2018年高考数学大一轮复习培优讲义全版 课标理科
2018版高考数学(全国人教B版理)大一轮复习讲义:第三章导数及其应用第2讲第1课时含答案

基础巩固题组(建议用时:40分钟)一、选择题1.函数f(x)=x ln x,则( )A.在(0,+∞)上递增B。
在(0,+∞)上递减C.在错误!上递增D.在错误!上递减解析f(x)的定义域为(0,+∞),f′(x)=ln x+1,令f′(x)〉0得x>错误!,令f′(x)〈0得0〈x<错误!,故选D.答案D2。
下面为函数y=x sin x+cos x的递增区间的是()A。
错误! B.(π,2π)C。
错误! D.(2π,3π)解析y′=(x sin x+cos x)′=sin x+x cos x-sin x=x cos x,当x∈错误!时,恒有x cos x>0。
答案C3。
已知函数f(x)=错误!x3+ax+4,则“a〉0”是“f(x)在R上单调递增”的( )A。
充分不必要条件B。
必要不充分条件C.充要条件D。
既不充分也不必要条件解析f′(x)=错误!x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.答案A4.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()解析由y=f′(x)的图象知,y=f(x)在上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢。
答案B5。
设函数f(x)=错误!x2-9ln x在区间上单调递减,则实数a的取值范围是()A。
(1,2]B。
(4,+∞]C.解析∵f(x)=错误!x2-9ln x,∴f′(x)=x-错误!(x〉0),当x-错误!≤0时,有0〈x≤3,即在(0,3]上原函数是减函数,则⊆(0,3],∴a-1>0且a+1≤3,解得1<a≤2。
答案A二、填空题6。
函数f(x)=错误!的单调递增区间为________.解析函数的定义域为{x|x≠0},且f′(x)=错误!,令f′(x)〉0得x〉1.答案(1,+∞)7。
2018年高考数学(文理通用)一轮总复习(课件)学科素养培优系列(一)导-数-(共40张PPT)

【解析】(1)f′(x)=2x+a- = 1
在[1,2]上恒成立,
x
令h(x)=2x2+ax-1,
2≤x20 ax 1 x
所有以hha≤12-,0即0,,得a的aa取值范172, 围是
7
(, 7].
2
2
第36页,共40页。
(2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])
有最小值3, g′(x)=a-
第27页,共40页。
(3)以图代证,关键得分点论证缺失:如(1)问中a>0和a<0情形中, 以图代替证明,简单图示结论,这样不能得分.
第28页,共40页。
(4)运算能力不强,计算能力不过关:如把x=ln(-2a)写成 x=ln2a,丢掉负号等. (5)方法掌握不牢:如(1)问中分类讨论思想,有很大一部分 考生面对已知函数f(x)=(x-2)ex+a(x-1)2求导后,不能合理对
故当x>1时,g(x)<0. 从而g(x2)=f(2-x2)<0,故x1+x2<2. ………………………………………………………12分
第26页,共40页。
【阅卷教师点迷津】 【失分原因】
(1)公式记忆错误:如对函数f(x)=(x-2)ex+a(x-1)2的求导错 误,导致做法不对. (2)考虑问题不全面:如对f′(x)=(x-1)(ex+2a)分析时,漏 掉a=0的情形,反映出思维严谨性不够.
第12页,共40页。
(3)运用知识分析问题的能力不足:第(2)问的证明,关键是构 造新的函数,考生运用知识能力不足,不知如何入手.
(4)计算能力不强:大部分考生此题空白,说明时间不够,是 计算能力不强的体现.其次,对函数的构建不恰当,导致计 算量加大,产生错误.
