3数列的综合应用
2022年高考数学基础题型+重难题型突破类型三数列综合应用(原卷版)

类型三数列综合应用【典例1】[2020济南市6月模拟]已知数列{a n }的前n 项和为S n ,且S n =12n 2+12n.(1)求{a n }的通项公式; (2)设b n ={a n ,n 为奇数,2a n ,n 为偶数,求数列{b n }的前2n 项和T 2n .【典例2】.[2020全国卷Ⅲ,17,12分][理]设数列{a n }满足a 1=3,a n+1=3a n -4n. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2na n }的前n 项和S n .【典例3】已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n +2log 2a n -1,求数列{b n }的前n 项和S n .【典例4】(2020·莆田市第一联盟体学年联考)设数列{a n }的前n 项和为S n ,且S n =n 2-2n ,{b n }为正项等比数列,且b 1=a 1+3,b 3=6a 4+2. (1)求数列{a n }和{b n }的通项公式;(2)设c n =1a n +1·log 2b n +1,求{c n }的前n 项和T n .【典例5】 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2n =0. (1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n .【拓展训练】1 (1)已知函数f(n)=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f(n)+f(n +1),则a 1+a 2+a 3+…+a 8等于( ) A .-16 B .-8 C .8 D .16(2)(2020·武汉江夏一中、汉阳一中联考)若首项为23的数列{a n }满足2(2n +1)a n a n +1+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( ) A.8 0804 041 B.4 0784 040 C.4 0404 041 D.4 0394 040(3)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n .【典例6】 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A(a 1,a 2)出发沿图中路线依次经过B(a 3,a 4),C(a 5,a 6),D(a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+a 2 019+a 2 020等于( )A .2 017B .2 018C .2 019D .2 020(2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1n a n =n 2+n(n ∈N *),设数列{b n }满足b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <n n +1λ(n ∈N *)恒成立,则λ的取值范围是( )A.⎝ ⎛⎭⎪⎫14,+∞B.⎣⎢⎡⎭⎪⎫14,+∞C.⎣⎢⎡⎭⎪⎫38,+∞ D.⎝ ⎛⎭⎪⎫38,+∞ 【拓展训练】2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1<a 2”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件(2)设曲线y =2 020xn +1(n ∈N *)在点(1,2 020)处的切线与x 轴的交点的横坐标为x n ,令a n=log 2 020x n ,则a 1+a 2+…+a 2 019的值为( ) A .2 020 B .2 019 C .1 D .-1专题训练一、单项选择题1.[2021石家庄市重点高中模拟]已知1,a 1,a 2,3成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值为 ( )A.2B.-2C.±2D.542.[2021蓉城名校联考]已知数列{a n }对任意m,n ∈N *都满足a m+n =a m +a n ,且a 1=1,若命题“∀n ∈N *,λa n ≤a n 2+12”为真,则实数λ的最大值为 .3.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n =3,n ∈N *,则数列{ba n }的前10项和为( ) A.12×(310-1) B.18×(910-1) C.126×(279-1) D.126×(2710-1) 4.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( ) A .2 021 B.12 021 C .4 041 D.14 0415.定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x -x 2;当x ≥2时,f(x)=3f(x -2).记函数f(x)的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1D .20×320+16.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =nD .a n =ln nn +17.(2020·浙江改编)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a 1d ≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式可能成立的是( )A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .a 24=a 2a 8 D .b 24=b 2b 88.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论错误的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a nD .T n <b n +19.[2021南昌市高三测试]无穷数列{a n }满足:只要a p =a q (p,q ∈N *),必有a p+1=a q+1,则称{a n }为“和谐递进数列”.若{a n }为“和谐递进数列”,S n 为其前n 项和,且a 1=1,a 2=2,a 4=1,a 6+a 8=6,则a 7= ;S 2 021= . 10.数列{a n }的通项公式为a n =1n +n +1,若该数列的前k 项之和等于9,则k =________.11.设数列{a n }满足a 1=1,且a n +1a n =n +2n +1(n ∈N *),则数列{a n }的通项公式a n =________,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和为________. 12.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f(x)=x 2-b n x +2n的两个零点,则a 5=________,b 10=________.13.