2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第9讲 离散型随机变量的均值与方差
2020版新高考数学新增分大一轮(鲁京津琼)专用课件:第九章 高考专题突破五 第2课时

次成等差数列.直线 l 与 x 轴正半轴和 y 轴分别交于点 Q,P,与椭圆分别交于 → → → → 点 M,N,各点均不重合且满足PM=λ1MQ,PN=λ2NQ. (1)求椭圆的标准方程;
解 设椭圆的焦距为2c,由题意知b=1, 且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,∴a2=3.
与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N. (1)求直线l的斜率的取值范围;
1 1 → → → → (2)设 O 为原点,QM=λQO,QN=μQO,求证:λ +μ为定值.
思维升华
圆锥曲线中的定值问题的常见类型及解题策略
(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入 代数式、化简即可得出定值. (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式, 再利用题设条件化简、变形求得. (3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式 进行化简、变形即可求得.
将点
p Q2,4 代入抛物线方程,解得
p=4.
1
2
3
4
5
6
(2)已知点T(t,-2)为C上一点,M,N是C上异于点T的两点,且满足直线TM
8 和直线TN的斜率之和为- ,证明:直线MN恒过定点,并求出定点的坐标. 3
1
2Байду номын сангаас
3
4
5
6
3.(2018· 齐齐哈尔模拟)已知动圆E经过定点D(1,0),且与直线x=-1相切,设 动圆圆心E的轨迹为曲线C. (1)求曲线C的方程;
了运算过程.
PART TWO
2
课时作业
基础保分练
x2 y2 1.设 F1,F2 为椭圆 C: 4 +b2=1(b>0)的左、右焦点,M 为椭圆上一点,满足 MF1⊥MF2,已知△MF1F2 的面积为 1. (1)求 C 的方程;
2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:阶段自测卷(五) Word版含解析

阶段自测卷(五)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.(2019·贵州遵义航天中学月考)下列说法正确的是( )A .空间中,两不重合的平面若有公共点,则这些点一定在一条直线上B .空间中,三角形、四边形都一定是平面图形C .空间中,正方体、长方体、四面体都是四棱柱D .用一平面去截棱锥,底面与截面之间的部分所形成的多面体叫棱台 答案 A解析 空间四边形不是平面图形,故B 错;四面体不是四棱柱,故C 错;平行于底面的平面去截棱锥,底面和截面之间的部分所形成的多面体才叫棱台,故D 错;根据公理2可知A 正确,故选A.2.(2019·湛江调研)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .α∩β=n ,m ⊂α,m ∥β ⇒m ∥nB .α⊥β,α∩β=m ,m ⊥n ⇒n ⊥βC .m ⊥n ,m ⊂α,n ⊂β ⇒α⊥βD .m ∥α,n ⊂α⇒m ∥n 答案 A解析 对于A ,根据线面平行的性质定理可得A 选项正确;对于B ,当α⊥β,α∩β=m 时,若n ⊥m ,n ⊂α,则n ⊥β,但题目中无条件n ⊂α,故B 不一定成立;对于C ,若m ⊥n ,m ⊂α,n ⊂β,则α与β相交或平行,故C 错误;对于D ,若m ∥α,n ⊂α,则m 与n 平行或异面,则D 错误,故选A.3.(2019·重庆万州三中月考)如图,在三棱柱ABC -A 1B 1C 1中,D 是CC 1的中点,F 是A 1B 的中点,且DF →=αAB →+βAC →,则( )A .α=12,β=-1B .α=-12,β=1C .α=1,β=-12D .α=-1,β=12答案 A解析 根据向量加法的多边形法则以及已知可得, DF →=DC →+CB →+BF →=12C 1C →+CB →+12BA →1=12A 1A →+AB →-AC →+12BA →+12AA →1=12AB →-AC →, ∴α=12,β=-1,故选A.4.平行六面体ABCD -A 1B 1C 1D 1中,AB →=(1, 2, 0),AD →=(2, 1, 0),CC →1=(0, 1, 5),则对角线AC 1的边长为( ) A .4 2 B .4 3 C .5 2 D .12 答案 C解析 因为AC →1=AA →1+A 1B 1→+B 1C 1→=CC →1+AB →+AD →=(0, 1, 5)+(1, 2, 0)+(2, 1, 0)=(3, 4, 5), 所以|AC →1|=32+42+52=52,故选C.5.(2019·凉山诊断)如图,在四棱柱ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 1,BC 1的中点,下列结论中,正确的是( )A .EF ⊥BB 1 B .EF ⊥平面BCC 1B 1 C .EF ∥平面D 1BC D .EF ∥平面ACC 1A 1 答案 D解析 连接B 1C 交BC 1于F ,由于四边形BCC 1B 1是平行四边形,对角线互相平分,故F 是B 1C 的中点.因为E 是AB 1的中点,所以EF 是△B 1AC 的中位线,故EF ∥AC ,所以EF ∥平面ACC 1A 1.故选D.6.(2019·湖北黄冈中学、华师附中等八校联考)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求球的直径d 的公式d =13169V ⎛⎫⎪⎝⎭.若球的半径为r =1,根据“开立圆术”的方法计算该球的体积为( ) A.43π B.916 C.94 D.92 答案 D解析 根据公式d =13169V ⎛⎫⎪⎝⎭得,2=13169V ⎛⎫⎪⎝⎭,解得V =92.故选D. 7.已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为( ) A.8π3 B.5π3 C.4π3 D.2π3 答案 D解析 因为球与各面相切,所以直径为2,且AC ,AB 1,CB 1的中点在所求的切面圆上,所以所求截面为此三点构成的边长为2的正三角形的外接圆,由正弦定理知,R =63,所以截面的面积S =2π3,故选D. 8.已知向量n =(2, 0, 1)为平面α的法向量,点A (-1, 2, 1)在α内,则 P (1, 2,-2)到α的距离为( ) A.55 B. 5 C .2 5 D.510答案 A解析 ∵P A →=(-2, 0, 3),∴点P 到平面α的距离为d =|P A , →·n ||n |=|-4+3|5=55.∴P (1, 2,-2)到α的距离为55. 故选A.9.正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是( ) A.⎣⎡⎦⎤π4,π3 B.⎣⎡⎦⎤π4,π2 C.⎣⎡⎦⎤π6,π2 D.⎣⎡⎦⎤π6,π3 答案 D解析 以点D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,设点P 坐标为()x ,1-x ,x (0≤x ≤1),则BP →=()x -1,-x ,x , BC 1→=()-1,0,1,设BP →,BC 1→的夹角为α, 所以cos α=BP , →·BC 1→||BP →||BC 1→=1()x -12+2x 2×2=13⎝⎛⎭⎫x -132+23·2,所以当x =13时,cosα取得最大值32,α=π6.当x =1时, cos α取得最小值12,α=π3. 因为BC 1∥AD 1.故选D.10.(2019·淄博期中)在直三棱柱ABC -A 1B 1C 1中,CA =CB =4,AB =27,CC 1=25,E ,F 分别为AC ,CC 1的中点,则直线EF 与平面AA 1B 1B 所成的角是( ) A .30° B .45° C .60° D .90° 答案 A 解析连接AC 1,则EF ∥AC 1,直线EF 与平面AA 1B 1B 所成的角,就是直线EF 与平面AA 1B 1B 所成的角,AC 1与平面AA 1B 1B 所成的角;作C 1D ⊥A 1B 1于D ,连接AD ,因为直三棱柱ABC-A 1B 1C 1中,CA =CB =4,所以底面是等腰三角形,则C 1D ⊥平面AA 1B 1B ,可知∠C 1AD 就是直线EF 与平面AA 1B 1B 所成的角,CA =CB =4,AB =27,CC 1=25,可得C 1D =42-(7)2=3,AD =(7)2+(25)2=33,所以tan ∠C 1AD =C 1D AD =33,所以∠C 1AD =30°.故选A.11.(2019·陕西汉中中学月考)点A ,B ,C ,D ,E 是半径为5的球面上五点,A ,B ,C ,D 四点组成边长为42的正方形,则四棱锥E -ABCD 体积的最大值为( ) A.2563 B .256 C.643 D .64 答案 A解析 正方形ABCD 对角线长为(42)2+(42)2=8.则球心到正方形中心的距离d =52-42=3.则E 到正方形ABCD 的最大距离为h =d +5=8.则V E -ABCD =13×42×42×8=2563.故选A. 12.(2019·四省联考诊断)如图所示,四边形ABCD 为边长为2的菱形,∠B =60°,点E ,F 分别在边BC ,AB 上运动(不含端点),且EF ∥AC ,沿EF 把平面BEF 折起,使平面BEF ⊥底面ECDAF ,当五棱锥B -ECDAF 的体积最大时,EF 的长为( )A .1 B.263 C. 3 D. 2答案 B解析 由EF ∥AC 可知△BEF 为等边三角形,设EF =x ,等边△BEF 的高为32x ,面积为34x 2,所以五边形ECDAF 的面积为2×34×22-34x 2=23-34x 2,故五棱锥的体积为13×⎝⎛⎭⎫23-34x 2×32x =x -18x 3(0<x <2).令f ′(x )=⎝⎛⎭⎫x -18x 3′=1-38x 2=0,解得x =263,且当0<x <263时,f (x )单调递增,当263<x <2时,f (x )单调递减,故在x =263时取得极大值也即最大值.