2019年中考数学总复习第6章图形的变化第3节视图与投影精练试题

合集下载

中考数学总复习《投影与视图》专项提升练习题(附答案)

中考数学总复习《投影与视图》专项提升练习题(附答案)

中考数学总复习《投影与视图》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。

2.平行投影:由平行光线形成的投影是平行投影。

3.中心投影:由同一点发出的光线形成的投影叫做中心投影。

4.正投影:投影线垂直于投影面产生的投影叫做正投影。

知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。

视图可以看作物体在某一方向光线下的正投影。

2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。

主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。

知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。

2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。

通过下面知识导图加深对本章内容的了解。

《投影与视图》单元检测试卷一、选择题(每小题3分,共36分)1.下列几何体中,主视图和左视图都为矩形的是( )2.如图所示,小明从左面观察一个圆柱体和一个正方体,看到的是( )3.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120°B.约156°C.180°D.约208°4.如图,是由棱长为1的正方体搭成的积木的三视图,则图中棱长为1的正方体的个数是( )A.4个B.5个C.6个D.7个5.有一个正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3B.7C.8D.116.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( )A.圆B.三角形C.线段D.椭圆7.身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是( )A.10米B.9米C.8米D.10.8米8.如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为( )A.15mB.803m C.21m D.m9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长10.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m,树高h(单位:m)的范围是()A.3<h<5B.5<h<10C.10<h<15D.15<h<2012.如图是某几何体的三视图及相关数据,则判断正确的是( )A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c2二、填空题(每空3分,共30分)13.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是 .(填写序号)14.如图是一个三棱柱,它的正投影是下图中的________(填序号).15.如图所示,是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.16.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为________m.17.三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________cm.18.一个由小立方块搭成的几何体,其左视图、主视图如图所示, 这个几何体最少由个小立方块搭成的 .三、解答题(7个小题,共66分)19.用7个大小相同的小正方体搭成的几何体如左图所示,请你在右边的方格中画出该几何体的三种视图(用较粗的实线进行描绘):20.如图所示,有甲、乙两根木杆,甲木杆的影子刚好落在乙杆与地面接触点处.(1)你能画出此时太阳光线及乙杆的影子吗?(不能画,说明理由;能画,用线段表示影子)(2)在所画的图形中有相似三角形吗?为什么?(3)从图中分析高杆与低杆的影子与它们的高度之间有什么关系?与同学进行交流.21.如图是某几何体的展开图.(1) 请根据展开图画出该几何体的主视图;(2) 若中间的矩形长为20πcm,宽为20cm,上面扇形的中心角为240°,试求该几何体的表面积.22.如图是一粮仓,其顶部是一圆锥,底部是一圆柱.(1)画出粮仓的三视图;(2)若圆柱的底面圆的半径为1 m,高为2 m,求圆柱的侧面积;(3)假设粮食最多只能装到与圆柱同样高,则最多可以存放多少立方米的粮食?23.如图所示是一个几何体的三视图,一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长度是多少?24.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m.某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m.(1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.25.如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6 m 的小区超市,超市以上是居民住房.在该楼的前面15 m 处要盖一栋高20 m 的新楼,当冬季正午的阳光与水平线的夹角为32°时 (1)问:超市以上的居民住房的采光是否有影响?(2)若要使超市采光不受影响,两楼应至少相距多少米?(结果保留整数,参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈58)答案1.B2.D3.C4.C.5.B6.B7.B.8.B.9.D10.B.11.B12.D.13.答案为:③④.14.答案为:②15.答案为:154π.16.答案为:12.17.答案为:618.答案为:519.解:如图所示:20.解:(1)乙杆的影子如图中BC.(2)图中存在相似三角形,即△ABC∽△DCE.因为两条太阳光线AB∥DC,两杆AC∥DE.(3)在同一时刻杆越高,它的影子就越长,反之则短,即影长与杆高成正比.21.解:(1)主视图如图(2)表面积为S 扇形+S 矩形+S 圆. ∵S 扇形=12lR ,而20π=n πR180∴R=20×180240=15(cm). S 扇形=12lR=12×20π×15=150π(cm 2).S 矩形=长×宽=20π×20=400π(cm 2),S 圆=π(20π2π)2=100π(cm 2).S 表=150π+400π+100π=650π(cm 2). 22.解:(1)粮仓的三视图如图所示: (2)S 圆柱侧=2π·1×2=4π m 2(3)V=π×12×2=2π(m 3),即最多可存放2π m 3的粮食 23.解:该几何体为如图所示的长方体.由图知,蚂蚁有三种方式从点A 爬向点B且通过展开该几何体可得到蚂蚁爬行的三种路径长度分别为 l 1=32+4+62=109(cm); l 2=42+3+62=97(cm); l 3=62+3+42=85(cm).通过比较,得最短路径长度是85 cm.24.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(第22题) (2)∵AC ∥DF ∴∠ACB =∠DFE.又∠ABC =∠DEF =90°∴△ABC ∽△DEF.∴AB DE =BCEF.∵AB=3 m,BC=2 m,EF=6 m∴3DE =2 6.∴DE=9 m.∴旗杆DE的高度为9 m.25.解:(1)如图,设CE=x m,则AF=(20-x)m.∵tan 32°=AF:EF,即20-x=15·tan 32°∴x≈11.∵11>6∴超市以上的居民住房的采光有影响.(2)当tan 32°=AB:BC时,BC≈20×1.6=32(m) ∴若要使超市采光不受影响,两楼应至少相距32 m.。

2019年中考数学《投影与视图》专题复习试卷(含答案)

2019年中考数学《投影与视图》专题复习试卷(含答案)

2018-2019学年初三数学专题复习投影与视图(含答案)一、单选题1.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 4B. 5C. 6D. 72.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A. B. C. D.3.如图所示的几何体的俯视图是A. B. C. D.4. 下列四个几何体的俯视图中与众不同的是()A. B. C. D.5.下列几何体的主视图与其他三个不同的是()A. B. C. D.6.如左图所示的正三棱柱,其主视图正确的为()A. B. C. D.7.用4个完全相同的小正方体组成如图所示的立体图形,从上往下看得到的平面图形是()A. B. C. D.8. 如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A. B. C. D.9.由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A. B. C. D.10.下列几何体各自的三视图中,只有两个视图相同的是( )A. ①③B. ②④C. ③④D. ②③11. 由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A. B. C. D.12.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A. 150πcm2B. 200πcm2C. 300πcm2D. 400πcm213.如图所示几何体的俯视图是()A. B. C. D.14. 如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A. 5或6B. 5或7C. 4或5或6D. 5或6或715.如图中几何体的俯视图是()A. B. C. D.16.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A. 108cm3B. 100 cm3C. 92cm3D. 84cm317.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A. 3个B. 4个C. 5个D. 6个二、填空题18.一个几何体的三视图如图所示,那么这个几何体的侧面积是________ (结果保留π)19.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________ cm.20. 一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是________.21.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________ .22.如图所示,一张桌子上摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上有碟子________个.三、解答题23.已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面面积.24.如图是一个实心几何体的三视图,求该几何体的体积.(结果保留π,单位:cm)25.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10 ,从上面看的圆的直径为4 ,求这个几何体的侧面积(结果保留π)。

