高考数学大一轮复习函数的概念及其表示

合集下载

2022年新高考数学一轮复习3.1函数的概念及其表示(讲)原卷版

2022年新高考数学一轮复习3.1函数的概念及其表示(讲)原卷版

专题3.1 函数的概念及其表示【知识清单】1.函数的概念2.函数的定义域、值域(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【考点分类剖析】考点一 函数的概念【典例1】【多选题】(2021·浙江高一期末)在下列四组函数中,()f x 与g()x 不表示同一函数.......的是( ) A .()1f x x ,21()1x g x x -=+B .()|1|f x x =+,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩C .()1f x =,0()(1)g x x =+D .()f x x =,2()g x =【规律方法】函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同. 【变式探究】(2021·浙江高一期末)下列函数中,与函数1y x =+是相等函数的是( )A .2y =B .1y =C .21x y x=+D .1y =【易混辨析】1.判断两个函数是否为相同函数,注意把握两点,一看定义域是否相等,二看对应法则是否相同.2.从图象看,直线x=a 与图象最多有一个交点. 考点二:求函数的定义域【典例2】(2019·江苏高考真题)函数y =_____.【典例3】(2021·全国高一课时练习)(1)已知()y f x =的定义域为[0,1],求函数2(1)y f x =+的定义域; (2)已知(21)y f x =-的定义域为[0,1],求()y f x =的定义域; (3)已知函数()y f x =的定义域为[0,2],求函数(2)()21f xg x x =-的定义域. 【规律方法】1.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 2.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【变式探究】1.函数1()lg(1)f x x =+ )A .[2,2]-B .[2,0)(0,2]-C .(1,0)(0,2]-⋃D .(-1,2]2.(2020·河南省郑州一中高二期中(文))已知函数(1)y f x =+定义域是[2,3]- ,则(21)y f x =-的定义域是( ) A .[0,52] B .[1,4]- C .[5,5]- D .[3,7]-【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达. 高频考点三:求函数的解析式【典例4】(2021·全国高一课时练习)已知f 1-x x ⎛⎫ ⎪⎝⎭=x 2+21x,则函数f (x )=_______,f (3)=_______. 【典例5】(2021·全国高三专题练习)如图所示,函数()f x 的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4)、(2,0)、(6,4),求函数()f x 的解析式.【规律方法】1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知求[()]f g x ,或已知[()]f g x 求,用代入法、换元法或配凑法.4.若与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解. 5.应用题求解析式可用待定系数法求解. 【变式探究】1.已知单调函数f(x),对任意的x ∈R 都有f[f(x)−2x]=6,则f(2)=( ) A. 2 B. 4 C. 6 D. 82.(2021·全国高一课时练习)已知二次函数()f x 满足()()12f x f x x +-=,()01f =.()f x ()f x ()f x(1)求()f x 的解析式.(2)求()f x 在[]1,1-上的最大值. 考点四:求函数的值域 【典例6】函数()()10f x x x x=+<的值域为( ) A .[)2,+∞B .(][),22,-∞+∞C .(],2-∞-D .R【典例7】【多选题】(2021·全国高三专题练习)已知函数()f x 的定义域为(1,)+∞,值域为R ,则( )A .函数()21f x +的定义域为RB .函数()211f x +-的值域为RC .函数1x x e f e ⎛⎫+ ⎪⎝⎭的定义域和值域都是R D .函数(())f f x 的定义域和值域都是R【典例8】(2021·浙江高一期末)函数y =_________,函数23)y x x =>的值域为__________.【规律方法】函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域. 高频考点五:分段函数及其应用【典例9】(2021·河南新乡市·高三月考(理))如图,在正方形ABCD 中,2AB =点M 从点A 出发,沿A B C D A →→→→向,以每2个单位的速度在正方形ABCD 的边上运动;点N 从点B 出发,沿B C D A →→→方向,以每秒1个单位的速度在正方形ABCD 的边上运动.点M 与点N 同时出发,运动时间为t (单位:秒),AMN 的面积为()f t (规定,,A M N 共线时其面积为零,则点M 第一次到达点A 时,()y f t =的图象为( )A .B .C .D .【典例10】(2021·四川达州市·高三二模(理))已知函数21,0,(),0.x x f x x x +≤⎧=⎨>⎩若()()12f x f x =,则12x x -的取值范围是__________.【典例11】(2021·全国高一课时练习)对于任意的实数12,x x ,{}12min ,x x 表示12,x x 中较小的那个数,若()22f x x =-,()g x x =,则集合()(){}x f x g x ==_______;()(){}min ,f x g x 的最大值是_______.【典例12】(江苏高考真题)已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩,若(1)(1)f a f a -=+,则a的值为________ 【总结提升】1.“分段求解”是处理分段函数问题解的基本原则;2.数形结合往往是解答选择、填空题的“捷径”. 【变式探究】1.(2021·全国高一课时练习)已知a >12,则函数f (x )=x 2+|x -a |的最小值是( ) A .a 2+1 B .a +34 C .a -12D .a -142.(2021·全国高一课时练习)已知函数f (x )232,1,,1,x x x ax x +≤⎧=⎨->⎩则f (1)=_______,若f (f (0))=a ,则实数a =_______.。