2018版高考数学全国人教B版理大一轮复习讲义:第二章

基础巩固题组(建议用时:40分钟)一、选择题1.若函数f (x )=|2x +a |的单调递增区间是上的最大值等于( )A.-1B.1C.6D.12解析 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.答案 C 4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A.c <b <aB.b <a <cC.b <c <aD.a <b <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c . 答案 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A.(8,+∞)B.(8,9]C.D.(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B二、填空题6.(2017·郑州模拟)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2(x >1),0 (x =1),-x 2 (x <1),函数的图象如图所示的实线部分,根据图象,g (x )的减区间是上的最大值为________. 解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在上递增,所以f (x )在上单调递减,故f (x )在上的最大值为f (-1)=3.答案 38.(2017·潍坊模拟)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪(a 为实数).(1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x ,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当a <0时,f (x )=2x +-a x, 当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a 2<1,即a ∈(-2,0)时,y =f (x )在⎝ ⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a 2,1上单调递增,无最大值,当x =-a 2时取得最小值2-2a . 能力提升题组(建议用时:20分钟) 11.(2017·郑州质检)若函数f (x )=a x (a >0,a ≠1)在上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在B.(1,3)C.D.(2-2,2+2) 解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若f (a )=g (b ),则g (b )∈(-1,1],所以-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2).答案 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2. 当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.答案 114.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +ax-2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-a x 2>0. 因此g (x )在[2,+∞)上是增函数,∴f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=ln a 2. (3)对任意x ∈[2,+∞),恒有f (x )>0.即x +a x -2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2. 令h (x )=3x -x 2,x ∈[2,+∞). 由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数, ∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.等差数列的定义一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.(教材改编)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1=________. 答案 35解析 由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27,得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.2.(教材改编)已知五个数成等差数列,它们的和为5,平方和为859,则这五个数的积为________.答案 -3581解析 设第三个数为a ,公差为d ,则这五个数分别为a -2d ,a -d ,a ,a +d ,a +2d ,由已知条件得⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 解得⎩⎪⎨⎪⎧a =1,d =±23.所求5个数分别为-13,13,1,53,73或73,53,1,13,-13.故它们的积为-3581.3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. 答案 98解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________. 答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2016·徐州、宿迁模拟)已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________. 答案 (1)6 (2)179解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.(2)设等差数列{a n }的首项为a 1,则由S 5S 3=3得5a 1+10d 3a 1+3d =3,所以d =4a 1,所以a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是______. 答案 20解析 设等差数列{a n }的公差为d , 则由题设可得⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧d =3,a 1=-4, 从而a 9=a 1+8d =20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为________.(2)已知等差数列{a n }中,a 4+a 6=10,若前5项的和S 5=5,则其公差为________. 答案 (1)a n =1n(2)2解析 (1)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)因为a 4+a 6=10,所以2a 5=10, 则a 5=5,又S 5=5(a 1+a 5)2=5a 3=5,故a 3=1,从而2d =a 5-a 3=4,故d =2.(3)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑n k =1(a k +1-a k )=∑n k =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值为_____.答案 (1)114 (2)-2 018解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.答案 (1)88 (2)3727解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________。
2018版高考数学理一轮复习课件:选修系列 第十四章 14-1 第1课时 精品

跟踪训练1
(1)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,
解答
x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程. 将x2+y2=ρ2,x=ρcos θ代入x2+y2-2x=0, 得ρ2-2ρcos θ=0,整理得ρ=2cos θ.
(2)求在极坐标系中,圆ρ=2cos θ垂直于极轴的两条切线方程. 解答 由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x2+y2-2x=0,
x=ρcos θ, ∵ y=ρsin θ,
∴y=1-x化成极坐标方程为ρcos θ+ρsin θ=1, 1 即 ρ= . cos θ+sin θ ∵0≤x≤1,∴线段在第一象限内(含端点), π ∴0≤θ≤2.
(2)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1. 以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角 坐标系,求曲线C1和C2交点的直角坐标. 解答 因为x=ρcos θ,y=ρsin θ,由ρsin2θ=cos θ,得ρ2sin2θ=ρcos θ, 所以曲线C1的直角坐标方程为y2=x.
在平面内取一个定点O,自点O引一条射线Ox,同时确定一个长度单位
和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.
点O称为极点,射线Ox称为极轴.