2019年版河北版中考数学 第六章 图形变换及视图、投影

2019年版河北版中考数学  第六章 图形变换及视图、投影

第六章图形变换及视图、投影阶段检测·教师专用一、选择题(每小题3分,共30分)1.(2018烟台中考)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( )2.(2017河北模拟)如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )3.(2018衡水模拟)如图所示的各组图形中,表示平移关系的是( )4.(2018泰安中考)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A.(2.8,3.6)B.(-2.8,-3.6)C.(3.8,2.6)D.(-3.8,-2.6)5.(2018石家庄桥西一模)图1是一个小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )A.信B.国C.友D.善6.如图,把△ABC绕着点C顺时针方向旋转30°,得到△A'B'C,A'B'交AC于点D,若∠A'DC=90°,则∠A的度数是( )A.30°B.50°C.60°D.80°7.(2018滨州中考)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( )A.(5,1)B.(4,3)C.(3,4)D.(1,5)8.(2017保定模拟)如图是一个照相机成像的示意图,如果底片AB宽40 mm,焦距是60 mm,所拍摄的2 m外的景物的宽CD为( )A.12 mB.3 mC. mD. m9.(2018天津,11,3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是( )A.ABB.DEC.BDD.AF10.(2018保定模拟)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )二、填空题(每小题3分,共24分)11.(2018唐山滦南模拟)如图,将线段AB沿箭头方向平移2 cm得到线段CD,若AB=3 cm,则四边形ABDC的周长为.12.(2018秦皇岛模拟)春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时.(注:春分时,太阳早上六点升起) 13.如图,△PQR是△ABC经过某种变换后得到的图形.如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为.14.(2017河北中考)如图,依据尺规作图的痕迹,计算∠α= °.15.(2018邢台宁晋模拟)如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于.16.(2017石家庄栾城模拟)如图所示,一张等腰三角形纸片,底边长为18 cm,底边上的高为18 cm,现沿底边依次由下往上裁剪宽度均为3 cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是第张.17.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.18.(2018唐山丰南模拟)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为.三、解答题(共46分)19.(6分)(2017江苏泰州中考)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.20.(6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.21.(6分)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.22.(7分)(2018荆州中考)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.23.(7分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针方向旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.24.(7分)(2018福建中考)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.25.(7分)(2018襄阳中考)如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .第六章·阶段检测·答案精解精析一、选择题1.C A.是轴对称图形,不是中心对称图形,错误;B.是轴对称图形,也是中心对称图形,错误;C.不是轴对称图形,是中心对称图形,正确;D.是轴对称图形,也是中心对称图形,错误.2.B 由题图可知,这个立体图形的俯视图是.3.D A.表示对称关系;B.表示旋转关系;C.表示旋转关系;D.表示平移关系.故选D.4.A 由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(1.2-4,1.4-5),即P1(-2.8,-3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选A.5.A 第一次翻转诚在下面,第二次翻转爱在下面,第三次翻转国在下面,而信与国相对,故选A.6.C 由题意可知∠A'CA=30°,又因为∠A'DC=90°,所以∠A'=60°,又因为旋转属于全等变换,所以∠A=∠A'=60°.7.C ∵以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.8.D ∵AB∥CD,∴△AEB∽△DEC,根据“相似三角形对应高的比等于相似比”,得=.,即.=.,∴CD=m.9.D 在正方形ABCD中,连接CE、PC.∵点A与点C关于直线BD对称,∴AP=CP,∴AP+EP的最小值为EC.∵E,F分别为AD,BC的中点,∴DE=BF=AD.∵AB=CD,∠ABF=∠ADC=90°,∴△ABF≌△CDE.∴AF=CE.故选D.10.A 如图所示,设身高GE=h,CF=m,AF=a.当小亮到达点F之前时,根据题意,可得△OEG∽△OFC,∴=,即-=,∴y=-x--.∵a、h、m都是常数,∴是常数且为负,∴这个函数是一次函数,∴影长将随着离灯光越来越近而越来越短, -到灯下的时候,将是一个点;同理,当小亮到超过点F时,随着离灯光的越来越远而影长将变大.综上所述,选A.二、填空题11.答案10 cm解析∵CD是AB平移得到,∴AD∥BC,CD∥AB,∴四边形ABCD是平行四边形,∵AB=3 cm,AD=2 cm,∴四四边形ABDC的周长为10 cm,故答案为10 cm.12.答案 6解析依题意,当影长相等时,则太阳高度相等.根据对称性可知9:00与15:00时的太阳高度相同,故可求出小明出去的之间为15-9=6小时.13.答案(-a,-b)解析由题图知,△PQR和△ABC是关于原点中心对称的两个图形,则两对应点的坐标的关系是横、纵坐标分别互为相反数.14.答案56解析由题图可得,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.由作法可知AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.15.答案18解析由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,∴这个几何体的侧面积等于3×2×3=18.16.答案 5解析由题意可知这张正方形纸条的边长是3 cm,设从顶点到这个正方形的距离为x cm,则=,解得x=3,所以18-3=15 cm,因为15÷3=5,所以这张正方形纸条是第5张.17.答案①③④解析在木杆转动过程中,点B的运动路线是以点A为圆心、AB为半径的圆弧的,当光线与圆弧相切时,木杆的影长最大且大于AC,即m>AC,所以①正确,②错误;当AB到达地面时,影长最短且等于AB,③正确;综合上述结论可知④正确.所以答案为①③④.18.答案解析设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB·h=AB·AD,∴h=AD=2.∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE 的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.三、解答题19.解析(1)如图所示,射线CM即为所求.(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC.∴=,即=,解得AD=4.20.解析(1)作出△A1B1C1,如图所示.(2)本题是开放题,答案不唯一,只要作出的△A2B2C2满足条件即可.如图.21.解析根据俯视图和左视图可知,该几何体共两层,底层有9个小正方体,上层中间一行有正方体,若使主视图为轴对称图形可使上层中间一行、中间一列有一个小正方体即可,其主视图如图所示.22.证明(1)由折叠可得:M、N分别为AD、BC的中点.∵CD∥MN∥AB,∴F为PG的中点,即PF=GF.由折叠可得:∠PFA=∠D=90°,∠1=∠2.在△AFP和△AFG中,∵,∴△AFP≌△AFG(SAS).(2)∵△AFP≌△AFG,∴AP=AG.∵AF⊥PG,∴∠2=∠3.∵∠1=∠2,∴∠1=∠2=∠3=30°.∴∠2+∠3=60°,即∠PAG=60°.∴△APG为等边三角形.23.解析(1)∠ABD=30°-α.(2)△ABE为等边三角形.证明如下:连接AD,CD.∵∠DBC=60°,BD=BC,∴△BDC是等边三角形,∴∠BDC=60°,BD=DC.又∵AB=AC,AD=AD,∴△ABD≌△ACD,∴∠ADB=∠ADC,∴∠ADB=150°.∵∠ABE=∠DBC=60°,∴∠ABD=∠EBC.又∵BD=BC,∠ADB=∠ECB=150°,∴△ABD≌△EBC.∴AB=EB.又∵∠ABE=60°,∴△ABE是等边三角形.(3)∵△BDC是等边三角形,∴∠BCD=60°.∴∠DCE=∠BCE-∠BCD=90°.又∵∠DEC=45°,∴CE=CD=BC.∵∠BCE=150°,∴∠EBC=15°.∵由(1)(2)知∠EBC=∠ABD=30°-,∴α=30°.24.解析(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到, ∴∠DAB=90°,AD=AB=10.∴∠ABD=45°.∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF.∴∠BDF=∠ABD=45°.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°.∵∠DAB=90°,∴∠ADE=90°.∵∠ACB=90°,∴∠ADE=∠ACB.∴△ADE∽△ACB.∴=,即=,解得AE=12.5.由平移的性质得,CG=AE=12.5.25.解析(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°.∴四边形CEGF是矩形,∠CGE=∠ECG=45°.∴EG=CE.∴四边形CEGF是正方形.②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°.∴=,GE∥AB.∴==,故答案为.(2)连接CG,如图所示,则∠BCE=∠ACG=α.在Rt△CEG和Rt△CBA中,∵=cos 45°=,=cos 45°=,∴=.∴△ACG∽△BCE.∴==.∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线.∴∠BEC=135°.∵△ACG∽△BCE,∴∠AGC=∠BEC=135°.∴∠AGH=∠CAH=45°.∵∠CHA=∠AHG,∴△AHG∽△CHA.∴==,设BC=CD=AD=a,则AC=a,则由=,得=,解得AH=a.则DH=AD-AH=a,CH=== a. ∴由=得=,解得a=3 ,即BC=3.故答案为3.。