第一讲+函数的概念及其表示 高三数学一轮复习

第一讲+函数的概念及其表示 高三数学一轮复习

,k∈Z.
2.常见函数的值域 (1)y=kx+b(k≠0)的值域是 R.
(2)y=ax2+bx+c(a≠0)的值域:当 a>0 时,值域为 4ac4-a b2,+∞;当 a<0 时,值域为-∞,4ac4-a b2.
(3)y=xk(k≠0)的值域是{y|y≠0}.
(4)y=ax(a>0 且 a≠1)的值域是(0,+∞). (5)y=logax(a>0 且 a≠1)的值域是 R. (6)y=sin x,y=cos x 的值域是[-1,1],y=tan x 的定义域 是 R.
高考一轮总复习
第二章 函数、导数及其应用
第一讲 函数的概念及其表示
1.函数的概念
内容
函数
两个集合A,B 设A,B是两个非空的实数集
对应关系 f:A→B
如果按照某种确定的对应关系f,使对于集合A中 的任意一个数x,在集合B中都有唯一确定的数y 和它对应
名称
称f:A→B为从集合A到集合B的一个函数
记法
解得2-kπ4<≤x<x≤π+4.2kπ,k∈Z, 当 k=0 时,x∈(0,π)满足;k=1 时,x∈(2π,3π),则 x∈∅; k=-1 时,x∈(-2π,-π),则 x∈[-4,-π), 则 f(x)的定义域为[-4,-π)∪(0,π).故选 D. 答案:D
(2)若函数 f(x)= ax2+abx+b的定义域为{x|1≤x≤2},则 a+
则 y=xf(-2x1]
B.[-4,1)∪(1,8]
C.(1,2]
D.[-1,1)∪(1,2]
解析:由题意,得- x-21≤≠20x≤ ,4, 解得-1≤x≤2 且 x≠1.故 选 D.
答案:D
考点二 求函数的解析式 [例 3](1)已知二次函数 f(2x+1)=4x2-6x+5,求 f(x); (2)已知函数 f(x)满足 f(-x)+2f(x)=2x,求 f(x).

高考数学一轮总复习第三章函数与基本初等函数第一节函数的概念及其表示课件

高考数学一轮总复习第三章函数与基本初等函数第一节函数的概念及其表示课件




2
故函数 f(x)的解析式为 f(x)=x2-2(x≥2).
故函数f(x)的解析式为f(x)=x2-2(x≥2).
(4)因为f(x)+2f(-x)=x2+2x,①
所以f(-x)+2f(x)=x2-2x,
所以2f(-x)+4f(x)=2x2-4x,②
②-①,得
1 2
f(x)=3x -2x,
故函数 f(x)的解析式为
与x的值相对应的y值叫做函数值,函数值的 集合{f(x)|x∈A} 叫做函数
的 值域
.
(2)如果两个函数的
定义域
两个函数是同一个函数.
相同,并且 对应关系 完全一致,那么这
微点拨对函数概念的理解
(1)函数的三要素是定义域、值域和对应关系;
(2)如果两个函数的定义域和对应关系相同,这两个函数就是同一个函数,
的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
微拓展复合函数:一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可
以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作
y=f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))
则 f(f(26))等于(
log 5 (-1), ≥ 4,
1
A.
5
1
B.
e
C.1
D.2
)
答案 (1)ln 2
(2)C
解析(1)由题意知,当x>0时,f(x)<0;
当x≤0时,f(x)=x2+2x+4=(x+1)2+3≥3.