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设m ,n 为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题: ①若m ∥α,m ∥β,则α∥β; ②若m ⊥α,m ∥β,则α⊥β; ③若m ∥α,m ∥n ,则n ∥α; ④若m ⊥α,α∥β,则m ⊥β. 其中正确的命题序号是________. 答案 ②④解析 对于①,若m ∥α,m ∥β,则α与β可能相交,故①错误;对于②,若m ⊥α,m ∥β,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到α⊥β,故②正确;对于③,若m ∥α,m ∥n ,则n 可能在α内,故③错误,对于④,若m ⊥α,α∥β,则根据线面垂直的性质定理以及面面平行的性质定理得到m ⊥β,故④正确.故答案为②④.14.如图,在三棱柱A 1B 1C 1-ABC 中,已知D ,E ,F 分别为AB ,AC ,AA 1的中点,设三棱锥A -FED 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2的值为________.答案124解析 设三棱柱的高为h ,∵F 是AA 1的中点,则三棱锥F -ADE 的高为h2,∵D ,E 分别是AB ,AC 的中点,∴S △ADE =14S △ABC ,∵V 1=13S △ADE ·h2,V 2=S △ABC ·h ,∴V 1V 2=16S △ADE ·h S △ABC ·h =124. 15.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案2解析 由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为 2.∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴平面ABC ⊥平面BCC 1B 1,∴BC 为截面圆的直径,∴∠BAC =90°.∵AB =AC ,∴AB =1, ∴侧面ABB 1A 1的面积为2×1= 2.16.(2019·陕西四校联考)直三棱柱ABC -A 1B 1C 1的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为32π3,则该三棱柱体积的最大值为____________.答案 4 2解析 设三棱柱底面直角三角形的直角边为a ,b ,则棱柱的高h =a 2+b 2,设外接球的半径为r ,则43πr 3=32π3,解得r =2,∵上、下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,∴2h =2r =4.∴h =22,∴a 2+b 2=h 2=8≥2ab ,∴ab ≤4.当且仅当a =b =2时“=”成立. ∴三棱柱的体积V =Sh =12abh =2ab ≤4 2.三、解答题(本大题共70分)17.(10分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,AC 与BD 交于点O ,PC ⊥底面ABCD , 点E 为侧棱PB 的中点.求证:(1)PD ∥平面ACE ; (2)平面P AC ⊥平面PBD .证明(1) 连接OE.因为O为正方形ABCD对角线的交点,所以O为BD的中点.因为E为PB的中点,所以PD∥OE.又因为OE⊂平面ACE,PD⊄平面ACE,所以PD∥平面ACE.(2) 在四棱锥P-ABCD中,因为PC⊥底面ABCD,BD⊂底面ABCD,所以BD⊥PC.因为O为正方形ABCD对角线的交点,所以BD⊥AC.又PC,AC⊂平面P AC,PC∩AC=C,所以BD⊥平面P AC.因为BD⊂平面PBD,所以平面P AC⊥平面PBD.18.(12分)(2019·广州执信中学测试)如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,证明:平面MBD⊥平面P AD;(2)求四棱锥P -ABCD 的体积.(1)证明 在△ABD 中,由于AD =4,BD =8,AB =45, 所以AD 2+BD 2=AB 2.故AD ⊥BD . 又平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , BD ⊂平面ABCD , 所以BD ⊥平面P AD , 又BD ⊂平面MBD , 故平面MBD ⊥平面P AD .(2)解 如图,过P 作PO ⊥AD 交AD 于O ,由于平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P -ABCD 的高,又△P AD 是边长为4的等边三角形. 因此PO =32×4=2 3. 在四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形ABCD 的高,所以四边形ABCD 的面积为S =25+452×855=24.故V P -ABCD =13×24×23=16 3.19.(12分)(2019·化州模拟)如图所示,在四棱锥E -ABCD 中,ED ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,AB =AD =12CD =2.(1)求证:BC ⊥BE ;(2)当几何体ABCE 的体积等于43时,求四棱锥E -ABCD 的侧面积.(1)证明 连接BD ,取CD 的中点F ,连接BF ,则直角梯形ABCD 中,BF ⊥CD ,BF =CF =DF ,∴∠CBD =90°,即BC ⊥BD . ∵DE ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥DE , 又BD ∩DE =D ,∴BC ⊥平面BDE . 由BE ⊂平面BDE 得,BC ⊥BE .(2)解 ∵V ABCE =V E -ABC =13×DE ×S △ABC=13×DE ×12×AB ×AD =23DE =43, ∴DE =2, ∴EA =DE 2+AD 2=22,BE =DE 2+BD 2=23,又AB =2,∴BE 2=AB 2+AE 2, ∴AB ⊥AE ,∴四棱锥E -ABCD 的侧面积为12×DE ×AD +12×AE ×AB +12×BC ×BE +12×DE ×CD =6+22+2 6. 20.(12分)(2019·青岛调研)如图,在长方形ABCD 中,AB =π,AD =2,E ,F 为线段AB 的三等分点,G ,H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB ,CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ;(2)求二面角A -BH -D 的余弦值.(1)证明 因为H 在下底面圆周上,且CD 为下底面半圆的直径,所以DH ⊥CH ,又因为DH ⊥FH ,且CH ∩FH =H ,所以DH ⊥平面BCHF .又因为DH ⊂平面ADHF ,所以平面 ADHF ⊥平面BCHF .(2)解 以H 为坐标原点,分别以HD ,HC ,HF 所在直线为x ,y ,z 轴建立空间直角坐标系. 设下底面半径为r ,由题意得πr =π,所以r =1,CD =2.因为G ,H 为DC 的三等分点,所以∠HDC =30°,所以在Rt △DHC 中,HD =3,HC =1,所以A (3,0, 2),B (0, 1, 2),D (3,0, 0),设平面ABH 的法向量为n =(x ,y ,z ),因为n ·HA →=(x ,y ,z )·(3,0, 2)=0,n ·HB →=(x ,y ,z )·(0, 1, 2)=0,所以⎩⎪⎨⎪⎧3x +2z =0,y +2z =0,所以平面ABH 的法向量n =(-2,-23,3).设平面BHD 的法向量m =(x ,y ,z ).因为m ·HD →=(x ,y ,z )·(3,0, 0)=0,m ·HB →=(x ,y ,z )·(0, 1, 2)=0,所以⎩⎪⎨⎪⎧x =0,y +2z =0, 所以平面BHD 的法向量m =(0,-2, 1),由图形可知,二面角A —BH —D 的平面角为锐角,设为θ,所以二面角A -BH -D 的余弦值为cos θ=|m ·n ||m ||n |=28519. 21.(12分)(2019·成都七中诊断)如图,在多面体ABCDE 中,AC 和BD 交于一点,除EC 以外的其余各棱长均为2.(1)作平面CDE 与平面ABE 的交线l ,并写出作法及理由;(2)求证:平面BDE ⊥平面ACE ;(3)若多面体的体积为2,求直线DE 与平面BCE 所成角的正弦值.(1)解 过点E 作AB (或CD )的平行线,即为所求直线l .∵AC 和BD 交于一点,∴A ,B ,C ,D 四点共面.又∵四边形ABCD 边长均相等,∴四边形ABCD 为菱形,从而AB ∥DC .又AB ⊄平面CDE ,且CD ⊂平面CDE ,∴AB ∥平面CDE .∵AB ⊂平面ABE ,且平面ABE ∩平面CDE =l ,∴AB ∥l .(2)证明 取AE 的中点O ,连接OB ,OD .∵AB =BE ,DA =DE ,∴OB ⊥AE ,OD ⊥AE .又OB ∩OD =O ,∴AE ⊥平面OBD ,∵BD ⊂平面OBD ,故AE ⊥BD .又四边形ABCD 为菱形,∴AC ⊥BD .又AE ∩AC =A ,∴BD ⊥平面ACE .又BD ⊂平面BDE ,∴平面BDE ⊥平面ACE .(3)解 由V E -ABCD =2V E -ABD =2V D -ABE =2,即V D -ABE =1.设三棱锥D -ABE 的高为h ,则13⎝⎛⎭⎫12·2·3·h =1, 解得h = 3.又∵DO = 3.∴DO ⊥平面ABE .以点O 为坐标原点,OB ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1, 0),B (3,0, 0),D (0, 0,3),E (0, 1, 0).∴BC →=AD →=(0, 1,3),BE →=(-3,1, 0).设平面BCE 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧y +3z =0,3x -y =0得,平面BCE的一个法向量为n=(1,3,-1).