第三章 投影与三视图测试题(含答案)

第三章 投影与三视图测试题(含答案)

第3章检测一、选择题(每小题5分,共30分)1.下列立体图形中,侧面展开图是扇形的是()图7-Z-12.下列各图不是正方体表面展开图的是()图7-Z-23.如图7-Z-3是由3个相同的小正方体组合而成的几何体,它的俯视图是()图7-Z-3图7-Z-44.如图7-Z-5所示的工件,其俯视图是()图7-Z-5图7-Z-6图7-Z-75.如图7-Z-7是某几何体的三视图,该几何体是()A.三棱柱B.长方体C.圆锥D.圆柱图7-Z-86.如图7-Z-8,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高.已知小颖的身高为1.5米,那么路灯A的高度AB为()A.3米B.4.5米C.6米D.8米二、填空题(每小题5分,共30分)7.已知圆锥的底面半径为 3 cm,母线长为 5 cm,则它的侧面展开图的面积等于________cm2.图7-Z-98.如图7-Z-9,由三个棱长均为1 cm的小立方体搭成的几何体的主视图的面积是________cm2.9.如图7-Z-10是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________cm2.7-Z-10图7-Z-1110.一个几何体的三视图如图7-Z-11所示,则该几何体的体积为__________.图7-Z-1211.有一个圆柱,它的高为12 cm,底面半径为3 cm,如图7-Z-12所示,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,则它沿圆柱侧面爬行的最短路程是________ cm(π取3).12.展览厅内要用相同的小正方体木块搭成一个三视图如图7-Z-13所示的展台,则此展台共需这样的小正方体________块.图7-Z-13三、解答题(共40分)13.(8分)如图7-Z-14为某几何体的示意图,请画出该几何体的三视图.图7-Z-1414.(10分)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图(如图7-Z-15),请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:mm)图7-Z-1515.(10分)如图7-Z -16,D 是等边三角形ABC 中BC 边的延长线上一点,且AC =CD ,以AB 为直径作⊙O ,分别交边AC ,BC 于点E ,F .(1)求证:AD 是⊙O 的切线;(2)连结OC ,交⊙O 于点G ,若AB =8,求线段CE ,CG 与GE ︵围成的阴影部分的面积S .图7-Z -1616.(12分)如图7-Z -17是一粮囤的示意图,其顶部是一圆锥,底部是一圆柱. (1)画出该粮囤的三视图;(2)若这个圆锥的底面周长为32 m ,母线长为7 m ,为防雨需要在粮囤顶部铺上油毡,则需要多少平方米油毡(油毡接缝重合部分不计)?(3)若这个圆柱的底面圆半径为8 m ,高为5 m ,粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?图7-Z -17详解详析1.B 2.C 3.C4.B[解析] 从上面看到的图形是B项中的图形.5.B 6.B7.15π8.3[解析] 从正面看第一层是两个小正方形,第二层左边是一个小正方形,则主视图的面积是3 cm2.9.4π10.12011.15[解析] 展开圆柱的半个侧面是矩形,矩形的宽是圆柱的底面周长的一半,即3π=9(cm),矩形的长是圆柱的高12 cm.根据两点之间线段最短,得最短路程是矩形的对角线的长,即122+92=15(cm).12.1013.解:三视图如下:14.解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100 mm,高h为150 mm.∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴S表面=2πR2+2πRh=2π×502+2π×50×150=20000π(mm2).答:制作每个密封罐所需钢板的面积为20000π mm2.15.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.∵CA=CD,∴∠D=∠CAD.∵∠ACB=∠D+∠CAD,∴∠CAD=30°,∴∠BAD=60°+30°=90°,∴AD⊥AB,∴AD是⊙O的切线.(2)如图,连结OE,∵OA =OE ,∠OAE =60°, ∴△OAE 是等边三角形, ∴AE =AO =12AB =12AC ,∴AE =EC , ∴S △OEC =S △AOE =34×42=4 3. ∵CA =CB ,OA =OB ,∴CO ⊥AB , ∴∠AOC =90°,∴∠EOG =30°, ∴S 扇形OEG =30×π×42360=4π3,∴S 阴影=S △OEC -S 扇形OEG =4 3-4π3.16.解:(1)略. (2)12×32×7=112(m 2). 故需要112 m 2油毡. (3)π×82×5=320π(m 3). 故最多可以存放320π m 3粮食.。

2019年中考数学一轮复习第六章图形变换6.3视图与投影试卷部分68

2019年中考数学一轮复习第六章图形变换6.3视图与投影试卷部分68
2
距离为(3 2 +3 6 )cm.
2019年5月3日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
12
业文档
考点二 投影与视图
1.(2018云南昆明,7,4分)下列几何体的左视图为长方形的是 ( )
答案 C 选项A、B、D中的几何体的左视图分别是圆、等腰梯形、等腰三角形,只有选项C 中的几何体的左视图为长方形,故选C. 2.(2017四川绵阳,4,3分)如图所示的几何体的主视图正确的是 ( )
中考数学 (河北专用)
§6.3 视图与投影
2019年5月3日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
1
业文档
五年中考 A组 2014-2018年河北中考题组
1.(2018河北,5,3分)图中三视图对应的几何体是 ( )
答案 C 观察三视图和立体图,从主视图或左视图看排除选项B;从俯视图看排除选项A和D;
只20有19选年5项月C3符日合三视图的要求,故眼选皮C.蹦跳跳专业业文文档档眼皮蹦跳跳专
1中小正方形顶点A,B在围成的 正方体上的距离是 ( )