高考数学一轮复习教学案函数及其表示(含解析)

高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

新高考数学一轮复习考点知识归类讲义 第6讲 函数及其表示

新高考数学一轮复习考点知识归类讲义 第6讲 函数及其表示

新高考数学一轮复习考点知识归类讲义第6讲函数及其表示1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.3.函数的表示法表示函数的常用方法有解析法、图像法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.➢考点1 函数的概念[名师点睛](1)函数的定义要求非空数集A中的任何一个元素在非空数集B中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B中有可能存在与A中元素不对应的元素.(2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同1.(2022·全国·高三专题练习)下列四个图像中,是函数图像的是()A .(1)(2)B .(1)(2)(3)C .(1)(3)(4)D .(1)(2)(3)(4) 【答案】C 【解析】根据函数的定义,一个自变量值对应唯一一个函数值,或者多个自变量值对应唯一一个函数值,显然只有(2)不满足. 故选:C.2.(2021·湖南·雅礼中学高三阶段练习)下列各组函数中,()f x ,()g x 是同一函数的是( )A .()2f x x =,()4g x x =B .()2log a f x x =,()2log a g x x =C .()4121x x f x -=-,()21x g x =+D .()11f x x x --()11g x x x --【答案】D 【解析】解:对于A 选项,()2f x x =的定义域为R ,()4g x x =的定义域为[)0,∞+,故不满足;对于B 选项,()2log a f x x =的定义域为{}0x x ≠,()2log a g x x =的定义域为()0,∞+,故不满足;对于C 选项,()4121x x f x -=-的定义域为{}0x x ≠,()21xg x =+的定义域为R ,故不满足;对于D 选项,()f x ,()g x 的定义域均为{}1,对应关系均为0y =,故是同一函数.故选:D [举一反三]1.(2022·全国·高三专题练习)函数y =f (x )的图象与直线1x =的交点个数( ) A .至少1个B .至多1个C .仅有1个D .有0个、1个或多个 【答案】B 【解析】若1不在函数f (x )的定义域内,y =f (x )的图象与直线1x =没有交点, 若1在函数f (x )的定义域内,y =f (x )的图象与直线1x =有1个交点, 故选:B.2.(2022·天津市西青区张家窝中学高三阶段练习)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =211x x -+B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (xg (x 【答案】D 【解析】对于A ,函数y =x -1定义域是R ,函数y =211x x -+定义域是(,1)(1,)-∞-⋃-+∞,A 不是;对于B ,0y x =定义域是(,0)(0,)-∞+∞,函数y =1定义域是R ,B 不是;对于C ,()2f x x =和()2(1)g x x =+对应法则不同,C 不是;对于D ,f (x和g (x (0,)+∞,并且对应法则相同,D 是.故选:D3.(2022·全国·高三专题练习)下列各组函数中,表示同一个函数的是( )A .1y =与0y x =B .y x =与2y =C .22log y x =与22log y x =D .1ln 1xy x+=-与()()ln 1ln 1y x x =+-- 【答案】D 【解析】对于A :1y =定义域为R ,0y x =定义域为{}|0x x ≠,定义域不同不是同一个函数,故选项A 不正确;对于B :y x =定义域为R ,2y =的定义域为{}|0x x ≥,定义域不同不是同一个函数,故选项B 不正确;对于C :22log y x =的定义域为{}|0x x >,22log y x =定义域为{}|0x x ≠,定义域不同不是同一个函数,故选项C 不正确; 对于D :由101xx +>-可得()()110x x +-<,解得:11x -<<,所以1ln 1x y x+=-的定义域为{}|11x x -<<,由1010x x +>⎧⎨->⎩可得11x -<<,所以函数()()ln 1ln 1y x x =+--的定义域为{}|11x x -<<且()()1ln 1ln 1ln1xy x x x+=+--=-,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.➢考点2 函数的定义域[典例]1.(2022·北京·模拟预测)函数()()=-的定义域是_______.lg2f x x【答案】1[,2)2- 【解析】 由题意可得,21020x x +≥⎧⎨->⎩,解之得122x -≤<则函数()()lg 2f x x =-的定义域是1[,2)2- 故答案为:1[,2)2-2.(2022·全国·高三专题练习)若函数()y f x =的定义域是[0,8],则函数()g x =义域是( )A .(1,32)B .(1,2)C .(1,32]D .(1,2] 【答案】D 【解析】因为函数()y f x =的定义域是[0,8], 所以04802,,12101x x x x x ≤≤≤≤⎧⎧∴∴<≤⎨⎨->>⎩⎩.故选:D.3.(2022·全国·高三专题练习)已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为( )A .(-1,0)B .(-2,0)C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【解析】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C4.(2022·全国·高三专题练习)已知函数()f x =的定义域是R ,则实数a 的取值范围是( )A .(12,0)-B .(12,0]-C .1(,)3+∞D .1(,]3-∞ 【答案】B 【解析】∵()f x =的定义域为R ,∴只需分母不为0即可,即230ax ax +-≠恒成立, (1)当0a =时,30恒成立,满足题意,(2)当0a ≠时,24(3)0a a ∆=-⨯-<,解得120a -<<, 综上可得120a -<≤. 故选:B. [举一反三]1.