平面内任一点 M 的位置可以由线段 OM 的长度 ρ 和从
射线 Ox到射线 OM 的角度 θ 来刻画 ( 如图所示 ).这两个
数组成的有序数对 (ρ ,θ)称为点 M的极坐标.ρ 称为点
3.在以为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a相交于A,B 两点.当△AOB是等边三角形时,求a的值.
解答
2018版高考数学全国人教B版理大一轮复习讲义:第十章

基础巩固题组(建议用时:25分钟)一、选择题1.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体抽取一个13张的样本.这种抽样方法是()A.系统抽样B.分层抽样C.简单随机抽样D.非以上三种抽样方法解析符合系统抽样的特征.答案 A2.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.答案 C3.(2017·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250解析法一由题意可得70n-70=3 5001 500,解得n=100.法二由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n=5 000×150=100.答案 A4.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D.答案 D5.高三·一班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是()A.8B.13C.15D.18解析分段间隔为524=13,故还有一个学生的编号为5+13=18.答案 D6.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32解析间隔距离为10,故可能编号是3,13,23,33,43.答案 B7.某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本.已知3个区人口数之比为2∶3∶5,如果最多的一个区抽出的个体数是60,那么这个样本的容量为()A.96B.120C.180D.240解析设样本容量为n,则52+3+5=60n,解得n=120.答案 B8.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为()A.700B.669C.695D.676 解析由题意可知,第一组随机抽取的编号l=15,分段间隔数k=Nn=1 00050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个编号为15+(35-1)×20=695.答案 C9.(2017·营口摸底)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=()A.660B.720C.780D.800解析由已知条件,抽样比为13780=160,从而35600+780+n=160,解得n=720.答案 B二、填空题10.(2015·福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析设男生抽取x人,则有45900=x900-400,解得x=25.答案2511.(2017·郑州调研)从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________.解析由系统抽样知,抽样间隔k=805=16,因为样本中含编号为28的产品,则与之相邻的产品编号为12和44.故所取出的5个编号依次为12,28,44,60,76,即最大编号为76. 答案7612.央视春晚直播不到20天的时候,某媒体报道,由六小龄童和郭富城合演的《猴戏》节目被毙,为此,某网站针对“是否支持该节目上春晚”对网民进行调查,得到如下数据:取的人数为________.解析持“支持”态度的网民抽取的人数为48×8 0008 000+6 000+10 000=48×13=16.答案16能力提升题组(建议用时:20分钟)13.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样解析①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理③符合分层抽样的规律,可能是分层抽样,同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.答案 D14.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40B.36C.30D.20解析利用分层抽样的比例关系,设从乙社区抽取n户,则270360+270+180=n90.解得n=30.答案 C15.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()A.23B.09C.02D.17解析从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.答案 C16.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480B.481C.482D.483解析根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d =25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482.答案 C17.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8B.25,17,8C.25,16,9D.24,17,9解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.结合各选项知,选B.答案 B18.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A.800B.1 000C.1 200D.1 500解析 因为a ,b ,c 成等差数列,所以2b =a +c .所以a +b +c 3=b .所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3 600=1 200.答案 C19.某大学工程学院有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A.11B.12C.13D.14解析 使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.答案 B20.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取________人.解析 设样本容量为N ,则N ×3070=6,∴N =14,∴高二年级所抽学生人数为14×4070=8.答案 821.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.解析 由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x ,则由系统抽样的法则可知,第n 组抽出个体的号码应该为x +(n -1)×8,所以第16组应抽出的号码为x +(16-1)×8=123,解得x =3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.答案 1122.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.解析 由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案 76。
2018版高考数学理人教大一轮复习讲义课件第六章 数列6

n 2 -3 n 故 an=(-1) 2n .