A.0 B.1 C. 2 D. 3
答案 B 不妨自己动手操作一下,若题图1中从上往下第二排第二个小正方形为正方体的正 面,则第三排的小正方形就是正方体的下底面.此时,点B与点A在同一条棱上,点A,B的距离为1, 故选B.
2019年5月3日
的最短距离为
cm.
答案 (3 2 +3 6 )
2019年5月3日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
11
业文档
解析 将题图②的几何体表面展开如图所示:
△BCD是等腰直角三角形,△ACD是等边三角形, 在Rt△BCD中,CD= BC2 BD2 =6 2 cm,

2019版中考数学《6.1视图与投影》导向(含答案)

2019版中考数学《6.1视图与投影》导向(含答案)

第六章图形变换§6.1 视图与投影选择题1.(原创题)下列四个几何体中,三视图都是中心对称图形的几何体是( )A.圆锥B.圆柱C.三棱柱D.五棱柱解析圆锥的三视图分别为等腰三角形、等腰三角形、圆,故A不符合;圆柱的三视图分别为矩形、矩形、圆,都是中心对称图形,故B符合;三棱柱的三视图分别为矩形、矩形、三角形,故C不符合;五棱柱的三视图分别是矩形、矩形、五边形,故D不符合.故选B.答案 B2.(改编题)某几何体的三视图如图所示,则这个几何体是( )A.圆柱B.正方体C.球D.圆锥解析主视图与左视图都是三角形,故几何体为锥体,俯视图为圆,故该几何体为圆锥.故选D.答案 D3.(原创题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )解析空心圆柱的俯视图为同心圆,空心部分的轮廓线可见,故用实线表示.故选C.答案 C4.(改编题)如图所示的工件的主视图是( )解析工件的主视图为矩形,缺少的部分是斜的,且从下面顶点开始,故选B.答案 B5.(原创题)将如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为解析将Rt△ABC绕直角边AB旋转一周,所得的几何体为圆锥,所以主视图为等腰三角形,故选C.答案 C2019-2020学年数学中考模拟试卷一、选择题1.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS2.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A. B.C. D.3.将如图所示的图形绕中心按逆时针方向旋转120°后可得到的图形是()A.B.C .D .4.由三角函数定义,对于任意锐角A,有sinA=cos(90°-A)及sin2A+cos2A=1成立.如图,在△ABC中,∠A,∠B是锐角,BC=a,AC=b,AB=c,CD⊥AB于D,DE//AC交BC于E,设CD=h,BE=a’,DE=b’,BD=c’,则下列条件中能判断△ABC是直角三角形的个数是()(1)a2+b2=c2(2)aa’+bb’=cc’ (3)sin2A+sin2B=1 (4)+=A.1个B.2个C.3个D.4个5.关于x的不等式组23(3)1324x xxx a<-+⎧⎪⎨+>+⎪⎩有三个整数解,则a的取值范围是( )A .5924a -<-… B .5924a -<<- C .5924a --剟D .5924a -<-… 6.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE的长为( )A B C .D .7.下列运算正确的是( ) A .5210()a a -= B .6262144a a a a-÷⋅=- C .32264()a b a b -=D .23a a a -+=-8.下列运算中,正确的是( ) A .(﹣12)﹣1=﹣2 B .a 3•a 6=a 18C .6a 6÷3a 2=2a 3D .(﹣2ab 2)2=2a 2b 49.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )A .2B .8C D .10.计算2231366x x x x x+-⋅-+的结果为( ) A.6x x+ B.6x x - C.6x x + D.6x +11.一元二次方程2x 2﹣5x ﹣4=0根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判定该方程根的情况12.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA+MD+ME 的最小值为( )D.10二、填空题13.已知关于x 的方程240x x m -+=有一个根为3,则m 的值为_______.14.用一组,a b ab =”是错误的,这组值可以是a =____,b =_____. 15.分解因式:= .16.如图,A 、B 是反比例函数y=图象上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5).若△ABC 的面积为7,则点B 的坐标为 .17.计算﹣(﹣2)+(﹣2)0的值是_____.18.一个圆锥的底面积是40cm 2,高12cm ,体积是__________cm 3. 三、解答题19.如图是一张锐角三角形纸片,AD 是BC 边上的高,BC=40cm ,AD=30cm ,现从硬纸片上剪下一个长是宽2倍的周长最大的矩形,则所剪得的矩形周长为_____________cm .20.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处若∠AGE =32°,则∠GHC 等于多少度?21.如图,AB 是⊙O 的直径,AD 、BD 是半圆的弦,且∠PDA =∠PBD . (1)求证:PD 是⊙O 的切线;(2)如果tan BDE ∠=PD ,求PA 的长.22.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④…… (1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明. 23.(1)先化简,再求值:211121a a a a -÷+++,其中a =2; (2)如图,在▱ABCD 中,E 为BC 边上的中点,将△ABE 沿AE 折叠,点B 的对应点为点F ,延长AF 与CD 交于点G ,求证:GC =GF .24.如图,在平行四边形ABCD 中,CE ⊥BC 交AD 于点E ,连接BE ,点F 是BE 上一点,连接CF . (1)如图1,若∠ECD =30°,BC =4,DC =2,求tan ∠CBE 的值;(2)如图2,若BC =EC ,过点E 作EM ⊥CF ,交CF 延长线于点M ,延长ME 、CD 相交于点G ,连接BG 交CM 于点N 且CM =MG ,①在射线GM 上是否存在一点P ,使得△BCP ≌△ECG ?若存在,请指出点P 的位置并证明这对全等三角形;若没有,请说明理由. ②求证:EG =2MN .25.如图所示,一次函数y =x+3与x 轴、y 轴分别交于点A 、B ,将直线AB 向下平移与反比例函数m y x=(x >0)交于点C 、D ,连接BC 交x 轴于点E ,连接AC ,已知BE =3CE ,且S △ACE =94.(1)求直线BC 和反比例函数解析式;(2)连接BD ,求△BCD 的面积.【参考答案】*** 一、选择题二、填空题 13.14.1-答案不唯一 1答案不唯一 15.(m+2)(m ﹣2). 16.(,3). 17.3 18.160 三、解答题 19.72cm 【解析】 【分析】设所剪得的矩形的长为2xcm ,宽为xcm ,根据相似三角形的对应高的比等于相似比即可列方程求解. 【详解】解:设所剪得的矩形的长为2xcm ,宽为xcm ,由题意得2304030x x -=或3024030x x-= 解得x=12或12011x =则周长为()2412272cm +⨯=或2401207202cm 111111⎛⎫+⨯= ⎪⎝⎭ 因为7207211>所以所剪得的矩形周长为72cm.