(2022·全国·高三专题练习)函数y =13x -的定义域为( ) A .3,2⎡⎫+∞⎪⎢⎣⎭B .(-∞,3)∪(3,+∞)C .3,32⎡⎫⎪⎢⎣⎭(3,+∞)D .(3,+∞)【答案】C 【解析】要使函数y =13x -有意义,则 所以x x -≥-≠⎧⎨⎩23030,解得32x ≥且3x ≠,所以函数y =13x -的定义域为3,32⎡⎫⎪⎢⎣⎭∪(3,+∞). 故选:C.2.(2022·全国·高三专题练习)函数y 22x ππ-≤≤)的定义域是( )A .,02π⎡⎤-⎢⎥⎣⎦B .,26ππ⎡⎫-⎪⎢⎣⎭C .,02π⎡-⎫⎪⎢⎣⎭D .,26ππ⎡⎤-⎢⎥⎣⎦【答案】A由题意,得512sin 0log (12sin )022x x x ππ⎧⎪->⎪-≥⎨⎪⎪-≤≤⎩,则1sin 212sin 122x x x ππ⎧<⎪⎪-≥⎨⎪⎪-≤≤⎩,即sin 022x x ππ≤⎧⎪⎨-≤≤⎪⎩,∴[,0]2x π∈-.故选:A.3.(2022·全国·高三专题练习)已知函数(1)=-y f x 的定义域为[]1,3,则函数()3log y f x =的定义域为( )A .[]0,1B .[]1,9C .[]0,2D .[]0,9 【答案】B 【解析】由[]1,3x ∈,得[]10,2x -∈, 所以[]3log 0,2x ∈,所以[]1,9x ∈. 故选:B .4.(2022·全国·高三专题练习)定义域是一个函数的三要素之一,已知函数()Jzzx x 定义域为[211,985],则函数 ()shuangyiliu x (2018)(2021)Jzzx x Jzzx x =+的定义域为( )A .211985,20182021⎡⎤⎢⎥⎣⎦B .211985,20212018⎡⎤⎢⎥⎣⎦ C .211985,20182018⎡⎤⎢⎥⎣⎦D .211985,20212021⎡⎤⎢⎥⎣⎦【答案】A 【解析】由抽象函数的定义域可知,21120189852112021985x x ≤≤⎧⎨≤≤⎩,解得21198520182021x, 所以所求函数的定义域为211985,20182021⎡⎤⎢⎥⎣⎦. 故选A.5.(2022·全国·高三专题练习)已知函数()f x =R ,则m 的取值范围是( )A .12m -<<B .12m -<≤C .12m -≤≤D .12m -≤< 【答案】C 【解析】由题意得:()()231104m x m x +-++≥在R 上恒成立.10m +=即1m =-时,()f x =10m +≠时,只需()()2101310m m m +>⎧⎪⎨∆=+-+≤⎪⎩, 解得:12m -<≤, 综上:1,2m ,故选:C .6.(2022·上海市奉贤中学高三阶段练习)函数()f x =___________.【答案】(,0]-∞【解析】解:由1102x⎛⎫-≥ ⎪⎝⎭,得011122⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭x ,所以0x ≤,所以函数的定义域为(,0]-∞,故答案为:(,0]-∞7.(2022·全国·高三专题练习)函数y =的定义域是R ,则a 的取值范围是_________. 【答案】[)0,4【解析】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4.8.(2022·全国·高三专题练习)已知函数()f x =R ,则a的范围是________. 【答案】[1,5) 【解析】当1a =时,()1f x =,即定义域为R ;当1a ≠,要使()f x 的定义域为R ,则2()(1)(1)10g x a x a x =-+-+>在x ∈R 上恒成立,∴()()210{1410a a a ->∆=---<,解得15a <<, 综上,有15a ≤<, 故答案为:[1,5)➢考点3 函数解析式[典例]1.(1)已知f(x+1)=x+2x,则f(x)的解析式为________________.(2)若f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)的解析式为________.(3)已知函数f(x)满足2f(x)+f(-x)=2x,则f(x)的解析式为________.【答案】(1)f(x)=x2-1(x≥1)(2)f(x)=x2-x+3(3)f(x)=2x【解析】(1)方法一(换元法):令x+1=t,则x=(t-1)2,t≥1,所以f(t)=(t-1)2+2(t-1)=t2-1(t≥1),所以函数f(x)的解析式为f(x)=x2-1(x≥1).方法二(配凑法):f(x+1)=x+2x=x+2x+1-1=(x+1)2-1.因为x+1≥1,所以函数f(x)的解析式为f(x)=x2-1(x≥1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3, 所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2. 所以⎩⎨⎧4a =4,4a +2b =2,所以⎩⎨⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .2.(2022·全国·高三专题练习)根据下列条件,求函数f (x )的解析式. (1)f (x )是一次函数,且满足f (f (x ))=4x -3;(2)已知f (x )满足2f (x )+f (1x)=3x ,求f (x )的函数解析式.(3)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1). 【解】(1)因为f (x )是一次函数,所以设()()0f x kx b k =+≠,所以()()()2f f x k kx b b k x kb b =++=++,又因为f (f (x ))=4x -3,所以243k x kb b x ++=-,故243k kb b ⎧=⎨+=-⎩,解得21k b =⎧⎨=-⎩或23k b =-⎧⎨=⎩,所以()21f x x =-或()23f x x =-+;(2)将1x 代入()123f x f x x ⎛⎫+= ⎪⎝⎭,得()132f f x x x ⎛⎫+= ⎪⎝⎭,因此()()123132fx f x x ff x x x ⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得()()120f x x x x=-≠. (3)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y=()()21y y -+-+,所以f (y )=y 2+y +1,即f (x )=x 2+x +1.[举一反三]1.