又DE→=(0,1,-3),于是cos〈DE→,n〉=235·2=155.故直线DE与平面BCE所成角的正弦值为155.22.(12分)如图,△ABC的外接圆⊙O的半径为5,CD⊥⊙O所在的平面,BE∥CD,CD =4,BC=2,且BE=1,tan∠AEB=2 5.(1)求证:平面ADC⊥平面BCDE;(2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为27?若存在,确定点M的位置,若不存在,请说明理由.(1)证明∵CD⊥平面ABC,BE∥CD,∴BE⊥平面ABC,∴BE⊥AB.∵BE=1,tan∠AEB=25,∴AE=21,从而AB=AE2-BE2=2 5.∵⊙O的半径为5,∴AB是直径,∴AC⊥BC,又∵CD⊥平面ABC,BC⊂平面ABC,∴CD⊥BC,故BC⊥平面ACD.∵BC⊂平面BCDE,∴平面ADC⊥平面BCDE.(2)解方法一假设点M存在,过点M作MN⊥CD于N,连接AN,作MF⊥CB于F,连接AF.∵平面ADC⊥平面BCDE,平面ADC∩平面BCDE=DC,MN⊂平面BCDE,∴MN⊥平面ACD,∴∠MAN 为MA 与平面ACD 所成的角.设MN =x ,计算易得,DN =32x ,MF =4-32x , 故AM =AF 2+MF 2=AC 2+CF 2+MF 2 = 16+x 2+⎝⎛⎭⎫4-32x 2, sin ∠MAN =MN AM =x 16+x 2+⎝⎛⎭⎫4-32x 2=27, 解得x =-83(舍去),x =43, 故MN =23CB ,从而满足条件的点M 存在,且DM =23DE . 方法二 以点C 为坐标原点,CA ,CB ,CD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系,则A (4, 0, 0),B (0, 2, 0),D (0, 0, 4),E (0, 2, 1),C (0, 0, 0), 则DE →=(0, 2,-3).易知平面ACD 的法向量为BC →=(0,-2, 0),假设M 点存在,设M (a ,b ,c ),则DM →=(a ,b ,c -4),再设DM →=λDE →,λ∈(0, 1] ,∴⎩⎪⎨⎪⎧ a =0,b =2λ,c -4=-3λ⇒⎩⎪⎨⎪⎧ a =0,b =2λ,c =4-3λ,即M (0, 2λ,4-3λ),从而AM →=(-4, 2λ,4-3λ).设直线AM 与平面ACD 所成的角为θ,则sin θ=|cos 〈AM →,BC →〉|=|2λ×(-2)|216+4λ2+(4-3λ)2=27, 解得λ=-43或λ=23,其中λ=-43应舍去,而λ=23∈(0, 1],故满足条件的点M 存在,且点M 的坐标为⎝⎛⎭⎫0,43,2.。
2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第9讲 第1课时 直线与圆锥曲线

第1课时 直线与圆锥曲线一、选择题1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A.有且只有一条B.有且只有两条C.有且只有三条D.有且只有四条解析 ∵通径2p =2,又|AB |=x 1+x 2+p ,∴|AB |=3>2p ,故这样的直线有且只有两条.答案 B2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点个数是( )A.1B.2C.1或2D.0解析 因为直线y =b a x +3与双曲线的渐近线y =b a x 平行,所以它与双曲线只有1个交点.答案 A3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点,设O 为坐标原点,则OA→·OB →等于( ) A.-3B.-13C.-13或-3D.±13解析 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,∴OA →·OB →=-13,同理,直线l 经过椭圆的左焦点时,也可得OA →·OB →=-13. 答案 B4.抛物线y =x 2到直线x -y -2=0的最短距离为( )A. 2B.728C.2 2D.526解析 设抛物线上一点的坐标为(x ,y ),则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴x =12时, d min =728. 答案 B5.(2017·石家庄调研)椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则a b 的值为( )A.32B.233C.932D.2327解析 设A (x 1,y 1),B (x 2,y 2),线段AB 中点M (x 0,y 0),由题设k OM =y 0x 0=32. 由⎩⎨⎧ax 21+by 21=1,ax 22+by 22=1,得(y 2+y 1)(y 2-y 1)(x 2+x 1)(x 2-x 1)=-a b . 又y 2-y 1x 2-x 1=-1,y 2+y 1x 2+x 1=2y 02x 0=32. 所以a b =32.答案 A二、填空题6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析由题意得⎩⎪⎨⎪⎧c =2,b 2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1. 答案 x 24+y 22=1。
2020版高考数学新增分大一轮新高考(鲁京津琼)专用名师精编讲义:第九章 9.6 双曲线 Word版含解析

§9.6双曲线最新考纲了解双曲线的定义、几何图形和标准方程,知道其简单几何性质.1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质概念方法微思考1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么?提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在;当2a =0时,动点的轨迹是线段F 1F 2的中垂线. 2.方程Ax 2+By 2=1表示双曲线的充要条件是什么?提示 若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0.3.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0<a <b ,双曲线哪些性质受影响? 提示 离心率受到影响.∵e =ca=1+⎝⎛⎭⎫b a 2,故当a >b >0时,1<e <2,当a =b >0时,e =2(亦称等轴双曲线),当0<a <b 时,e > 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( √ )题组二 教材改编2.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5B .5C. 2 D .2答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay =0,∴2a =bca 2+b 2=b .又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.3.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a=32,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0. 4.经过点A (4,1),且对称轴都在坐标轴上的等轴双曲线方程为________. 答案 x 215-y 215=1解析 设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (4,1)代入,得a 2=15(舍负), 故所求方程为x 215-y 215=1.题组三 易错自纠5.(2016·全国Ⅰ)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)答案 A解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1, ∴-1<n <3,故选A.6.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53答案 D解析 由条件知y =-b a x 过点(3,-4),∴3ba =4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.7.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________________. 答案 x 24-y 2=1解析 由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.题型一 双曲线的定义例1 (1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆答案 B解析 如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,∴|MF 2|=2.∵点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P , 由垂直平分线的性质可得|PM |=|PF 1|, ∴||PF 2|-|PF 1||=||PF 2|-|PM ||=|MF 2| =2<|F 1F 2|,∴由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有 |PF 1|-|PF 2|=|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34. 引申探究1.本例(2)中,若将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴12F PF S=12|PF 1|·|PF 2|·sin 60°=2 3. 2.本例(2)中,若将条件“|PF 1|=2|PF 2|”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4, ∴12F PF S=12|PF 1|·|PF 2|=2. 