题型二 由an与Sn的关系求通项公式
2 1 例2 (1)(2017· 南昌月考)若数列{an}的前n项和Sn= an+ ,则{an}的通 3 3 n-1 ( - 2) 项公式an=________. 答案 解析
2 1 2 1 由 Sn=3an+3,得当 n≥2 时,Sn-1=3an-1+3,
解析
A.an=n2-(n-1) nn+1 C.an= 2
B.an=n2-1 nn-1 D.an= 2
3 7 9 (2)数列{an}的前 4 项是2,1,10,17,则这个数列的一个通项公式是 an 2n+1 2 答案 解析 n +1 =________.
2×1+1 2×2+1 2×3+1 2×4+1 数列{an}的前 4 项可变形为 2 , 2 , 2 , 2 , 1 +1 2 +1 3 +1 4 +1 2n+1 故 an= 2 . n +1
答案Leabharlann 解析当n=1时,a1=S1=2,当n≥2时, an=Sn-Sn-1=n2+1-[(n-1)2+1]=2n-1,
2,n=1, 故 an= 2n-1,n≥2.
题型分类
深度剖析
题型一 由数列的前几项求数列的通项公式 例1 (1)(2016· 太原模拟)数列1,3,6,10,…的一个通项公式是 答案
( √ )
考点自测
1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点
可以排成一个正三角形(如图所示).
则第7个三角形数是 A.27 B.28
答案
解析
C.29
D.30
由图可知,第7个三角形数是1+2+3+4+5+6+7=28.
2018版高考数学理人教大一轮复习配套讲义:第三章 导数及其应用第2讲 第1课时 含解析 精品

基础巩固题组(建议用时:40分钟)一、选择题1.函数f (x )=x ln x ,则( )A.在(0,+∞)上递增B.在(0,+∞)上递减C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1e ,令f ′(x )<0得0<x <1e ,故选D.答案 D2.下面为函数y =x sin x +cos x 的递增区间的是( )A.⎝ ⎛⎭⎪⎫π2,3π2 B.(π,2π) C.⎝ ⎛⎭⎪⎫3π2,5π2 D.(2π,3π)解析 y ′=(x sin x +cos x )′=sin x +x cos x -sin x =x cos x ,当x ∈⎝ ⎛⎭⎪⎫3π2,5π2时,恒有x cos x >0.答案 C3.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.答案 A4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢.答案 B5.设函数f(x)=12x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.(4,+∞]C.[-∞,2)D.(0,3]解析∵f(x)=12x2-9ln x,∴f′(x)=x-9x(x>0),当x-9x≤0时,有0<x≤3,即在(0,3]上原函数是减函数,则[a-1,a+1]⊆(0,3],∴a-1>0且a+1≤3,解得1<a≤2.答案 A二、填空题6.函数f(x)=e xx的单调递增区间为________.解析函数的定义域为{x|x≠0},且f′(x)=e x(x-1)x2,令f′(x)>0得x>1.答案(1,+∞)7.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则实数a的取值范围是________.解析f′(x)=(2x-2a)e x+(x2-2ax)e x=[x2+(2-2a)x-2a]e x,由题意当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎨⎧g (-1)≤0,g (1)≤0,即⎩⎨⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34. 答案 ⎣⎢⎡⎭⎪⎫34,+∞ 8.(2017·合肥模拟)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则实数a 的取值范围是________.解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a . 当x ∈⎣⎢⎡⎭⎪⎫23,+∞时, f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a . 令29+2a >0,解得a >-19.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案 ⎝ ⎛⎭⎪⎫-19,+∞ 三、解答题9.(2016·北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.解 (1)∵f (x )=x e a -x +bx ,∴f ′(x )=(1-x )e a -x +b .由题意得⎩⎨⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎨⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e.(2)由(1)得f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.当x ∈(-∞,1)时,g ′(x )<0,g (x )在(-∞,1)上递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)上递增,∴g (x )≥g (1)=1在R 上恒成立,∴f ′(x )>0在R 上恒成立.∴f (x )的单调递增区间为(-∞,+∞).10.设函数f (x )=13x 3-a 2x 2+1.(1)若a >0,求函数f (x )的单调区间;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)由已知得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(2)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝ ⎛⎭⎪⎫x +2x max=-22, 当且仅当x =2x 即x =-2时等号成立.所以满足要求的实数a 的取值范围是(-∞,-22).能力提升题组(建议用时:20分钟)11.(2017·承德调考)已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A.f (1)<e f (0),f (2 017)>e 2 017f (0)B.f (1)>e f (0),f (2 017)>e 2 017f (0)C.f (1)>e f (0),f (2 017)<e 2 017f (0)D.f (1)<e f (0),f (2 017)<e 2 017f (0)解析 令g (x )=f (x )e x ,则g ′(x )=⎣⎢⎡⎦⎥⎤f (x )e x ′=f ′(x )e x -f (x )(e x)′e 2x =f ′(x )-f (x )e x <0, 所以函数g (x )=f (x )e x 在R 上是单调减函数,所以g (1)<g (0),g (2 017)<g (0),即f (1)e 1<f (0)1,f (2 017)e 2 017<f (0)1,故f (1)<e f (0),f (2 017)<e 2 017f (0).答案 D12.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C13.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析 由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案 (0,1)∪(2,3)14.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x, 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数,即g ′(x )=0在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373,所以-373<m <-9,即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
录ቤተ መጻሕፍቲ ባይዱ
.第一章 集合与常用逻辑用语 ................................................................................................................................ 4 考纲链接 ........................................................................................................................................................... 4 1.1 集合及其运算 ....................................................................................................................................... 5 1.2 命题及其关系、充分条件与必要条件.............................................................................................. 11 1.3 简单的逻辑联结词、全称量词与存在量词...................................................................................... 17 单元测试卷 ..................................................................................................................................................... 22 第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用 .................................................................................................. 