;当时,,的定义域为.9.解:由题设可知,不等式1+2x+4x·a>0在x∈(-∞,1]上恒成立,即()2x+()x+a>0在x∈(-∞,1]上恒成立.设t=()x,则t≥,又设g(t)=t2+t+a,其对称轴为t=-.只需g()=()2++a>0,得a>-,所以a的取值范围是a>-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义域解析与练
习及答案
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
函数的定义域
1、已知函数式求定义域:
例1、求下列函数的定义域:
(1);(2);(3);
(4);(5).
解:
(1),即;(2),即;
(3)且,即.
(4)要使函数有意义,应满足,即.∴函数的定义域为.
(5)要使函数有意义,应满足,即.∴函数的定义域为

点拨:要求使函数表达式有意义的自变量的取值范围,可考虑用到不等式或不等式组,然后借助于数轴进行求解.
2、求抽象函数的定义域
讲解:求解抽象函数的定义域时一定要严格遵循原始函数的定义域,不管
“”中的“x”被什么代换,它们都得首先遵循这一“规则”,在这一“规则”之下再去求解具体的x的范围.
例2、已知的定义域为,求,的定义域.
解:
∵的定义域为,∴,∴,即的定义域为,
由,∴,即的定义域为.
点拨:若的定义域为,则的定义域是的解集.
例3、已知的定义域为,求,的定义域.
解:
∵的定义域为,∴即的定义域为.
又∵的定义域为,∴,∴
即的定义域为.
点拨:已知的定义域,则当时,y=kx+b的函数值的取值集合就是的定义域.
例4、已知函数的定义域是[a,b],其中a<0<b,且|a|>b,求函数的定义域.
解答:
∵函数的定义域为[a,b],∴a≤x≤b,
若使有意义,必须有a≤-x≤b即有-b≤x≤-a.∵a<0<b,且|a|>b,∴a<-b且b<-a.
∴的定义域为.
点拨:若的定义域为及的定义域分别为A、B,则有借助于数轴分析可求得.
3、函数定义域的逆用
讲解:已知函数的定义域求解其中参数的取值范围时,若定义域为R时,可采用判别式法,若定义域为R的一个真子集时,可采用分离变量法.
例5、已知函数的定义域是R,求实数k的取值范围.
解答:
①当k=0时,函数,显然它的定义域是R;
②当k≠0时,由函数y的定义域为R可知,不等式对一切实数x均成立,因此一定有.
解得0<k≤1,∴0≤k≤1.
点拨:此题是已知函数y的定义域,据此逆向求解函数中参数k的取值,需要将问题准确转化成不等式问题.?
例6、半径为R的圆内接等腰梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x的函数关系式,并写出它的定义域.
解:
如图所示,AB=2R,CD在⊙O在半圆周上.
设腰AD=BC=x,作DE⊥AB.垂足为E,连BD.
由Rt△ADE∽Rt△ABD,
练习:
一、选择题
1、函数的定义域是
A.[-2,2] B.{-2,2} C.(-∞,-2)∪(2,+∞) D.(-2,2)
2、若函数的定义域为[-1,2],则函数的定义域是
A. B.[-1,2] C.[-1,5] D.
3、已知函数的定义域为A,的定义域为B,若
=.则实数m的取值范围是
A.(-3,-1) B.(-2,4) C.[-2,4] D.[-1,3]
二、填空题
4、已知函数的定义域为[-1,2],那么函数的定义域是
__________.
5、若函数的定义域为R,则实数m的取值范围是__________.
三、解答题
6、求下列函数的定义域:
①②
③y=lg(a x-2·3x)(a>0且a≠1)
7、解答下列各题:
(1)已知的定义域为[0,1],求及的定义域.
(2)设的定义域是[-2,3),求的定义域.
8、已知函数的定义域为[-1,1],求(a>0)的定义域.
9、设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围.答案:一.
提示:
1、得x2=4,x=±2.
3、由x2-2x-8≥0得A={x|x≥4或x≤-2}.
由1-|x-m|>0得,B={x|m-1<x<1+m},
∵.
二.4. 解析:由得≤x≤1.
5.
解析:当m=0,,定义域为R,当m≠0,由的定义域为R知抛物线
y=mx2+4mx+3与x轴无交点,即Δ=16m2-12m<0,解得.综上可知m∈.6.解:①.
②.
③∵a x-2·3x>0,∴()x>2.
当a>3时,此函数的定义域为(log2,+∞);
当0<a<3且a≠1时,函数定义域为(-∞,log2).
当a=3时,函数无意义.
7.解:(1)设的定义域为[0,1],∴0≤t≤1.
当t=x2,可得0≤x2≤1,∴-1≤x≤1,∴的定义域为[-1,1].
同理,由得,∴的定义域是.
(2)∵的定义域是[-2,3),
∴-2≤x<3-3≤x-1<2,即的定义域是[-3,2).
由,∴函数的定义域为.
8.解:须使和都有意义.使有意义则;使有意义则.
当时,,的定义域为;
当时,,的定义域为.
9.解:由题设可知,不等式1+2x+4x·a>0在x∈(-∞,1]上恒成立,即()2x+()x+a>0在x∈(-∞,1]上恒成立.
设t=()x,则t≥,又设g(t)=t2+t+a,其对称轴为t=-.只需g()=()2++a>0,得a>-,
所以a的取值范围是a>-.。

相关文档
最新文档