思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形, 结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2,解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8.题型二 双曲线的标准方程例2 (1)(2018·大连调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).(2)根据下列条件,求双曲线的标准方程: ①虚轴长为12,离心率为54;②焦距为26,且经过点M (0,12);③经过两点P (-3,27)和Q (-62,-7). 解 ①设双曲线的标准方程为 x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0).由题意知,2b =12,e =c a =54,∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.②∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.③设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.思维升华 求双曲线标准方程的方法 (1)定义法 (2)待定系数法①焦点位置不确定时,设Ax 2+By 2=1(AB <0);②与x 2a 2-y 2b 2=1共渐近线的设为x 2a 2-y 2b 2=λ(λ≠0);③与x 2a 2-y 2b 2=1共焦点的设为x 2a 2-k -y 2b 2+k=1(-b 2<k <a 2).跟踪训练2 (1)(2018·天津河西区模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为8,右顶点(a ,0)到双曲线的一条渐近线的距离为125,则双曲线C 的方程为( )A.x 29-y 216=1 B.x 216-y 29=1 C.x 225-y 216=1 D.x 216-y 225=1 答案 A解析 由虚轴长为8,可得b =4,∵右顶点A (a,0)到双曲线C 的一条渐近线bx -ay =0的距离为125,∴aba 2+b 2=125,解得a =3,∴则双曲线C 的方程为x 29-y 216=1,故选A.(2)(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52. ① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9. ② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.题型三 双曲线的几何性质命题点1 与渐近线有关的问题例3 已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±bax =±2x ,即2x ±y =0.命题点2 求离心率的值(或范围)例4 (2018·天津河东区模拟)双曲线方程为x 2a 2-y 2=1,其中a >0,双曲线的渐近线与圆(x -2)2+y 2=1相切,则双曲线的离心率为( ) A.233 B. 3 C. 2 D.32答案 A解析 根据题意,可以求得双曲线的渐近线的方程为x ±ay =0,而圆(x -2)2+y 2=1的圆心为(2,0),半径为1,结合题意有|2±0|1+a2=1,结合a >0的条件,求得a =3,所以c =3+1=2,所以有e =23=233,故选A.思维升华 1.求双曲线的渐近线的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±a b x .反之,已知渐近线方程为y =±ba x ,可设双曲线方程为x 2a 2-y 2b 2=λ(a >0,b >0,λ≠0).2.求双曲线的离心率(1)求双曲线的离心率或其范围的方法①求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.(2)双曲线的渐近线的斜率k 与离心率e 的关系:k =ba =c 2-a 2a=c 2a2-1=e 2-1. 跟踪训练3 (2018·茂名模拟)已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( )A.7 B .4 C.233 D. 3答案 A解析 因为△ABF 2为等边三角形,所以不妨设|AB |=|BF 2|=|AF 2|=m ,因为A 为双曲线右支上一点,所以|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a , 因为B 为双曲线左支上一点, 所以|BF 2|-|BF 1|=2a ,|BF 2|=4a , 由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由余弦定理得4c 2=4a 2+16a 2-2·2a ·4a ·cos 120°, 得c 2=7a 2,则e 2=7,又e >1,所以e =7.故选A.高考中离心率问题离心率是椭圆与双曲线的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆与双曲线的离心率问题难点的根本方法.例1 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1答案 A解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则M 到直线l 的距离d =4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32, 故选A.例2 已知F 1,F 2为双曲线的焦点,过F 2作垂直于实轴的直线交双曲线于A ,B 两点,BF 1交y 轴于点C ,若AC ⊥BF 1,则双曲线的离心率为( ) A. 2 B. 3 C .2 2 D .2 3答案 B解析 不妨设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知,取A 点坐标为⎝⎛⎭⎫c ,b 2a ,取B 点坐标为⎝⎛⎭⎫c ,-b 2a ,则C 点坐标为⎝⎛⎭⎫0,-b 22a 且F 1(-c ,0).由AC ⊥BF 1知AC →·BF 1→=0,又AC →=⎝⎛⎭⎫-c ,-3b 22a ,BF 1→=⎝⎛⎭⎫-2c ,b 2a ,可得2c 2-3b 42a 2=0,又b 2=c 2-a 2,可得3c 4-10c 2a 2+3a 4=0,则有3e 4-10e 2+3=0,可得e 2=3或13,又e >1,所以e = 3.故选B.1.(2018·云南民族中学月考)已知双曲线y 2a 2-x 2b 2=1(a >0,b >0),点(4,-2)在它的一条渐近线上,则离心率等于( ) A. 6 B. 5 C.62 D.52答案 B解析 渐近线方程为y =-a b x ,故(4,-2)满足方程-2=-a b ×4,所以a b =12,所以e =ca=a 2+b 2a 2= 1+b 2a2=5,故选B. 2.(2018·海淀模拟)设曲线C 是双曲线,则“C 的方程为x 2-y 24=1”是“C 的渐近线方程为y =±2x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若C 的方程为x 2-y 24=1,则a =1,b =2,渐近线方程为y =±bax ,即为y =±2x ,充分性成立;若渐近线方程为y =±2x ,则双曲线方程为x 2-y 24=λ(λ≠0),∴“C 的方程为x 2-y 24=1”是“C 的渐近线方程为y =±2x ”的充分不必要条件,故选A.3.(2018·辽宁省五校联考)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为1,则双曲线C 的方程为( ) A.x 22-y 28=1 B.x 24-y 2=1 C.x 24-y 216=1 D .x 2-y 24=1答案 D解析 因为双曲线C 的右焦点F 到渐近线的距离|F A |=b ,|OA |=a ,所以ab =2,又双曲线C 的离心率为5,所以 1+b 2a2=5,即b 2=4a 2,解得a 2=1,b 2=4,所以双曲线C 的方程为x 2-y 24=1,故选D.4.(2018·金华模拟)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( ) A .2 B .4 C .6 D .8 答案 B解析 由双曲线的方程,得a =1,c =2,由双曲线的定义得||PF 1|-|PF 2||=2. 在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°=|PF 1|2+|PF 2|2-|PF 1|·|PF 2| =(|PF 1|-|PF 2|)2+|PF 1|·|PF 2| =22+|PF 1|·|PF 2|=(22)2, 解得|PF 1|·|PF 2|=4.故选B.5.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-2 答案 B解析 由题意及正弦定理得 sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2, ∴|PF 1|=4,|PF 2|=2, 又|F 1F 2|=4, 由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14, ∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1 =2×4×14=2.故选B.6.(2018·安徽淮南三校联考)已知双曲线x 24-y 22=1的右焦点为F ,P 为双曲线左支上一点,点A (0,2),则△APF 周长的最小值为( ) A .4+ 2 B .4(1+2) C .2(2+6) D.6+3 2答案 B解析 由题意知F (6,0),设左焦点为F 0,则F 0(-6,0),由题意可知△APF 的周长l 为|P A |+|PF |+|AF |,而|PF |=2a +|PF 0|,∴l =|P A |+|PF 0|+2a +|AF |≥|AF 0|+|AF |+2a =(0+6)2+(2-0)2+(6-0)2+(0-2)2+2×2=42+4=4(2+1),当且仅当A ,F 0,P 三点共线时取得“=”,故选B.7.