在数列{a n }中,a 1+a 22+a 33+…+a n n =2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n(n+1)λ成立,则实数λ的最小值为________.14.[2021河北六校第一次联考]已知数列{a n }为正项等比数列,a 1=1,数列{b n }满足b 2=3,a 1b 1+a 2b 2+a 3b 3+…+a n b n =3+(2n-3)2n. (1)求a n ; (2)求{1b n b n+1}的前n 项和T n .15.[原创题]记S n 为数列{a n }的前n 项和,已知a 1=1,S n+1+1=2a n +n+S n ,数列{b n }满足b n =a n +n.(1)求{b n }的通项公式;(2)令c n =(1+b n )log 2b n ,求数列{c n }的前n 项和T n . 16.[2020天津,19,15分]已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3). (1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N *);(3)对任意的正整数n,设c n ={(3a n -2)b na na n+2,n 为奇数,a n -1b n+1,n 为偶数,求数列{c n }的前2n 项和.17.[2021湖南四校联考]等差数列{a n }(n ∈N *)中,a 1,a 2,a 3分别是如表所示第一、二、三行中的某一个数,且其中的任意两个数不在表格的同一列.第一列第二列第三列第一行 5 8 2第二行 4 3 12第三行 16 6 9(1)请选择一个可能的{a1,a2,a3}组合,并求数列{a n}的通项公式.(2)记(1)中您选择的{a n}的前n项和为S n,判断是否存在正整数k,使得a1,a k,S k+2成等比数列?若存在,请求出k的值;若不存在,请说明理由.。
数列的综合运用范文

数列的综合运用范文数列是数学中一种重要的概念,它是由一组按照一定规律排列的数所组成的序列。
在数学中,数列的综合运用十分广泛,涉及到数列的求和、递推关系、数列的性质和应用等方面。
本文将从上述几个方面综合运用数列进行详细探讨。
首先,数列的求和是数列的基本操作,它包括求等差数列的和、等比数列的和以及一些特殊的数列的和。
对于等差数列来说,求和可以通过求首项与末项的平均数乘以项数来得到,也可以通过求首项与末项之和乘以项数的一半得到。
对于等比数列来说,求和可以通过首项乘以公比的幂次减1再除以公比减1得到。
此外,还可以利用数列的递推关系求得求和的公式,例如斐波那契数列的求和公式即为斐波那契数列的通项公式的一个特殊情况。
其次,数列的递推关系指的是后一项与前一项之间的关系,它描述了数列的演化过程。
数列的递推关系可以通过观察数列的前几项来得到,并根据这种规律来确定后面的项。
例如等差数列的递推关系为后一项等于前一项加上公差,等比数列的递推关系为后一项等于前一项乘以公比。
利用数列的递推关系可以解决一些实际生活中的问题,如利用斐波那契数列的递推关系可以解决兔子繁殖问题。
第三,数列的性质是指数列在运算中所具有的一些特点。
其中常见的性质有有界性、单调性和周期性等。
数列的有界性指的是数列的所有项都存在一个上界和一个下界,即数列的所有项都位于这个区间内。
数列的单调性指的是数列的所有项是递增的或者递减的,即数列的项之间存在一种明显的大小关系。
数列的周期性指的是数列的项按照一定的规律重复出现,即数列的第n项与第n+k项相等。
利用数列的性质可以研究数列的极限、范围和周期等问题。
最后,数列的应用广泛存在于实际生活和各个学科中。
在实际生活中,数列的应用可以帮助我们解决一些数学和经济等问题,如利用利率的等比数列可以计算存款的本息和。
在学科中,数列的应用可以帮助我们研究和解决一些科学问题,如利用斐波那契数列可以表达自然界中一些规律和现象。
另外,数列的应用还可以帮助我们提高思维能力和解决问题的能力,如数列的递推关系与递归问题的求解有密切的关系。
[精]高三第一轮复习全套课件3数列:数列的综合应用
![[精]高三第一轮复习全套课件3数列:数列的综合应用](https://img.taocdn.com/s3/m/3eccd40a4a7302768e993947.png)
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。
通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。
1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。
通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。
第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。
通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。
2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。
通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。
第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。
通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。
3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。
通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。
第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。
通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。
4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。
通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。
第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。
通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。
5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。
通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。
第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。
2024届高考数学一轮总复习专题三数列的综合问题课件

(2)设等比数列{bn}的公比为q. 因为b2b4=a5, 所以b1q·b1q3=9. 又因为b1=1,所以q2=3. 所以b2n-1=b1q2n-2=3n-1. 则 b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=3n-2 1.