故答案为:72cm【点睛】相似三角形的应用相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.∠GHC=106°【解析】【分析】由折叠的性质可得∠DGH的度数,再根据两直线平行,同旁内角互补,即可得到结论.【详解】∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH12∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.【点睛】本题考查了平行线的性质和折叠的性质,解题时注意:两直线平行,同旁内角互补.21.(1)证明见解析;(2)PA=1.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA.【详解】(1)证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)∵BE 是⊙O 的切线,∴∠EBA=90° ∵∠BED=60°,∴∠P=30° ∵PD 为⊙O 的切线,∴∠PDO=90°在Rt △PDO 中,∠P=30°,PD ∴tan30°=ODPD,解得OD=1∴PO 2 ∴PA=PO-AO=2-1=1 【点睛】此题考查了切线的判定及三角函数的有关计算等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析. 【解析】 【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证. 【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102; 故答案为:4×6+1=52,9×11+1=102; (2)第n 个式子为(n ﹣1)(n+1)+1=n 2, 证明:左边=n 2﹣1+1=n 2, 右边=n 2, ∴左边=右边, 即(n ﹣1)(n+1)+1=n 2. 【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.23.(1)3;(2)见解析. 【解析】 【分析】(1)根据分式的除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题; (2)根据题意,作出合适的辅助线,然后利用平行四边形的性质即可证明结论成立. 【详解】 (1)211121a a a a -÷+++ 21(1)11a a a +=⋅+-11a a +=- 当a=2时,原式2121+==-3; (2)连接FC .∵四边形ABCD 是平行四边形,E 为BC 边上的中点,将△ABE 沿AE 折叠,点B 的对应点为点F ,∴BE=EC=EF ,∠B=∠AFE ,AB ∥DC ,∴∠EFC=∠ECF ,∠B+∠BCD=180°.∵∠AFE+∠EFG=180°,∴∠EFG=∠BCD ,∴∠GCF=∠CGF ,∴GC=GF .【点睛】本题考查了分式的化简求值、平行四边形的性质、翻折变化,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)4;(2)①详见解析;②详见解析. 【解析】 【分析】(1)由平行四边形的性质和已知条件得出∠BCE =∠CED =90°,由直角三角形的性质得出DE =12CD =1,CE(2)①由等腰直角三角形的性质得出∠MCG =∠MGC =45°,由线段垂直平分线的性质得出CP =CG ,得出∠CPM =∠CGM =45°,求出∠PCG =90°,得出∠BCP =∠ECG ,由SAS 证明△BCP ≌△ECG 即可; ②由全等三角形的性质得出BP =EG ,∠BPC =∠EGC =45°,得出∠BPG =90°,证出BP ∥MN ,得出BN =GN ,MN 是△PBG 的中位线,由三角形中位线定理得出BP =2MN ,即可得出结论. 【详解】(1)解:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∵CE ⊥BC , ∴CE ⊥AD ,∴∠BCE =∠CED =90°, ∵∠ECD =30°,DC =2, ∴DE =12CD =1,∴CE∴tan ∠CBE =CE BC =(2)①解:在射线GM 上存在一点P ,MP =MG 时,△BCP ≌△ECG ;理由如下:如图2所示:∵CM =MG ,∴△CMG 是等腰直角三角形,∴∠MCG =∠MGC =45°,∵MP =MG ,EM ⊥CF ,∴CP =CG ,∴∠CPM =∠CGM =45°,∴∠PCG =90°,∴CP ⊥CG ,∵∠BCE =∠PCG =90°,∴∠BCP =∠ECG ,在△BCP 和△ECG 中,BC EC BCP ECG CP CG =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ECG (SAS );②证明:由①得:△BCP ≌△ECG ,∴BP =EG ,∠BPC =∠EGC =45°,∴∠BPG =90°,∴BP ∥MN ,∵PM =GM ,∴BN =GN ,∴MN 是△PBG 的中位线,∴BP =2MN ,∴EG =2MN【点睛】本题是四边形综合题目,考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、线段垂直平分线的性质、三角函数等知识;本题综合性强,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.25.(1)BC =,2y x =-;(2)S △BCD =32. 【解析】【分析】(1)作CF⊥x轴于F,根据BE=3CE,且S△ACE=94求得S△ABE=274,根据三角形面积求得AE,从而求得OE和CF,由三角形相似求得EF,得到C点的坐标,即可根据勾股定理求得BC,根据反比例函数图象上点的坐标特征求得反比例函数的解析式;(2)设直线CD的解析式为y=x+b,令直线CD交y轴于H,根据待定系数法求得解析式,从而求得H点的坐标,联立方程求得D点的坐标,然后根据S△BCD=S△BCH﹣S△BDH求得即可.【详解】(1)作CF⊥x轴于F,由直线y=x+3可知,A(﹣3,0),B(0,3),∵BE=3CE,且S△ACE=94,∴S△ABE=274,∴12AE•OB=274,即12AE•3=274,∴AE=92,∴OE=32,∵S△ACE=12AE•CF=94,∴CF=1,∵CF∥OB,∴△ECF∽△EBO,∴EF CFOE OB=,即32EF=13,∴EF=12,∴OF=OE+DF=2,∴C(2,﹣1),∴BC=,∵反比例函数y=mx(x>0)经过点C,∴m=2×(﹣1)=﹣2,∴反比例函数解析式为y=﹣2x;(2)∵将直线AB向下平移与反比例函数y=mx(x>0)交于点C、D,∴设直线CD的解析式为y=x+b,令直线CD交y轴于H,把C(2,﹣1)代入得,﹣1=2+b,∴b=﹣3,∴直线CD的解析式为y=x﹣3,∴H(0,﹣3),解321212y xx xy yyx=-⎧==⎧⎧⎪⎨⎨⎨=-=-=⎩⎩⎪⎩得或,∴D(1,﹣2),∴S△BCD=S△BCH﹣S△BDH=12×3×2﹣12×3×1=32.【点睛】此题考查反比例函数与一次函数的交点问题,三角形的面积,反比例函数系数k的几何意义,解题关键在于作辅助线2019-2020学年数学中考模拟试卷一、选择题1.如图,平面直角坐标系中,矩形ABCD 与双曲线(0)k y x x=>交于D 、E 两点,将△OCD 沿OD 翻折,点C 的对称C'恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .259C .269D .32.如图,将矩形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙,无重叠的四边形EFGH ,设AB =a ,BC =b ,若AH =1,则( )A .a 2=4b ﹣4B .a 2=4b+4C .a =2b ﹣1D .a =2b+13.