已知离心率为52的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若2OMF S =16,则双曲线的实轴长是( )A .32B .16C .84D .4 答案 B解析 由题意知F 2(c,0),不妨令点M 在渐近线y =ba x 上,由题意可知|F 2M |=bc a 2+b2=b ,所以|OM |=c 2-b 2=a .由2OMF S=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.8.(2018·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( ) A.⎝⎛⎭⎫1,233B.⎝⎛⎭⎫233,+∞C .(1,2)D .(2,+∞)答案 A解析 由双曲线方程可得其渐近线方程为y =±b a x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b 2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎫1,233,故选A.9.(2016·北京)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以ba =2.又c =5,a 2+b 2=c 2,解得a =1,b =2.10.已知F 1,F 2分别是双曲线x 2-y 2b2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于________. 答案 4解析 由题意知a =1,由双曲线定义知|AF 1|-|AF 2|=2a =2,|BF 1|-|BF 2|=2a =2,∴|AF 1|=2+|AF 2|=4,|BF 1|=2+|BF 2|.由题意知|AB |=|AF 2|+|BF 2|=2+|BF 2|,∴|BA |=|BF 1|,∵△BAF 1为等腰三角形,∵∠F 1AF 2=45°,∴∠ABF 1=90°,∴△BAF 1为等腰直角三角形. ∴|BA |=|BF 1|=22|AF 1|=22×4=22, ∴1F AB S=12|BA |·|BF 1|=12×22×22=4.11.(2018·安阳模拟)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是__________. 答案 (0,2)解析 对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的焦点(c,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .双曲线x 28-m +y 24-m =1,即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 12.若点P 在双曲线x 2-y 29=1上,则点P 到双曲线渐近线的距离的取值范围是________.答案 ⎝⎛⎦⎤0,31010解析 双曲线的一条渐近线方程是3x -y =0,由渐近线的性质,知当点P 是双曲线的一个顶点时,点P 到渐近线的距离最大,双曲线的顶点坐标是(±1,0),所以点P 到渐近线的最大距离为|±3-0|10=31010.又双曲线与渐近线没有交点,所以点P 到双曲线渐近线的距离的取值范围是⎝⎛⎦⎤0,31010.13.(2018·南昌调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( ) A. 2 B. 3 C. 5 D. 6答案 C 解析 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =b a x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,ab c .又线段PF 2的中点为N ,所以P ⎝ ⎛⎭⎪⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca= 5.故选C.14.(2018·福建六校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,左顶点为A ,以F 为圆心,F A 为半径的圆交C 的右支于P ,Q 两点,△APQ 的一个内角为60°,则双曲线C 的离心率为________. 答案 43解析 设左焦点为F 1,由于双曲线和圆都关于x 轴对称, 又△APQ 的一个内角为60°,∴∠P AF =30°,∠PF A =120°,|AF |=|PF |=c +a , ∴|PF 1|=3a +c ,在△PFF 1中,由余弦定理得,|PF 1|2=|PF |2+|F 1F |2-2|PF ||F 1F |cos ∠F 1FP ,即3c 2-ac -4a 2=0,即3e 2-e -4=0,∴e =43(舍负).15.已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=8,P 是E 右支上的一点,PF 1与y 轴交于点A ,△P AF 2的内切圆与边AF 2的切点为Q .若|AQ |=3,求E 的离心率.解 如图所示,设PF 1,PF 2分别与△P AF 2的内切圆切于M ,N ,依题意,有|MA |=|AQ |,|NP |=|MP |, |NF 2|=|QF 2|,|AF 1|=|AF 2|=|QA |+|QF 2|,2a =|PF 1|-|PF 2|=(|AF 1|+|MA |+|MP |)-(|NP |+|NF 2|)=2|QA |=23,故a =3,从而e =c a =43=433.16.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=6|PF 2|,求此双曲线的离心率e 的最大值. 解析 由定义,知|PF 1|-|PF 2|=2a . 又|PF 1|=6|PF 2|,∴|PF 1|=125a ,|PF 2|=25a . 当P ,F 1,F 2三点不共线时, 在△PF 1F 2中,由余弦定理, 得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=14425a 2+425a 2-4c 22·125a ·25a =3712-2512e 2,即e 2=3725-1225cos ∠F 1PF 2.∵cos ∠F 1PF 2∈(-1,1),∴e ∈⎝⎛⎭⎫1,75. 当P ,F 1,F 2三点共线时, ∵|PF 1|=6|PF 2|,∴e =c a =75,综上,e 的最大值为75.。
2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第九章第2讲 两直线的位置关系 Word版含解析

第讲两直线的位置关系一、选择题.直线++=和++=的位置关系是( ).平行 .垂直.相交但不垂直 .不能确定解析直线++=的斜率=-,直线++=的斜率为=-,则≠,且≠-.故选.答案.(·刑台模拟)“=-”是“直线++=和直线+(-)+=平行”的( ).充分不必要条件 .必要不充分条件.充要条件 .既不充分也不必要条件解析依题意得,直线++=和直线+(-)+=平行的充要条件是解得=-,因此选.答案.过两直线:-+=和:++=的交点和原点的直线方程为( )-=+=-=+=解析法一由得则所求直线方程为:==-,即+=.法二设直线方程为-++λ(++)=,即(+λ)-(-λ)++λ=,又直线过点(,),所以(+λ)·-(-λ)·++λ=,解得λ=-,故所求直线方程为+=.答案.直线-+=关于直线=对称的直线方程是( )+-=+-=++=+-=解析设所求直线上任一点(,),则它关于直线=的对称点(-,)在直线-+=上,即--+=,化简得+-=.答案.(·安庆模拟)若直线:++=(>)与直线:+-=的距离为,则=( )解析直线:++=(>),即++=,因为它与直线:+-=的距离为,所以=,求得=,故选.答案.(·石家庄模拟)已知倾斜角为α的直线与直线+-=垂直,则π)-α))的值为( ).- .-解析依题设,直线的斜率=,∴α=,且α∈[,π),则α=,α=,则)π-α))==α=αα=.答案.(·成都调研)已知直线过点(-,)且倾斜角为°,直线过点(,)且与直线垂直,则直线与直线的交点坐标为( ).(,) .(,).(,)解析直线的斜率为=°=,因为直线与直线垂直,所以=-=-,所以直线的方程为=(+),直线的方程为=-(-).两式联立,解得即直线与直线的交点坐标为(,).故选.答案.从点(,)射出的光线沿与向量=(,)平行的直线射到轴上,则反射光线所在的直线方程为( )+-=+-=+-=+-=解析由直线与向量=(,)平行知:过点(,)的直线的斜率=,所以直线的方程为-=(-),其与轴的交点坐标为(,),又点(,)关于轴的对称点为(-,),所以反射光线过点(-,)与(,),由两点式知正确.答案二、填空题.若三条直线=,+=,++=相交于同一点,则的值为.解析由得∴点(,)满足方程++=,即×+×+=,∴=-.。
2022新高考大一轮复习第九章离散型随机变量的分布列和数字特征