题型二 数列与不等式的综合问题 数列与不等式知识相结合的考查方式主要有三种:一是判断 数列问题中的一些不等关系;二是以数列为载体,考查不等式的 恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这 些问题时,如果是证明题要灵活选择不等式的证明方法,如比较 法、综合法、分析法等.如果是解不等式问题,要使用不等式的各 种不同解法,如数轴法、因式分解法等.
当 n=3 时,b3=0;当 n=4 时,b4=25-2 3; 当 n=5 时,b5=26-4 3=2×2×25-2 32<b4, 当 n≥4 时,bn=2na-n 6=22nn+1--63=22(nn+1--33),bn+1=22(×n-2n3+1)-+32,
∴bn-bn+1=22(nn+1--33)-22(×n-2n3+1)-+32=(2n(+21n--38))(×2×2n2+n1++1-63)>0, 即 bn>bn+1.
【题后反思】对等差、等比数列的综合问题,应重点分析等 差、等比数列项之间的关系.数列的求和主要是等差、等比数列的 求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消 法求数列的和,然后利用 b1=1,d>0 证明不等式成立.另外本题 在探求{an}与{cn}的通项公式时,考查累加、累乘两种基本方法.
专题三 数列的综合问题
数列是历年高考的热点,根据近几年高考试题统计,全国卷 中的数列与三角函数基本上交替考查,难度不大.考查多从等差数 列、等比数列这两个特殊的数列入手,考查内容主要集中在两个 方面:一是以选择题和填空题的形式考查等差、等比数列的运算 和性质,题目多为常规试题;二是等差、等比数列的通项与求和 问题,有时结合函数、方程、不等式等进行综合考查,涉及内容 较为全面,试题题型规范、方法可循.
数列的综合运用新

解析:对于A,即若{an}>M,an与an+1中至少有一个 不小于M,则数列{an}的各项不一定都大于M,错误;对于 B,若{an}>M,an与an+1中至少有一个不小于M,{bn}>M, bn与bn+1中至少有一个不小于M,但它们不一定是同一个n 值,则{an+bn}>2M不成立;对于C,若{an}>M,数列各项 的正负及M的正负不确定,则{a}>M2不成立;则只有D成立,
(4)数列的实际应用:现实生活中涉及利率,产品利润, 工作效率,人口增长,常常考虑用数列知识加以解决.
1.某种细菌在培养过程中,每20分钟分裂一次(1个分
裂成2个),经过3小时,这种细菌由1个可以繁殖成 ( )
A.511个
B.512个
C.1023个
D.1024个
解析:由题意知,细菌繁殖过程可以看作一个首项为
1,公比为2的等比数列模型,所以a10=a1q9=29=512.故应 选B.
答案:B
2 . 数 列 {an} 的 通 项 公 式 是 关 于 x 的 不 等 式 x2 -
x<nx(n∈N*)的解集中的整数个数,则数列{an}的前n项和Sn
=
()
A.n2
B.n(n+1)
C.
D.(n+1)(n+2)
解析:由x2-x<nx,得0<x<n+1(n∈N*), 因此an=n, Sn=
故选D.
答案:D
1.在解决数列综合问题时要注意以下方面 (1)用函数的观点和思想认识数列,将数列的通项公式 与求和公式都看作自变量为正整数的函数. (2)用方程思想去处理数列问题,把通项公式与求和公 式 看作列方程的等量关系. (3)用转化思想去处理数学问题,将实际问题转化为等 差数列或等比数列问题. (4)用猜想与递推的思想去解决数学问题.