请你估计一下,22222222222(21)(31)(41)(991)(1001)123499100-----∙∙±∙∙ 的值应该最接近于( ) A.1 B.12 C.1100 D.12004.下列计算正确的是( )A.B.C. D.5.下列命题中,真命题的是( )A .对角线互相垂直的四边形是菱形B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形6.抛物线y=ax 2+bx+c 交x 轴于A (-1,0),B (3,0),交y 轴的负半轴于C ,顶点为D .下列结论:①2a+b=0;②2c <3b ;③当m≠1时,a+b <am 2+bm ;④当△ABD 是等腰直角三角形时,则a=12;其中正确的有( )个.A.4B.3C.2D.17.如图,己知点A 是双曲线y=kx -1(k>0)上的一个动点,连AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=mx -1(m<0)上运动,则m 与k 的关系是( )A .m= -kB .m=C .m= -2kD .m= -3k8.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为( )A .12B .13C .16D .199.下列计算正确的是( )A .3362a a a +=B .236()a a -=C .623a a a ÷=D .538a a a ⋅=10.计算2231366x x x x x+-⋅-+的结果为( ) A.6x x+ B.6x x - C.6x x + D.6x +11.如图,将曲线c 1:y =k x (x >0)绕原点O 逆时针旋转60°得到曲线c 2,A 为直线y 上一点,P 为曲线c 2上一点,PA =PO ,且△PAO 的面积为y 交曲线c 1于点B ,则OB 的长( )A.B.5 C.D12.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABC沿AD 折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是A.0个B.1个C.2个D.3个二、填空题13.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,EB=2,则⊙O的半径为_____.14.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)15.已知a2+1=3a,则代数式a+1a的值为.16.因式分解:27a3﹣3a=_____.17.关于x的函数y=(k﹣1)x2﹣2x+1与x轴有两个不同的交点,则实数k的取值范围是_____.18.已知实数x,y,a满足x+3y+a=4,x﹣y﹣3a=0.若﹣1≤a≤1,则2x+y的取值范围是_____.三、解答题19.某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:根据以上信息,解答下列问题:(1)上表中m、n的值分别为,;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.20.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连结AP 、OP 、OA .(1)求证:△OCP ∽△PDA ;(2)若tan ∠PAO =12,求边AB 的长.21.如图,在平行四边形ABCD 中,点E 、F 分别是AB 、BC 上的点,且AE CF =,AED CFD ∠=∠,求证:(1)DE DF =;(2)四边形ABCD 是菱形.22.设a ,b ,c 为互不相等的实数,且满足关系式:b 2+c 2=2a 2+16a+14①bc =a 2﹣4a ﹣5②.求a 的取值范围.23.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7min 同时到达C 点,甲机器人前3分钟以a m/min 的速度行走,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是____m,A、C两点之间的距离是____m,a=____m/min;(2)求线段EF所在直线的函数解析式;(3)设线段FG∥x轴.①当3≤x≤4时,甲机器人的速度为____m/min;②直接写出两机器人出发多长时间相距28m.24.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上,P为BC与网格线的交点,连接AP.(Ⅰ)BC的长等于________;(Ⅱ)Q为边BC上一点,请在如图所示的网格中,用无刻度...的直尺,画出线段AQ,使45 PAQ∠=︒,并简要说明点Q的位置是如何找到的(不要求证明)_______.25.在平面直角坐标系中,己知O为坐标原点,点(2,0),(0,4)A B,以点A为旋转中心,把ABO顺时针旋转,得ACD.(Ⅰ)如图①,当旋转后满足//DC x轴时,求点C的坐标.(Ⅱ)如图②,当旋转后点C恰好落在x轴正半轴上时,求点D的坐标.(Ⅲ)在(Ⅱ)的条件下,边OB上的一点P旋转后的对应点为P',当DP AP'+取得最小值时,求点P 的坐标(直接写出结果即可)【参考答案】***一、选择题二、填空题13.514.答案不唯一,如:AD 15.316.3a(3a+1)(3a﹣1 17.k<2且k≠118.0≤2x+y≤6三、解答题19.(1)18,19;(2)中位数;(3)90(人);(4)1 6【解析】【分析】(1)根据条形统计图中的数据,结合众数和中位数的概念可以得到m、n的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.(4)根据题意先画出树状图,得出所有等可能性的结果,再根据概率公式即可得出答案.【详解】(1)由条形图知,数据18出现的次数最多,所以众数m=18;中位数是第10、11个数据的平均数,而第10、11个数据都是19,所以中位数n=19+192=19,故答案为:18,19;(2)由题意可得,如果想让60%左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)若该部门有300名工人,估计该部门生产能手的人数为300×2+420=90(人);(4)将小王、小张、小李、小刘分别记为甲、乙、丙、丁,画树状图如下:∵共有12种等可能性的结果,恰好选中乙、丙两位同学的有2种,∴恰好选中小张、小李两人的概率为21= 126.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)见解析;(2)AB=10.【解析】【分析】(1)只需要证明两对对应角分别相等即可证明相似(2)根据题①可知CP=4,设BO=x,则CO=8﹣x,PD=2(8﹣x),即可解答【详解】(1)证明:∵四边形ABCD为矩形,∴∠B=∠C=∠D=90°.由折叠,可知:∠APO=∠B=90°,∴∠APD+∠CPO=90°.∵∠APD+∠DAP=90°,∴∠DAP=∠CPO,∴△OCP∽△PDA;(2)解:由折叠,可知:∠APO=∠B=90°,AP=AB,PO=BO,tan∠PAO=POAP=BOAB=12.∵△OCP∽△PDA,∴12 PO OC CPAP PD DA===∵AD=8,∴CP=4.设BO=x,则CO=8﹣x,PD=2(8﹣x),∴AB=2x=CD=PD+CP=2(8﹣x)+4,解得:x=5,∴AB=10.【点睛】此题考查相似三角形的判定与性质和折叠问题,解题关键在于证明全等21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;(2)由全等三角形的性质得出DA=DC,即可得出结论.