§9.5 离散型随机变量的分布列和数字特征考试要求 1.理解取有限个值的离散型随机变量及其分布列的概念.2.理解并会求离散型随机变量的数字特征.1.离散型随机变量一般地,对于随机试验样本空间Ω中的每个样本点w ,都有唯一的实数X (w )与之对应,我们称X 为随机变量;可能取值为有限个或可以一一列举的随机变量称为离散型随机变量. 2.离散型随机变量的分布列一般地,设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,我们称X 取每一个值x i 的概率P (X =x i )=p i ,i =1,2,…,n 为X 的概率分布列,简称分布列. 3.离散型随机变量的分布列的性质: ①p i ≥0(i =1,2,…,n );②p 1+p 2+…+p n =1. 4.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =∑i =1nx i p i 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=(x 1-E (X ))2p1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,并称D (X )为随机变量X 的标准差,记为σ(X ),它们都可以度量随机变量取值与其均值的偏离程度. 5.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X )(a ,b 为常数).微思考1.某电子元件的使用寿命x 1,掷一枚骰子,正面向上的点数x 2,思考x 1,x 2可作为离散型随机变量吗?提示 x 1不可作为离散型随机变量,x 2可作为离散型随机变量. 2.期望和算术平均数有何区别?提示 期望刻画了随机变量取值的平均水平;而算术平均数是针对若干个已知常数来说的.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)离散型随机变量的概率分布列描述了由这个随机变量所刻画的随机现象.( √ ) (2)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )(4)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( √ ) 题组二 教材改编2.设随机变量X 的分布列如下:X 1 2 3 4 5 P112161316p则p 为( ) A.16 B.13 C.14 D.112 答案 C解析 由分布列的性质知,112+16+13+16+p =1, ∴p =1-34=14.3.有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是____________. 答案 0,1,2,3解析 因为次品共有3件,所以在取到合格品之前取出的次品数X 的可能取值为0,1,2,3. 4.若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________. 答案 0解析 ∵P (X =c )=1,∴E (X )=c ×1=c , ∴D (X )=(c -c )2×1=0. 题组三 易错自纠5.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数 D .取到的球的个数答案 C解析 选项A ,B 表述的都是随机事件;选项D 是确定的值2,并不随机;选项C 是随机变量,可能取值为0,1,2. 6.若随机变量X 的分布列为X -2 -1 0 1 2 3 P0.10.20.20.30.10.1则当P (X <a )=0.8时,实数a 的取值范围是( ) A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知,P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].题型一 分布列的性质例1 (1)离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以P ⎝⎛⎭⎫12<X <52=P(X=1)+P(X=2)=54×12+54×16=56.故选D.(2)设离散型随机变量X的分布列为X 0123 4P 0.20.10.10.3m求2X+1的分布列.解由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.列表为X 0123 42X+113579从而2X+1的分布列为2X+113579P 0.20.10.10.30.31.若例1(2)中条件不变,求随机变量η=|X-1|的分布列.解由例1(2)知m=0.3,列表为X 0123 4|X-1|1012 3所以P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为η012 3P 0.10.30.30.32.若例1(2)中条件不变,求随机变量η=X2的分布列.解依题意知η的值为0,1,4,9,16.列表为X 0 1 2 3 4 X 214916从而η=X 2的分布列为η 0 1 4 9 16 P0.20.10.10.30.3思维升华 (1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.跟踪训练1 (1)已知随机变量X 的分布列为P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A.316B.14C.116D.516 答案 A解析 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.(2)已知随机变量X 的分布列为X 0 1 2 3 4 5 P110310x310yz则P (X ≥2)等于( )A .0.3B .0.4C .0.5D .0.6 答案 D解析 P (X ≥2)=x +310+y +z =1-⎝⎛⎭⎫110+310=0.6.题型二 分布列的求法例2 (2021·河南新乡模拟)2021年元旦班级联欢晚会上,某班设计了一个摸球表演节目的游戏:在一个纸盒中装有1个红球,1个黄球,1个白球和1个黑球,这些球除颜色外完全相同,同学不放回地每次摸出1个球,若摸到黑球,则停止摸球,否则就要将纸盒中的球全部摸出才停止.规定摸到红球表演两个节目,摸到白球或黄球表演1个节目,摸到黑球不用表演节目.(1)求a 同学摸球三次后停止摸球的概率;(2)记X 为a 同学摸球后表演节目的个数,求随机变量X 的分布列. 解 (1)设“a 同学摸球三次后停止摸球”为事件E , 则P (E )=A 23A 34=14,故a 同学摸球三次后停止摸球的概率为14.(2)随机变量X 的可能取值为0,1,2,3,4.P (X =0)=14,P (X =1)=2A 24=16,P (X =2)=1A 24+A 22A 34=16,P (X =3)=C 12A 22A 34=16,P (X =4)=A 33A 44=14.所以随机变量X 的分布列为X 0 1 2 3 4 P1416161614思维升华 离散型随机变量分布列的求解步骤跟踪训练2 有编号为1,2,3,…,n 的n 个学生,入座编号为1,2,3,…,n 的n 个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X ,已知X =2时,共有6种坐法. (1)求n 的值;(2)求随机变量X 的分布列.解 (1)因为当X =2时,有C 2n 种方法,因为C 2n =6,即n (n -1)2=6,也即n 2-n -12=0, 解得n =4或n =-3(舍去),所以n =4.(2)因为学生所坐的座位号与该生的编号不同的学生人数为X , 由题意可知X 的可能取值是0,2,3,4,所以P (X =0)=1A 44=124,P (X =2)=C 24×1A 44=14,P (X =3)=C 34×2A 44=13,P (X =4)=1-124-14-13=38,所以X 的分布列为X 0 2 3 4 P124141338题型三 离散型随机变量的数字特征例3 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E (ξ),方差D (ξ). 解 (1)两人所付费用相同,相同的费用可能为0,40,80元,甲、乙两人2小时以上且不超过3小时离开的概率分别为1-14-12=14,1-16-23=16.两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=14×16=124,则两人所付费用相同的概率为 P =P 1+P 2+P 3=124+13+124=512.(2)ξ的所有可能取值为0,40,80,120,160,则 P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80.D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=4 0003.思维升华 求离散型随机变量ξ的均值与方差的步骤 (1)理解ξ的意义,写出ξ可能的全部值. (2)求ξ取每个值的概率. (3)写出ξ的分布列. (4)由均值的定义求E (ξ). (5)由方差的定义求D (ξ).跟踪训练3 现有A ,B ,C 3个项目,已知某投资公司投资A 项目的概率为23,投资B ,C 项目的概率均为p ,且投资这3个项目是相互独立的,记X 是该投资公司投资项目的个数,若P (X =0)=112,则随机变量X 的均值E (X )=________.答案 53解析 由题意可知,X 的所有可能取值为0,1,2,3,由于P (X =0)=112,故13(1-p )2=112,∴p=12.P (X =1)=23×12×12+13×12×12+13×12×12=412=13, P (X =2)=23×12×12+23×12×12+13×12×12=512,P (X =3)=1-112-412-512=212=16,∴E (X )=0×112+1×13+2×512+3×16=53.课时精练1.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是( ) A .第一枚6点,第二枚2点 B .第一枚5点,第二枚1点 C .第一枚1点,第二枚6点 D .第一枚6点,第二枚1点 答案 D解析 第一枚的点数减去第二枚的点数不小于5,即只能等于5.故选D. 2.设随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)等于( )A.19B.16C.13D.14答案 C解析 由分布列的性质,得1+2+32a =1,解得a =3,所以P (X =2)=22×3=13,故选C.3.(2020·沈阳模拟)设离散型随机变量X 可能的取值为1,2,3,4,P (X =k )=ak +b ,若X 的均值为E (X )=3,则a -b 等于( ) A.110 B .0 C .-110 D.15 答案 A解析 由题意知(a +b )+(2a +b )+(3a +b )+(4a +b )=1,即10a +4b =1,又X 的均值E (X )=3,则(a +b )+2(2a +b )+3(3a +b )+4(4a +b )=3,即30a +10b =3,∴a =110,b =0,∴a -b=110. 4.已知随机变量的分布列如下,且E (ξ)=6.3,则a 的值为( )ξ 4 a 9 P0.50.1bA.5B .6C .7D .8答案 C解析 由概率分布列性质,知0.5+0.1+b =1,所以b =0.4,所以E (ξ)=4×0.5+a ×0.1+9×0.4=6.3,所以a =7,故选C.5.