(2022·全国·高三专题练习)已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为( ) A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+ C .()()211x f x x x =≠-+D .()()211x f x x x =-≠-+ 【答案】A 【解析】令11x t x -=+,则11t x t -=+ ,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭, 所以()()2211xf x x x =≠-+,故选:A. 2.(2022·全国·高三专题练习)已知函数f (x ﹣1)=x 2+2x ﹣3,则f (x )=( ) A .x 2+4x B .x 2+4C .x 2+4x ﹣6D .x 2﹣4x ﹣1 【答案】A【解析】()()()22123141f x x x x x -=+-=-+-,所以()24f x x x =+.故选:A3.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且2()2()f x f x x x +-=-,则()f x =( )A .223x x +B .223x x +C .2223x x+D .23x x +【答案】D【解析】令x 为x -,则2()2()f x f x x x -+=+, 与2()2()f x f x x x +-=-联立可解得,2()3x f x x =+.故选:D .4.(多选)(2022·全国·高三专题练习)已知函数()f x 是一次函数,满足()()98f f x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =- C .()34f x x =-+D .()34f x x =-- 【答案】AD 设()f x kx b =+,由题意可知()()()298f f x k kx b b k x kb b x =++=++=+,所以298k kb b ⎧=⎨+=⎩,解得32k b =⎧⎨=⎩或34k b =-⎧⎨=-⎩,所以()32f x x =+或()34f x x =--. 故选:AD.5.(2022·山东济南·二模)已知函数2()23f x x x =--+,则(1)f x +=______. 【答案】24x x -- 【解析】解:因为2()23f x x x =--+,所以()()22(+1)+12+143f x x x x x =--+-=-,(1)f x +=24x x --.故答案为:24x x --.6.(2022·全国·高三专题练习)已知()49f f x x =+⎡⎤⎣⎦,且()f x 为一次函数,求()f x =_________【答案】23x +或29x --. 【解析】因为()f x 为一次函数,所以设()()0f x kx b k =+≠,所以()()()()21f f x f kx b k kx b b k x b k =+=++=++⎡⎤⎣⎦, 因为()49f f x x =+⎡⎤⎣⎦,所以()2149k x b k x ++=+恒成立, 所以()2419k b k ⎧=⎪⎨+=⎪⎩,解得:23k b =⎧⎨=⎩或29k b =-⎧⎨=-⎩,所以()23f x x =+或()29f x x =--, 故答案为:23x +或29x --.7.(2022·全国·高三专题练习)已知函数)25f x =+,则()f x 的解析式为_______【答案】()()212f x x x =+≥【解析】2t +=,则2t ≥,且()22x t =-, 所以()()()2224251f t t t t =-+-+=+,()2t ≥所以()()212f x x x =+≥,故答案为:()()212f x x x =+≥.8.(2022·全国·高三专题练习)设函数f (x )对x ≠0的一切实数都有f (x )+2f (2020x)=3x ,则f (x )=_________. 【答案】4040()f x x x=- 【解析】 因为()202023f x f x x ⎛⎫+=⎪⎝⎭,可得()2020232020x f f x x ⎛⎫+= ⎪⎝⎭,由()()2020232020232020f x f x x x f f x x ⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得4040()f x x x=-. 故答案为:4040()f x x x=-. 9.(2022·全国·高三专题练习)已知定义域为R 的函数()f x 满足()()323f x f x x --=,则()f x =___________.【答案】3x【解析】因为()()323f x f x x --=,所以()()323f x f x x --=-,同除以2得()()31322f x f x x --=-,两式相加可得()33322f x x =,即()3f x x =.故答案为:3x .10.(2022·全国·高三专题练习)(1)已知()f x 是二次函数且(0)2f =,(1)()1f x f x x +-=-,求()f x ;(2)已知1()2(0)f x f x x x ⎛⎫+=≠ ⎪⎝⎭,求()f x .【解】(1)∵f (x )为二次函数,∴f (x )=ax 2+bx +c (a ≠0),∵f (0)=c =2,∵f (x +1)﹣f (x )=x ﹣1,∴2ax +a +b =x ﹣1,∴a 12=,b 32=-, ∴f (x )12=x 232-x +2. (2)∵()12f x f x x ⎛⎫+= ⎪⎝⎭,①,∴f (1x )+2f (x )1x=,② ①-②×2得:﹣3f (x )=x 2x-, ∴2()(0)33xf x x x =-≠➢考点4 分段函数1.(2022·广东梅州·二模)设函数()()21log 6,1,2, 1.x x x f x x -⎧-<=⎨≥⎩,则()()22log 6f f -+=( ) A .2B .6C .8D .10 【答案】B 【解析】 解:因为()()21log 6,1,2, 1.x x x f x x -⎧-<=⎨≥⎩,所以()()2log 61222log 83,log 623f f --====,所以()()22log 66f f -+=. 故选:B.2.(2022·山东潍坊·模拟预测)设函数()()()3,104,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()8f =( )A .10B .9C .7D .6【答案】C 【解析】因为()()()3,104,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()()()()()()()812913107f f f f f f f =====.