【详解】证明:(1)∵四边形ABCD 是平行四边形∴∠A=∠C ,在△DAE 和△DCF 中,A C AE CFAED CFD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAE ≌△DCF (ASA ),∴DE=DF ;(2)由(1)可得△DAE ≌△DCF∴DA=DC ,又∵四边形ABCD 是平行四边形∴四边形ABCD 是菱形.【点睛】 本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.22.a 的取值范围为a >﹣1且56a ≠-且a ≠ 【解析】【分析】先通过代数式变形得(b+c )2=2a 2+16a+14+2(a 2-4a-5)=4a 2+8a+4=4(a+1)2,即有b+c=±2(a+1).有了b+c 与bc ,就可以把b ,c 可作为一元二次方程x 2±2(a+1)x+a 2-4a-5=0③的两个不相等实数根,由△=4(a+1)2-4(a 2-4a-5)=24a+24>0,得到a >-1.再排除a=b 和a=c 时的a 的值.先设a=b 和a=c ,分别代入方程③,求得a 的值,则题目要求的a 的取值范围应该是在a >-1的前提下排除求得的a 值.【详解】∵b 2+c 2=2a 2+16a+14,bc =a 2﹣4a ﹣5,∴(b+c )2=2a 2+16a+14+2(a 2﹣4a ﹣5)=4a 2+8a+4=4(a+1)2,即有b+c =±2(a+1).又bc =a 2﹣4a ﹣5,所以b ,c 可作为一元二次方程x 2±2(a+1)x+a 2﹣4a ﹣5=0③的两个不相等实数根,故△=4(a+1)2﹣4(a 2﹣4a ﹣5)=24a+24>0,解得a >﹣1.若当a =b 时,那么a 也是方程③的解,∴a 2±2(a+1)a+a 2﹣4a ﹣5=0,即4a 2﹣2a ﹣5=0或﹣6a ﹣5=0,解得,1a 4=或56a =-. 当a =c时,同理可得1a 4±=或56a =-.所以a 的取值范围为a >﹣1且56a ≠-且1a 4±≠. 【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c为常数)的求根公式:)240x b ac =-,…同时考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式b 2-4ac 和根与系数的关系.23.(1)70;490;95;(2)y=35x-70;(3)①60;②两机器人出发1.2min 、2.8min 或4.6min 时相距28m.【解析】【分析】(1)根据图象可直接读出A 、B 两点间的距离;A 、C 两点间的距离=A 、B 两点间的距离+B 、C 两点间的距离,代入计算即得;先求出甲在2分钟所走的路程=70+60×2,根据速度=路程÷时间,即可求出a.(2)结合(1)中数据,计算1×(95-60)=35,所以可得点F(3,35),设线段EF 所在直线的函数解析式为y=kx+b ,然后将点E 、F 坐标代入解析式中,解出k 、b 的值即得.(3)①由线段FG ∥x 轴,可得在FG 这段时间内甲、乙的速度相等 ,即得3≤x≤4时的速度.②分三种情况讨论:当0≤x≤2时 ,根据70-甲行路程+乙行路程=28列出方程,解出即得;当2<x≤3时,甲行路程-70-乙行路程=28列出方程,解出即得;当4<x≤7时 ,先求出直线EF 的解析式,然后令y=28,解出x 即得.【详解】解:(1)由图象,得A 、B 两点之间的距离是70m ,A 、C 两点间的距离为70+60×7=490(m),a=(70+60×2)÷2=95(m/min).故答案为:70;490;95.(2)解:由题意,得点F 的坐标为(3,35),设线段EF 所在直线的函数解析式为y=kx+b ,把E 、F 的坐标代入解析式,可得 20335k b k b +=⎧⎨+=⎩ , 解得 3570k b =⎧⎨=-⎩ , 即线段EF 所在直线的函数解析式是y=35x-70.(3)①线段FG ∥x 轴,∴在FG 这段时间内甲、乙的速度相等,∴当3≤x≤4时,甲机器人的速度为60m/min.②当0≤x≤2时,则70-(95-60)x=28,得x=1.2;当2<x≤3时,则95x-70-60x=28,得x=2.8;当4<x≤7时,设甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间函数关系式为y=mx+n ,354353,702453m m n m n n ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得,即y=-335x+2453, 令y=28,得28=-335x+2453,解得x=4.6, 答:两机器人出发1.2min 、2.8min 或4.6min 时相距28m.【点睛】此题考查二元一次方程的解和函数图象,解题关键在于看懂图中数据24.(Ⅰ)(Ⅱ)见解析.【解析】【分析】(Ⅰ)根据网格特点,利用勾股定理即可求出BC 的长;(Ⅱ)如图,在网格上取格点M 、N ,连接MN ,交BC 于点Q ,连接AQ ,∠PAQ 即为所求.【详解】(Ⅰ=故答案为:(Ⅱ)如图,BC=∴AB 2+AC 2=BC 2,∴∠B=∠C=45°.∴若使∠PAQ=45°,只要△PAQ ∽△PCA ,此时有=AP PQ PC AP,即2AP PC PQ =⨯ ,取格点D,E,F ,H 可知△BDP ∽△CEP ,得15BP BD PC CF == ,则11563BP PC BC === ,33PC == , △BDP∽△BEC,则16PD BP CE BC == ,且CE=4,得23DP = ,求的133AP === ,则2169915AP PQ PC === ,进而求得CQ PC PQ =-= ,所以32BQ CQ = .作法:根据上述分析的比例关系,可以取格点M,N,使得BM ∥CN ,并且32BM CN = ,可找到满足条件的格点M,N,如下图,连接MN 交BC 于点Q ,连接AQ 即可.【点睛】本题考查网格的特点,熟练掌握网格的性质并灵活运用勾股定理是解题关键.25.(Ⅰ)(6,2)C ;(Ⅱ)(2D +;(Ⅲ)点P 坐标. 【解析】【分析】(Ⅰ)如图①中,作CH ⊥x 轴于H .根据旋转的性质和三个角是直角的四边形是矩形得出四边形ADCH 是矩形,利用矩形的性质即可解决问题;(Ⅱ)如图②中,作DK ⊥AC 于K .在Rt △ADC 中,求出DK 、AK 即可解决问题;(Ⅲ)如图③中,连接PA 、AP′,作点A 关于y 轴的对称点A′,连接DA′交y 轴于P′,连接AP′.由题意PA=AP′,推出AP′+PD=PA+PD,根据两点之间线段最短,可知当点P 与点P′重合时,PA+PD 的值最小.只要求出直线A′D 的解析式即可解决问题;【详解】解:(Ⅰ)如图①中,作CH x ⊥轴于H.∵//90CD AH D AHC ∠=∠=︒,,∴90DAH ∠=︒,∴四边形ADCH 是矩形,∴24AD OA CH CD OB AH ======,,∴6OH =,∴()6,2C(Ⅱ)如图②中,作DK AC ⊥于K.在Rt ADC 中,∵2,4AD CD ==,∴AC = ∵1122AD DC AC DK ⋅⋅=⋅⋅,∴DK AK ==∴2OK =,∴2,55D ⎛+ ⎝⎭(Ⅲ)如图③中,连接PA 、AP′,作点A 关于y 轴的对称点A′,连接DA′交y 轴于P′,连接AP′.由题意PA=AP′,∴AP′+PD=PA+PD,根据两点之间线段最短,可知当点P 与点P′重合时,PA+PD 的值最小.A (2,0),D 255'⎛-+ ⎝⎭,∴直线A′D 的解析式为24y x 1919=+ ,点P 坐标⎛ ⎝⎭【点睛】本题考查了几何变换综合题、解直角三角形,两点之间线段最短等知识,解题的关键是会利用两点之间线段最短解决最短路径问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。