(多选)(2020·泰安期末)设离散型随机变量X 的分布列为若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有( ) A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8 D .E (Y )=5,D (Y )=7.2 答案 ACD解析 因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确; 又E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.故选ACD. 6.(多选)(2020·杭州质检)已知随机变量ξ的分布列如下:则当a 在⎝⎛⎭⎫0,12内增大时( ) A .E (ξ)增大B .E (ξ)减小C .D (ξ)先增大后减小 D .D (ξ)先减小后增大答案 AC解析 由随机变量ξ的分布列得⎩⎪⎨⎪⎧0≤b -a ≤1,0≤b ≤1,0≤a ≤1,b -a +b +a =1,解得b =0.5,0≤a ≤0.5,∴E (ξ)=0.5+2a ,0≤a ≤0.5.故a 在⎝⎛⎭⎫0,12内增大时,E (ξ)增大. D (ξ)=(-2a -0.5)2(0.5-a )+(0.5-2a )2×0.5+(1.5-2a )2a =-4a 2+2a +14=-4⎝⎛⎭⎫a -142+12, 所以当a ∈⎝⎛⎭⎫0,14时,D (ξ)单调递增,当a ∈⎝⎛⎭⎫14,12时,D (ξ)单调递减,故选AC. 7.某射击选手射击环数的分布列为若射击不小于9环为优秀,其射击一次的优秀率为______. 答案 40%解析 由分布列的性质得a +b =1-0.3-0.3=0.4,故射击一次的优秀率为40%. 8.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 答案 23 ⎣⎡⎦⎤-13,13 解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.9.已知随机变量ξ的分布列为若E (ξ)=158,则D (ξ)=________.答案5564解析 由分布列性质,得x +y =0.5.又E (ξ)=158,得2x +3y =118,可得⎩⎨⎧x =18,y =38.D (ξ)=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 10.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=________. 答案310解析 由题意可知,P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=310. 11.(2021·皖南八校模拟)小李参加一种红包接龙游戏:他在红包里塞了12元,然后发给朋友A ,如果A 猜中,A 将获得红包里的所有金额;如果A 未猜中,A 将当前的红包转发给朋友B ,如果B 猜中,A ,B 平分红包里的金额;如果B 未猜中,B 将当前的红包转发给朋友C ,如果C 猜中,A ,B 和C 平分红包里的金额;如果C 未猜中,红包里的钱将退回小李的账户,设A ,B ,C 猜中的概率分别为13,12,13,且A ,B ,C 是否猜中互不影响.(1)求A 恰好获得4元的概率;(2)设A 获得的金额为X 元,求X 的分布列. 解 (1)依题意,当且仅当C 猜中时A 恰好获得4元, ∴A 恰好获得4元的概率为23×12×13=19.(2)X 的所有可能取值为0,4,6,12, P (X =0)=23×12×23=29,P (X =4)=19,P (X =6)=23×12=13,P (X =12)=13,∴X 的分布列为12.某投资公司在2021年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.解 若按“项目一”投资,设获利为X 1万元,X 1的所有可能取值为300,-150.则X 1的分布列为∴E (X 1)=300×79+(-150)×29=200(万元).若按“项目二”投资,设获利X 2万元,X 2的所有可能取值为500,-300,0.则X 2的分布列为∴E (X 2)=500×35+(-300)×13+0×115=200(万元).D (X 1)=(300-200)2×79+(-150-200)2×29=35 000,D (X 2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.所以E (X 1)=E (X 2),D (X 1)<D (X 2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.13.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( ) A .10% B .20% C .30% D .40% 答案 B解析 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,所以x =2或8.因为次品率不超过40%,所以x =2,所以次品率为210=20%.14.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )=________.答案 65解析 由题意知X =0,1,2,3,P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125,∴E (X )=0×27125+1×54125+2×36125+3×8125=150125=65.15.(多选)(2020·烟台质检)某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择每个餐厅的概率相同),则下列结论正确的是( ) A .四人去了四个不同餐厅就餐的概率为518B .四人去了同一餐厅就餐的概率为11 296C .四人中恰有两人去了第一餐厅就餐的概率为25216D .四人中去第一餐厅就餐的人数的均值为23答案 ACD解析 四人去餐厅就餐的情况共有64种,其中四人去了四个不同餐厅就餐的情况有A 46种,则四人去了四个不同餐厅就餐的概率为A 4664=518,故A 正确;同理,四人去了同一餐厅就餐的概率为664=1216,故B 错误;四人中恰有两人去了第一餐厅就餐的概率为C 24×5264=25216,故C正确;设四人中去第一餐厅就餐的人数为ξ,则ξ=0,1,2,3,4.则P (ξ=0)=5464,P (ξ=1)=C 145364,P (ξ=2)=C 245264,P (ξ=3)=C 34×564,P (ξ=4)=164,则四人中去第一餐厅就餐的人数的分布列为则四人中去第一餐厅就餐的人数的均值E (ξ)=0×5464+1×C 145364+2×C 245264+3×C 34×564+4×164=23,故D 正确. 16.(2020·唐山模拟)某城市美团外卖配送员底薪是每月1 800元,设每月配送单数为X ,若X ∈[1,300],每单提成3元,若X ∈(300,600],每单提成4元,若X ∈(600,+∞),每单提成4.5元,饿了么外卖配送员底薪是每月2 100元,设每月配送单数为Y ,若Y ∈[1,400],每单提成3元,若Y ∈(400,+∞),每单提成4元,小王想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2020年4月份(30天)的送餐量数据,如下表: 表1:美团外卖配送员甲送餐量统计表2:饿了么外卖配送员乙送餐量统计(1)设美团外卖配送员月工资为f (X ),饿了么外卖配送员月工资为g (Y ),当X =Y ∈(300,600]时,比较f (X )与g (Y )的大小关系;(2)将4月份的日送餐量的频率视为日送餐量的概率. ①计算外卖配送员甲和乙每日送餐量的均值E (x )和E (y ); ②请利用所学的统计学知识为小王作出选择,并说明理由. 解 (1)因为X =Y ∈(300,600],所以g(X)=g(Y),当X∈(300,400]时,f(X)-g(X)=(1 800+4X)-(2 100+3X)=X-300>0,当X∈(400,600]时,f(X)-g(X)=(1 800+4X)-(2 100+4X)=-300<0,故当X∈(300,400]时,f(X)>g(Y),故X∈(400,600]时,f(X)<g(Y).(2)①甲日送餐量x的分布列为乙日送餐量y的分布列为则E(x)=13×115+14×15+16×25+17×15+18×115+20×115=16,E(y)=11×215+13×16+14×25+15×110+16×16+18×130=14.②E(X)=30E(x)=480∈(300,600],E(Y)=30E(y)=420∈(400,+∞),美团外卖配送员,估计月薪平均为1 800+4E(X)=3 720(元),饿了么外卖配送员,估计月薪平均为2 100+4E(Y)=3 780元>3 720元,故小王应选择做饿了么外卖配送员.。
2020版高考数学新增分大一轮新高考(鲁京津琼)专用讲义:第九章 9.2 两条直线的位置关系 Word版含解析

1 l2:y=1-ax-(a+1), l1∥l2⇔Error!解得 a=-1,
高清试卷 下载可打印
高清试卷 下载可打印
综上可知,当 a=-1 时,l1∥l2,a≠-1 时,l1 与 l2 不平行. 方法二 由 A1B2-A2B1=0,得 a(a-1)-1×2=0, 由 A1C2-A2C1≠0, 得 a(a2-1)-1×6≠0,
A. 2 B.2- 2 C. 2-1 D. 2+1
高清试卷 下载可打印
高清试卷 下载可打印
答案 C
|a-2+3|
解析 由题意得
=1.
1+1
解得 a=-1+ 2或 a=-1- 2.∵a>0,∴a=-1+ 2.
3.已知 P(-2,m),Q(m,4),且直线 PQ 垂直于直线 x+y+1=0,则 m=________.
高清试卷 下载可打印
高清试卷 下载可打印
|Ax0+By0+C|
d=
.
A2+B2
|C1-C2|
(3)两条平行线 Ax+By+C1=0 与 Ax+By+C2=0(其中 C1≠C2)间的距离 d=
. A2+B2
概念方法微思考
1.若两条直线 l1 与 l2 垂直,则它们的斜率有什么关系?