故选:C.3.(2022·浙江省江山中学高三期中)已知[]1,1∈-a ,函数()()()22sin 2, 21,π⎧⎡⎤-≤⎪⎣⎦=⎨-++>⎪⎩x a x a f x x a x a x a 若()() 1=f f a ,则=a _______.【答案】1-或34【解析】()()()01f f a f ==,当01a ≤≤时,()()0sin 21π=-=f a ,得14a k =--,故34a =;当10a -≤<时,()201f a ==,故1a =-.故答案为:34a =或1a =-.4.(2022·湖南湘潭·三模)已知0a >,且1a ≠,函数()()2log 21,0,0a xx x f x a x ⎧+≥⎪=⎨<⎪⎩,若()()12f f -=,则=a ___________,()4f x ≤的解集为___________.【答案】∞⎛- ⎝⎦【解析】①由题可知,()()()()121log 212a f f f a a ---==+=,则2221a a -=+,即4220a a --=,解得22a =,故a =②当0x 时,())2214f x x=+,解得602x;当0x <时,()4x f x =恒成立.故不等式的解集为∞⎛- ⎝⎦.∞⎛- ⎝⎦. [举一反三]1.(2022·山东·济南一中高三阶段练习)已知函数()()21,13,1xx f x f x x ⎧+<⎪=⎨-≥⎪⎩,则()9f =( ) A .2B .9C .65D .513 【答案】A 【解析】()09(93)(6)(3)(0)212f f f f f =-====+=,故选:A2.(2022·重庆八中模拟预测)已知函数()()1,221,2xx f x f x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,则()2log 12f =( )A .13B .6-C .16D .3- 【答案】A 【解析】因为()2log 31,2∈,则()22log 122log 33,4=+∈,所以()()()()22log 31log 322211log 122log 3log 3223f f f -⎛⎫=+==== ⎪⎝⎭,故选:A.3.(2022·安徽安庆·二模)已知函数()()()lg ,10R 10,01axx x f x a x ⎧--≤<=∈⎨≤≤⎩且()12f =,则()41log 310f f ⎛⎫--= ⎪⎝⎭( ) A.1-.1-.1.1【答案】A【解析】∵()1102a f ==,∴lg 2a =,由()()()lg ,10R 10,01ax x x f x a x ⎧--≤<=∈⎨≤≤⎩,知()()lg ,102,01x x x f x x ⎧--≤<=⎨≤≤⎩. 于是()241log 3log log 32411log 3lg 2121211010f f ⎛⎫--=-=--=--=- ⎪⎝⎭故选:A4.(2022·福建三明·模拟预测)已知函数()33,0log ,0x x f x x x ⎧≤=⎨>⎩,则()2f f -=⎡⎤⎣⎦___________. 【答案】-2【解析】因为()33,0log ,0x x f x x x ⎧≤=⎨>⎩,所以()()()22323log 32f f f ---===-⎡⎤⎣⎦ 故答案为:-25.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________. 【答案】9,2⎛⎫-∞ ⎪⎝⎭ 【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增, ()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<,又()()120f x f -≤=,()()10f x f x ∴+-<恒成立; ③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-; ()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-, ()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭. 故答案为:9,2⎛⎫-∞ ⎪⎝⎭. 6.(2022·浙江省临安中学模拟预测)设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则=a __________,1f a ⎛⎫= ⎪⎝⎭__________. 【答案】146 【解析】 若01a <<,则112a <+<,由()()1f a f a =+,得()211a a =+-,即24a a =, 解得:0a =(舍去)或14a =;若1a ≥,由()()1f a f a =+,得()()21211a a -=+-,该方程无解.综上可知,14a =,()()142416f f a =⎛⎫ =⎪-⎝=⎭ 故答案为:14; 67.(2022·浙江·湖州中学高三阶段练习)已知函数,则()()1f f =___________;方程()1f x =的解集为___________. 【答案】 1 {1,e}【解析】()()()()11e e,1e lne 1f f f f =====,()1,1e 10x x f x x ≤=⇒=⇒=, ()1,1ln 1e x f x x x >=⇒=⇒=, {}0,e .x ∴∈故答案为:1;{}0,e .8.(2022·浙江·高三专题练习)已知()23log ,1,,1,x x f x x x ≥⎧=⎨-<⎩则()(2)f f -=______;若()1f x <,则x 的取值范围是______.【答案】 3 ()1,2-【解析】因为()32(2)8f -=--=, ()()()328l g 8o 3f f f ∴-===,当1x <时,()31f x x =-<,得11x -<<,当1≥x 时,()2log 1f x x =<,得12x ≤<, 故x 的取值范围是()1,2-故答案为:3;()1,2-.9.(2022·浙江浙江·二模)设a ∈R ,函数33(0)()log (0)ax x f x x x ⎧≤=⎨>⎩.则(9)f =________;若1273f f ⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭,则实数a 的取值范围是________. 【答案】 2 [)3,∞-+【解析】3(9)log 92f ==, 311log 133f ⎛⎫==- ⎪⎝⎭由()31132733a f f f -⎛⎫⎛⎫=-=≤= ⎪ ⎪⎝⎭⎝⎭,则3a -≤,所以3a ≥- 故答案为:2;[)3,∞-+。