数列的综合应用

数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。
数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。
本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。
一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。
数列是按照一定规律排列的一组数,其中每个数称为数列的项。
根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。
1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。
等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。
等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。
1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。
首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。
因此,这辆汽车在5个小时内共行驶了75公里。
2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。
首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。
因此,这名学生前10次数学考试的总分为875分。
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标1. 理解数列的概念及其性质2. 掌握数列的通项公式和求和公式3. 能够运用数列解决实际问题二、教学内容1. 数列的概念及其性质2. 数列的通项公式和求和公式3. 数列在实际问题中的应用三、教学重点与难点1. 教学重点:数列的概念、性质、通项公式和求和公式2. 教学难点:数列在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解数列的概念和性质2. 采用示例法,教授数列的通项公式和求和公式3. 采用案例分析法,让学生学会运用数列解决实际问题五、教学过程1. 引入:通过生活中的实例,如等差数列“每月工资”、“每分钟心跳次数”等,引导学生认识数列的概念和性质。
2. 讲解:讲解数列的概念、性质、通项公式和求和公式,通过示例让学生理解并掌握这些知识点。
3. 练习:布置一些练习题,让学生运用所学的数列知识解决问题,巩固所学内容。
4. 案例分析:选取一些实际问题,如“等差数列投资”、“数列在数据处理中的应用”等,让学生学会运用数列知识解决实际问题。
5. 总结:对本节课的内容进行总结,强调数列在实际中的应用价值。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评估学生对数列概念和性质的理解程度。
2. 练习题评价:通过学生完成的练习题,检查学生对数列通项公式和求和公式的掌握情况。
3. 案例分析评价:评估学生在案例分析中的表现,判断其能否将数列知识应用于实际问题中。
七、教学拓展1. 数列在数学其他领域的应用:介绍数列在代数、几何、概率等领域中的应用,激发学生的学习兴趣。
2. 数列与其他学科的交叉:探讨数列在其他学科如物理、化学、生物等方面的应用,拓宽学生的知识视野。
八、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、教学方法的适用性、学生对数列知识的掌握程度等,以便对后续教学进行调整和改进。
九、课后作业布置一些有关数列的练习题,包括填空题、选择题和解答题,让学生巩固所学知识,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二轮复习专题11数列的综合应用
前置性作业的设计、分析与结果运用
第一部分前置性作业设计
一、与前置性作业相关的教学内容
内容选自浙江省高职(单考单招)招生考试复习丛书《高职考专项突破训练(二轮复习)》数学《专题11数列的综合应用》。
涉及数列的通项、递推公式以及等差数列与等比数列的各个知识点,结合生活中的实际问题进行考查。
对学生的知识应用能力、阅
读理解能力以及数学思维能力等各方面都提出了更高的要求。
(一)教学内容的细化
1. 知识点梳理
(1)___________________________________________________ 已知S n,求通项a n,当n=1时,a1 = ___________________________________________ ;
当n兰2时,a n = . _____
(2)等差数列与等比数列
2.技能要求
1)熟练掌握等差、等比数列的定义、通项公式、求和公式及其性质,并能运用这些知识解决相关的数学问题;
(2)在灵活运用知识解决相关问题的同时,提高分析问题、解决问题与数学建模的能力,并渗透类比、化归、方程等数学思想方法;
(3)体会数列在社会生活中的广泛应用,提高学习数学的兴趣。
二、前置性作业的设计
1.前置性作业涉及的教学内容
数列的综合应用
2. 前置性作业的形式
预习:阅读教材内容,整理数列这一章节的相关知识要点 习题式练习:完成下发讲义中的四个题目
3. 前置性作业样张
★学习任务次序:第1次
★任务布置时间:2017年3月6日 ★学习任务的内容(形式):
本次学习任务面向数列这一章节的知
识点进行设计,突出数列的综合应用。
主要内容(形式)是:
整理数列的有关知识点:S n 与a n 的关系;等差数列;等比数列
习题:1. (2011咼职)在等比数列{a n }中,若a 3a 5=5,贝U a i a 7=()
A.5
B.0
C.15
D.25
2. (2012 咼职)在等差数列{a n }中,右 a 2=4, a 5=13, a 6=()
则公比q=
4. 某商品的原价为200元,若连续两次涨价 10%后出售,
则新售价为( )
A.2 2 2 元
B.2 4 0元
C.2 4 2 元
D.4 8 4 元
5.
有一座5层塔,若每层所点灯的盏书都是上一层的2倍,
一共点
9 3盏,则底层所点灯的盏数为 ________________
学习过程和遇到的困难及阻碍:
I 教师批改后反馈
A.14
B. 15
C.16
D.17 3.