2019年中考数学专题《投影与视图》复习试卷含答案解析

2019年中考数学专题《投影与视图》复习试卷含答案解析

2019年中考数学专题复习卷: 投影与视图一、选择题1.下列几何体中,主视图与俯视图不相同的是( )A. 正方体B. 四棱锥C. 圆柱D. 球【答案】B【解析】:A、主视图和俯视图都是正方形,因此A不符合题意;B、四棱锥的主视图是三角形,俯视图是四边形,四边形的中间一点与四个顶点相连,因此B符合题意;C、圆柱的主视图和俯视图都是长方形,因此C不符合题意;D、球体的三种视图都是圆,因此D不符合题意;故答案为:B【分析】正方体和球体的三种视图相同,因此可对A、D作出判断;圆柱体的主视图和俯视图相同,可对C作出判断;四棱锥的主视图和俯视图不相同,可对B作出判断,即可得出答案。

2.六个大小相同的正力体搭成的几何体如图所示,其俯视图是().A. B.C. D.【答案】B【解析】:从上往下看,正方形的个数从左到右分别是2,1,2故答案为B【分析】俯视图是从几何体的上面向下看时,正方形正方形的个数从左到右分别是2,1,2,排除A、B、D,即可得出答案。

3.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B.C. D.【答案】B【解析】:从左面看到的图形是故答案为:B【分析】在侧投影面上的正投影叫做左视图;观察的方法是:从左面看几何体得到的平面图形。

4.右图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A. B.C. D.【答案】A【解析】从上面往下面看到的图形是故答案为:A.【分析】俯视图是在水平投影面上的正投影,看法是:从上面往下看到的图形.5.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()A. B.C. D.【答案】B【解析】:∵从物体正面看,最底层是三个小正方形,第二层最右边一个小正方形,故答案为:B.【分析】主视图:从物体正面观察所得到的图形,由此即可得出答案.6.如图所示的几何体的主视图是()A. B.C.D.【答案】B【解析】根据主视图的定义,几何体的主视图由三层小正方形组成,下层有三个小正方形,二三层各有一个小正方形,故答案为:B.【分析】根据定义,简单几何体组合体的主视图,就是从前向后看得到的正投影,从而得出本题的主视图是由三层小正方形组成,下层有三个小正方形,二三层各有一个小正方形,而且二,三层的小正方形靠左,从而得出答案。

广东省2019中考数学总复习第六章图形与变换第1课时视图与投影备考演练(含答案)_249

广东省2019中考数学总复习第六章图形与变换第1课时视图与投影备考演练(含答案)_249

第六章图形与变化第 1 课时视图与投影【备考操练】一、选择题1.如图是一个正方体睁开图,把睁开图折叠成正方体后,“我”字一面的相对面上的字是 ()A.的B.中C.国D.梦2.(2018 ·衢州 ) 如图是由四个同样的小立方体搭成的几何体,它的主视图是()A. B.C. D.3.(2018 ·哈尔滨 ) 五个大小同样的正方体搭成的几何体以下图,其左视图是()A. B.C. D.4.(2018 ·绍兴 ) 如图的几何体由五个同样的小正方体搭成,它的主视图是()A. B.C. D.5 .太阳发出的光照在物体上是 __________,车灯发出的光照在物体上是__________()A.中心投影,平行投影B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影6.(2018 ·湖州 ) 如图是按 1∶10 的比率画出的一个几何体的三视图,则该几何体的侧面积是()2A.200cm2B.600cm2C.100πcm2D.200πcm7.如图是由几个同样的小立方块构成的三视图,小立方块的个数是() A.3 个B.4个C.5个D.6个8.某商场货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面起码有A.8B.9C.10D.11二、填空题1.如图,由四个小正方体构成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是 __________.第 1 题图第2题图2.从棱长为 2 的正方体毛坯的一角挖去一个棱长为1 的小正方体,获得一个以下图的部件,则这个部件的表面积为 __________.3.如图,这是一个长方体的主视图和俯视图,由图示数据( 单元:cm) 能够得出该3长方体的体积是 __________cm.4.如图是一个上下底密封纸盒的侧面睁开图,请你依据图中数据,计算这个密封2纸盒的表面积为 __________cm.( 结果可保存根号 )5.由一些大小同样的小正方体搭成的几何体的主视图和俯视图,以下图,则搭成该几何体的小正方体最多是 __________个.三、解答题1.以下图为一几何体的三视图:(1)写出这个几何体的名称;(2)随意画出这个几何体的一种表面睁开图;(3)若长方形的高为 10cm,正三角形的边长为4cm,求这个几何体的侧面积.2.如图是某工件的三视图,求此工件的全面积和体积.3.已知,如图, AB和 DE是直立在地面上的两根立柱,AB= 5m,某一时辰 AB在阳光下的投影 BC=3m.(1)请你在图中画出此时 DE在阳光下的投影;(2)在丈量 AB的投影时,同时丈量出 DE在阳光下的投影长为 6m,请你计算 DE的长.四、能力提高1.(2018 ·宁夏 ) 如是由若干个棱 1 的小正方体合而成的一个几何体的三,个几何体的表面是__________.2.如 (1) ,用八个同大小的小立方体搭成一个大立方体,小明从上边的四个小立方体中取走了两个后,获得的新几何体的三如(2) 所示,他拿走的两个小立方体的序号是 __________.3.如,察由棱 1 的小立方体成的形,找律:在 (1) 中,共有 1 个小立方体,此中 1 个看得, 0 个看不;在 (2) 中,共有 8 个小立方体,此中 7 个看得, 1 个看不;在(3) 中,共有 27 个小立方体,此中 19 个看得, 8 个看不;⋯,第 (6) 个中,看得的小立方体有 __________个.答案:一、 1.D 2.D 3.C 4.A 5.B 6.D 7.B8.B二、 1.3 2.24 3.18 4.(75 3+360) 5.7三、 1. 解: (1)这个几何体是正三棱柱;(2)表面睁开图以下:;2(3) 侧面积: 3×10×4= 120cm.2.解:由三视图可知,该工件为底面半径为10cm,高为 30cm 的圆锥体,这圆锥的母线长为302+102= 10 10(cm),1圆锥的侧面积为s=πrl =2×20π×1010=10010π(cm2 ) ,圆锥的底面积为 102π=π2,100cm圆锥的全面积为 100π+10010π=100(1 +10) π(cm2) ;123圆锥的体积为3×π×(20 ÷2) ×30= 1 000π(cm ).故此工件的全面积是 100(1 23+ 10) πcm,体积是 1 000πcm.3.解:(1) 连结 AC,过点 D作 DF∥AC,交直线 BC于点 F,线段 EF即为 DE的投影.(2) ∵AC∥DF,∴∠ ACB=∠ DFE.∵∠ ABC=∠ DEF=90°,∴△ ABC∽△ DEF.AB BC53∴ =,∴= . ∴DE=10(m) .DE EF DE6说明:绘图时,不要修业生做文字说明,只需画出两条平行线AC和 DF,再连接 EF即可.四、 1.22 2. ①③或②④ 3.91。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节视图与投影
1.(河北中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是(C)
A.20B.22C.24D.26
2.(扬州中考)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是(A)
,A),B)
,C),D)
3.(呼和浩特中考)如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为(B)
A.236πB.136πC.132πD.120π
4.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)
,A),B),C),D)
5.(江西中考)有两个完全相同的正方体,按如图方式摆放,其主视图是(C)
,A),B),C),D)
6.(2018考试说明)有一个正方体的六个面上分别标有数字1,2,3,4,5,6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a,数字2的面所对面上数字记为b,那么a+b的值为(B)
A.6B.7C.8D.9
7.(衢州中考)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是(
C )
,A),B),C),D)
8.(泰安中考)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为
(B )
A.90°B.120°
C.135°D.150°
9.如图是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体上的点B 出发,沿表面爬到AC 的中点D ,请求出这个路线的最短路程.
解:(1)圆锥;
(2)S 表=S 底+S 侧42+π×2×6=16π(cm 2);
(3)如图将圆锥侧面展开,线段BD 的长为所求的最短路程.由条件得∠BAB ′=120°,C 为弧BB ′的中点,BD =AB ·sin60°=33(cm).。

相关文档
最新文档