人教版高中数学高考一轮复习--函数的概念及其表示(课件)

人教版高中数学高考一轮复习--函数的概念及其表示(课件)
202X
高中总复习优化设计
GAO ZHONG ZONG FU XI YOU HUA SHE JI
第二章
2.1 函数的概念及其表示
课标要求
1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关
系刻画函数,建立完整的函数概念.
2.体会集合语言和对应关系在刻画函数概念中的作用,了解构成函数的要
图象、求值及方程(不等式)问题,提升数学运算和数学抽象素养.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
1.函数的概念
内容
两个集合 A,B
函数
设 A,B 是两个非空数集
如果按照某种确定的对应关系 f,使对于集合 A 中的
对应关系 f:A→B 任意一个数 x,在集合 B 中都有唯一确定的数 y 和它
[-1,2]
.
因为 y=f(x2-1)的定义域为[-√3, √3],
所以 x∈[-√3, √3],x2-1∈[-1,2],所以 y=f(x)的定义域为[-1,2].
能力形成点3
例4
求函数的解析:式
2
(1)已知 f + 1 =lg x,求 f(x);
(2)已知 f(x)是二次函数,且 f(0)=2,f(x+1)-f(x)=x-1,求 f(x);
4.设 f(x)= 0, = 0,g(x)=
则 f(g(π))的值为( B )
0,为无理数,
1, < 0,
A.1
B.0
C.-1
D.π