26 2.1 函数及其表示 ..................................................................................................................................... 27 2.2 函数的单调性与最大(小)值 ............................................................................................................... 38 2.3 函数的奇偶性与周期性 ..................................................................................................................... 44 2.4 二次函数 ............................................................................................................................................. 52 2.5 基本初等函数(Ⅰ)............................................................................................................................... 62 2.6 函数与方程 ......................................................................................................................................... 75 2.7 函数的图象 ......................................................................................................................................... 80 2.8 函数模型及其应用 ............................................................................................................................. 86 单元测试卷 ..................................................................................................................................................... 94 第三章 导数及其应用.............................................................................................................................................. 99 3.1 导数的概念及运算 ........................................................................................................................... 100 3.2 导数的应用(一)................................................................................................................................. 106 3.3 导数的应用(二)................................................................................................................................. 114 3.4 定积分与微积分基本定理 ............................................................................................................... 121 单元测试卷 ................................................................................................................................................... 127 第四章 三角函数(基本初等函数(Ⅱ)) .............................................................................................................. 132 4.1 弧度制及任意角的三角函数 ........................................................................................................... 133 4.2 同角三角函数的基本关系及诱导公式............................................................................................ 140 4.3 三角函数的图象与性质 ................................................................................................................... 146 4.4 三角函数图象的变换 ....................................................................................................................... 155 4.5 三角函数模型的应用 ....................................................................................................................... 164 4.6 三角恒等变换 ................................................................................................................................... 171 4.7 正弦定理、余弦定理及其应用 ....................................................................................................... 181 单元测试卷 ................................................................................................................................................... 192 第五章 平面向量与复数 ................................................................................................................................... 198 5.1 平面向量的概念及线性运算 ........................................................................................................... 199 5.2 平面向量的基本定理及坐标表示 ................................................................................................... 207 5.3 平面向量的数量积 ........................................................................................................................... 214 5.4 平面向量的应用 ............................................................................................................................... 225 5.5 复数的概念 ....................................................................................................................................... 233 5.6 复数的四则运算及几何意义 ........................................................................................................... 238 单元测试卷 ................................................................................................................................................... 242 第六章 数 列 ............................................................................................................................................... 247 6.1 数列的概念与简单表示法 ............................................................................................................... 248