(2013高职)已知等比数列的前
n 项和公式为
S n
1 2n
第二部分前置性作业学生完成情况分析
、完成情况
二、原因分析
1 •第一题考查等比数列的等距性,比较直接,属于高职考中的基础题,全部做对,说明学生在对知识的整理作业
还是比较认真的。
2•第二题考查等差数列的通项公式,计算量也不大,所以学生答题情况也很好。
3. 第三题比较难,考查等比数列的定
义。
学生的错误原因是对S n与a n的关系理解不
够透彻,很多女生看着S n的式子,不知道该如何求解。
也有计算错误。
4. 第四题是生活中的数学问题,实际考查等比数列的通项。
学生错误的原因主要是对题
目意思的理解不到位,以及计算错误。
5. 第五题是数列的应用问题,考查等比数列的求和公式。
对学生的要求较高,错误人数
也最多。
错误的原因主要是学生的阅读理解能力不强,另外计算能力的提高也很关键。
三、解决对策
1. 平时的课堂教学中要强调学生的审题能力,做题一定要看仔细,是等比数列还是等差数列一定要明确。
一般来
说,题目中所给的每一个条件都是会用到的,你如果没有用全,那就会出现错误了。
在学生做题时可让学生把一些重点的语句圈出来,避免一些不小心的错误。
2. 对一些抽象的数学概念,老师应该通过具体举例来加深学生这些概念的理解。
如对
S n与a n的关系的阐释要更加细致,可以通过具体的例子来加以说明。
3. 课堂上教师要尽量多给学生讲解解题的思路,特别是应用题。
教会学生阅读题目的方法,将重要的数字与数量
关系用笔圈出,理通数量之间的关系。
对于数列的应用问题,要教会学生去发现题目中蕴藏的数列的规律,从而能够顺利地应用等差或等比数列的有关知识去解题。
4. 数列的应用是难点,学生对数学问题的阅读理解能力不可能一蹴而就,需要在课堂与作业的过程中不断加强训
练,以得到提高。
所以教师首先要明确告诉学生数列的应用问题并不难,关键是要你肯去读题目,抽象出数列模型,从而利用数列的通项或求和公式去解题。
第三部分《专题11数列的综合应用》教学设计
教学目标
1、知识与技能:熟练掌握等差、等比数列的定义、通项公式、求和公式及其性
质,并能运用这些知识解决相关的数学问题;
2、过程与方法:在灵活运用知识解决相关问题的同时,提高分析问题、解决问题与数学建模的能力,并渗透类比、化归、方程等数学思想方法;
3、情感态度价值观:体会数列在社会生活中的广泛应用,提高学习数学的兴趣。
教学重点与难点
重点:数列的综合应用
难点:数列的综合应用
教学过程
2、a* = a m 任务二二体验真题(解题思路分析,应用知识点归纳总结)
学习目标1. (2011高职)在等比数列{a n}中,若3385=5,则a 137=请指出近二年咼职考真题所
1.复
2、等差数列与等比数列
习回
数列数列等差数列等比数列的知
识要
点。
2•掌
握等
定义差等
比数
列的
有关
公式。
中项
通项
公式
和公
性质从第二项起,每一项与它的前一项
的都等于同一个常数的数列.
定义式:
则:
a n
从第二项起,每一项与它的前一
项都等于同一个常数的数
定义式:
a, A,b成等差数列a,G,b成等比数列
则:
S n
等距性:若m+n=p+q 1、等距性:若m+n=p+q
例2 •有一座5层塔,若每层所点灯的盏书都是上一层的
2倍,一共点9 3盏,则底层所点灯的盏数为•
解:
分析:这是一个数列,且已知条件
为,要求的是。
变训练2: —个剧场设置了20排座位,第一排有38个座位,往后每一排都比前一排多2个座位,假如有1200个学生去剧场,能否坐得下?
分析:这是一个________________________数列,且已知条件
为_________________________________ ,要求的是_____________
任务五:自我评价
及时自我反思制定整改措施, 以求提高。
1. 本节内容完成情况 A.
D.不理想
2. 存在问题有 A.
D.计算错误
3. 解决存在问题的途径 A.
好B. 较好 C. 一般
公式记错 B. 题目不会分析 C. 公式不会选用
加强公式记忆 B.熟悉公式的应用条件 C. 提
高计算能力 D.加强自学能力E.请同学老师帮助
任务六、延伸拓展:
1. 知识点默写;
2. 完成专题11数列的综合应用
附:2015高职考题30.(9分)根据表中所给的数字填空格
要求每行的数成等差数列,每列的
数成等比数列
从前置性任务完成情况来看数列的应用是难点,
可能一蹴而就,需要在课堂与作业的过程中不断加强训练, 以得到提高。
老师要教会学 生阅读题目的方法, 将重要的数字与数量关系用笔圈出, 理通数量之间的关系。
对于数
列的应用问题,要教会学生去发现题目中蕴藏的数列的规律, 从而能够顺利地应用等差
或等比数列的有关知识去解题。
求:
(1) a,b,c 的值;(3 分) (2)
按要求填
满其余各空格中的数 ;(3
分);。