提示 当两条直线 l1与 l2的斜率都存在时, kl1 kl2 =-1;当两条直线中一条直线的斜率为 0,
高清试卷 下载可打印
§9.2 两条直线的位置关系
最新考纲 1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点 坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行: (ⅰ)对于两条不重合的直线 l1,l2,若其斜率分别为 k1,k2,则有 l1∥l2⇔k1=k2. (ⅱ)当直线 l1,l2 不重合且斜率都不存在时,l1∥l2. ②两条直线垂直: (ⅰ)如果两条直线 l1,l2 的斜率存在,设为 k1,k2, 则有 l1⊥l2⇔k1·k2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为 0 时,l1⊥l2. (2)两条直线的交点 直线 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则 l1 与 l2 的交点坐标就是方程组Error!的解. 2.几种距离 (1)两点 P1(x1,y1),P2(x2,y2)之间的距离 |P1P2|= x2-x12+y2-y12. (2)点 P0(x0,y0)到直线 l:Ax+By+C=0 的距离
2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第九章第4讲 直线与圆、圆与圆的位置关系 Word版含

第讲直线与圆、圆与圆的位置关系一、选择题.(·全国Ⅱ卷)圆+--+=的圆心到直线+-=的距离为,则=( ).-.-解析由圆的方程+--+=得圆心坐标为(,),由点到直线的距离公式得==,解之得=-.答案.(·长春模拟)过点(,)作圆(-)+=的切线有且只有一条,则该切线的方程为( )+-=+-=--=--=解析∵过点(,)作圆(-)+=的切线有且只有一条,∴点(,)在圆(-)+=上,∵圆心与切点连线的斜率==,∴切线的斜率为-,则圆的切线方程为-=-(-),即+-=.故选.答案.已知圆++-+=截直线++=所得弦的长度为,则实数的值是( ).- .-.- .-解析将圆的方程化为标准方程为(+)+(-)=-,所以圆心为(-,),半径=,圆心到直线++=的距离==,故-=,即--=,所以=-,故选.答案.圆+++-=上到直线++=的距离为的点共有( )个个个个解析圆的方程化为(+)+(+)=,圆心(-,-)到直线距离==,半径是,结合图形可知有个符合条件的点.答案.(·福州模拟)过点(,-)作圆:(-)+=的两条切线,切点分别为,,则所在直线的方程为( )=-=-=-=-解析圆(-)+=的圆心为(,),半径为,以==为直径的圆的方程为(-)+(+)=,将两圆的方程相减得所在直线的方程为+=,即=-. 故选.答案二、填空题.(·全国Ⅲ卷) 已知直线:-+=与圆+=交于,两点,过,分别作的垂线与轴交于,两点,则=.解析设(,),(,),由得-+=,解得=,=,∴(-,),(,).过,作的垂线方程分别为-=-(+),-=-,令=,得=-,=,∴=-(-)=.答案.(·兰州月考)点在圆:+--+=上,点在圆:++++=上,则的最小值是.解析把圆、圆的方程都化成标准形式,得(-)+(-)=,(+)+(+)=.圆的圆心坐标是(,),半径长是;圆的圆心坐标是(-,-),半径是.圆心距==.所以,的最小值是-.答案-.(·贵阳一模)由直线=+上的一点向圆(-)+=引切线,则切线长的最小值为.解析设直线上一点为,切点为,圆心为,则即切线长,为圆的半径,长度为,==.要使最小,即求的最小值,此题转化为求直线=+上的点到圆心的最小距离.设圆心到直线=+的距离为,则==.所以的最小值为.所以=≥=.答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲离散型随机变量的均值与方差一、选择题1.已知离散型随机变量X的概率分布列为则其方差D(X)=()A.1B.0.6C.2.44D.2.4解析由0.5+m+0.2=1得m=0.3,∴E(X)=1×0.5+3×0.3+5×0.2=2.4,∴D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.答案 C2.(2017·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100B.200C.300D.400解析设没有发芽的种子有ξ粒,则ξ~B(1 000,0.1),且X=2ξ,∴E(X)=E(2ξ)=2E(ξ)=2×1 000×0.1=200.答案 B3.已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1解析由二项分布X~B(n,p)及E(X)=np,D(X)=np·(1-p)得2.4=np,且1.44=np(1-p),解得n=6,p=0.4.故选B.答案 B4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.6解析 由已知随机变量X +η=8,所以有η=8-X .因此,求得E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4. 答案 B5.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的数学期望E (X )的值是( ) A.4B.4.5C.4.75D.5解析 由题意知,X 可以取3,4,5,P (X =3)=1C 35=110, P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=610=35,所以E (X )=3×110+4×310+5×35=4.5. 答案 B 二、填空题6.设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X=2)等于________.解析 由X ~B ⎝ ⎛⎭⎪⎫n ,13,E (X )=2,得 np =13n =2,∴n =6, 则P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-134=80243. 答案 802437.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎨⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案 258.(2017·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a 为首项,2为公比的等比数列,相应的奖金分别是7 000元、5 600元、4 200元,则参加此次大赛获得奖金的期望是________元. 解析 由题意知a +2a +4a =1,∴a =17,∴获得一、二、三等奖的概率分别为17,27,47,∴所获奖金的期望是E (X )=17×7 000+27×5 600+47×4 200=5 000元. 答案 5 000 三、解答题9.(2017·成都诊断)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:0.05. (1)现用分层抽样的方法在所有参与调查的人中抽取360人进行访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流.求第一组中在校学生人数ξ的分布列和数学期望.解 (1)因为抽到持“应该保留”态度的人的概率为0.05,所以120+x3 600=0.05,解得x =60.所以持“无所谓”态度的人数为3 600-2 100-120-600-60=720,所以应在持“无所谓”态度的人中抽取720×3603 600=72人.(2)由(1)知持“应该保留”态度的一共有180人,所以在所抽取的6人中,在校学生为120180×6=4人,社会人士为60180×6=2人,于是第一组在校学生人数ξ=1,2,3,P(ξ=1)=C14C22C36=15,P(ξ=2)=C24C12C36=35,P(ξ=3)=C34C02C36=15,所以ξ的分布列为所以E(ξ)=1×15+2×35+3×15=2.10.(2017·郑州一模)在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望. 解(1)设A表示事件:“媒体甲选中3号歌手”,B表示事件:“媒体乙选中3号歌手”,C表示事件:“媒体丙选中3号歌手”,则P(A)=C14C25=25,P(B)=C24C35=35,∴媒体甲选中3号且媒体乙未选中3号歌手的概率为P(A B)=25×⎝⎛⎭⎫1-35=425.(2)P(C)=C25C36=1 2,由已知得X的可能取值为0,1,2,3,P (X =0)=P (A B C )=⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-12=325. P (X =1)=P (A B C )+P (A B C )+P (A B C )=25×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×35×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-35×12=1950,P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×⎝ ⎛⎭⎪⎫1-12+25×⎝ ⎛⎭⎪⎫1-35×12+⎝ ⎛⎭⎪⎫1-25×35×12=1950,P (X =3)=P (ABC )=25×35×12=325, ∴X 的分布列为∴E (X )=0×325+1×1950+2×1950+3×325=32.11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )=( ) A.85B.65C.45D.25解析 由题意,X ~B ⎝⎛⎭⎪⎫5,3m +3, 又E (X )=5×3m +3=3,∴m =2,则X ~B ⎝ ⎛⎭⎪⎫5,35,故D (X )=5×35×⎝ ⎛⎭⎪⎫1-35=65.答案 B12.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E (ξ)为( )A.16B.13C.12D.23解析 依题意得,ξ的所有可能取值是0,1,2.且P (ξ=0)=C 37C 39=512,P (ξ=1)=C 27·A 22C 39=12,P (ξ=2)=C 17C 39=112,因此E (ξ)=0×512+1×12+2×112=23.答案 D13.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.解析 设“?”处的数值为x ,则“!”处的数值为1-2x ,则E (ξ)=1×x +2×(1-2x )+3x =x +2-4x +3x =2. 答案 214.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解 (1)依题意,p 1=P (40<X <80)=1050=0.2, p 2=P (80≤x ≤120)=3550=0.7, p 3=P (X >120)=550=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为 p =C 04(1-p 3)4+C 14(1-p 3)3p 3=⎝ ⎛⎭⎪⎫9104+4×⎝ ⎛⎭⎪⎫9103×⎝ ⎛⎭⎪⎫110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1, 对应的年利润Y =5 000,E (Y )=5 000×1=5 000. ②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4 200×0.2③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.因此得Y 的分布列如下:所以,E (Y )=3 400×综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.。