高考数学函数的概念与表示

高考数学函数的概念与表示
3)象与原象:如果给定一个从集合A到集合B的映射, 那么集合A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象。
(1)函数的定义
①原始定义:设在某变化过程中有两个变量x、y,如 果对于x在某一范围内的每一个确定的值,y都有唯一 确定的值与它对应,那么就称y是x的函数,x叫作自 变量。
②近代定义:设A、B都是非空的数的集合,f:x→y 是从A到B的一个对应法则,那么从A到B的映射f: A→B就叫做函数,记作y=f(x), 其中 x A, y B 原象集合A叫做函数的定义域,象集合C叫做函数的
f : M N,使对任意的x M 都有
x+f(x)+xf(x)是奇数,这样的映射f共有()个
A、22
B、15
C、50
D、27
三、小结 1、映射的定义是有方向性的,即从集合A到B与从 集合B到A的映射是两个不同的映射,映射是一种 特殊对应关系,只有一对一、多对一的对应才是映 射。 2、函数的定义有两种形式,都描述了定义域、值 域和从定义域到值域的对应法则,函数是一种特殊 的映射。 3、判断两个函数是否同一,紧扣函数概念三要素 是解题关键。
C f x 1 x2 , gx 1 x (x 1,1
D
f
x

log
ax a
(a

0,
a

1),
gx 3 x3
D 练习:下列各对函数中,相同的是()
A f x x2 , gx x
B f x lg x2 , gx 2lg x
C f x lg x 1, gx lgx 1 lgx 1
x 1
D f u 1 u , gv 1 v
1u
1 v

高三数学第一轮函数知识点

高三数学第一轮函数知识点

高三数学第一轮函数知识点在高中数学中,函数是一个十分重要的概念,是数学建模与解决实际问题的基础。

在高三数学中,学生们将继续深化对函数的理解和运用。

本文将从基础概念、函数的性质、函数的图像以及实际问题的数学模型等方面给大家详细介绍高三数学第一轮函数知识点。

一、函数的基础概念函数是自变量和因变量之间的一种关系。

在高三数学中,我们通常用 f(x) 或 y 表示函数。

其中,x 是自变量,y 是因变量。

函数的定义域是指所有可输入的自变量的取值范围,值域是指所有可能的因变量的取值范围。

函数可以通过四种方式进行表达:解析式、关系式、图像和表格。

解析式是用代数表达函数的方式,可以很方便地计算函数的值。

关系式是指通过描述 x 和 y 之间的关系来表达函数,比如 y = 2x + 3。

图像是用坐标系将函数的各个点连接起来所形成的曲线,可以直观地描绘出函数的特性。

表格则是将函数在不同自变量取值下的因变量值进行整理的表格形式。

二、函数的性质1. 奇偶性在高三数学中,我们可以通过函数的奇偶性来判断其图像的对称性。

如果对于所有 x,f(-x) = f(x),则函数是偶函数,其图像关于 y 轴对称。

如果对于所有 x,f(-x) = -f(x),则函数是奇函数,其图像关于原点对称。

如果函数既不是偶函数也不是奇函数,则其没有对称性。

2. 单调性函数的单调性描述了函数在定义域内的递增或递减趋势。

如果对于任意的 x_1 和 x_2 (x_1 < x_2),有 f(x_1) < f(x_2),则函数在该定义域内是递增的;如果对于任意的 x_1 和 x_2 (x_1 <x_2),有 f(x_1) > f(x_2),则函数在该定义域内是递减的。

3. 极值和最值函数的极值和最值描述了函数在定义域内的最高点和最低点。

极大值是函数在某个点附近的最大值,极小值则是函数在某个点附近的最小值。

最大值和最小值则是函数在整个定义域内的最大和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档