2017-2018学年广东省广州市89中高二(9、12班)上学期期末考试数学文试题

合集下载

广东省广州市数学高二上学期理数期末考试试卷

广东省广州市数学高二上学期理数期末考试试卷

广东省广州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高二下·温州期中) 已知平面平面 ,且 ,则“ ”是“ ”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分) (2017高二下·穆棱期末) 函数在处的切线与两坐标轴围成的三角形的面积为()A .B .C .D .3. (2分)(2017·合肥模拟) 若中心在原点,焦点在y轴上的双曲线离心率为,则此双曲线的渐近线方程为()A . y=±xB .C .D .4. (2分)已知向量 =(λ+1,1), =(λ+2,2),若(﹣)⊥( + ),则实数λ=()A . ﹣4B . ﹣3C . ﹣2D . ﹣15. (2分) (2018高三上·大连期末) 执行如图的框图,则输出的是()A . 9B . 10C . 132D . 13206. (2分)已知曲线的一条切线斜率是3,则切点的横坐标为()A . -2B . -1C . 17. (2分)已知向量=(-1,1,-1),=(2,0,-3),则等于()A . -5B . -4C . 2D . 18. (2分)(2019·广州模拟) 已知点在直线上,点在直线上,的中点为,且,则的取值范围为()A .B .C .D .9. (2分)不等式的解集是()A .B .C . {x|x>2或x≤}D . {x|x<2}10. (2分) (2016高二上·山东开学考) 程序框图如图所示,当A=0.96时,输出的k的值为()B . 22C . 24D . 2511. (2分)设集合 A=, B={y|y=x2},则A∩B中元素个数为()A . 0B . 1C . 2D . 无数个12. (2分)函数有().A . 极大值5,极小值-27;B . 极大值5,极小值-11;C . 极大值5,无极小值;D . 极小值-27,无极大值二、填空题 (共4题;共4分)13. (1分)为了调查城市PM2.5的值,按地域把36个城市分成甲、乙、丙三组,对应的城市数分别为6,12,18.若用分层抽样的方法抽取18个城市,则乙组中应抽取的城市数为________.14. (1分) (2016高二上·屯溪期中) 已知两点A(﹣2,﹣3),B(3,0),过P(﹣1,2)的直线l与线段AB始终有公共点,则直线l的斜率k的取值范围是________.15. (1分) (2015高二上·淄川期末) 已知等差数列{an}的公差d不等于0,Sn是其前n项和,给出下列命题:①给定n(n≥2,且n∈N*),对于一切k∈N*(k<n),都有an﹣k+an+k=2an成立;②存在k∈N* ,使得ak﹣ak+1与a2k+1﹣a2k﹣3同号;③若d>0.且S3=S8 ,则S5与S6都是数列{Sn}中的最小项④点(1,),(2,),(3,),…,(n,)(n∈N*),…,在同一条直线上.其中正确命题的序号是________.(把你认为正确的命题序号都填上)16. (1分) (2017高一下·长春期末) 不等式>1的解集是________.三、解答题 (共6题;共65分)17. (10分)(2018·衡阳模拟) 已知抛物线的准线与轴交于点,过点作圆的两条切线,切点为,且 .(1)求抛物线的方程;(2)若直线是过定点的一条直线,且与抛物线交于两点,过定点作的垂线与抛物线交于两点,求四边形面积的最小值.18. (10分)(2016·江西模拟) 设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:i12345合计xi(百万元) 1.26 1.44 1.59 1.71 1.827.82wi(百万元) 2.00 2.99 4.02 5.00 6.0320.04yi(百万元) 3.20 4.80 6.507.508.0030.00=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62,(xi﹣)2=0.20,(wi﹣)2=10.14其中.(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)19. (15分) (2016高三上·连城期中) 如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2 .(1)求异面直线PC与AD所成角的大小;(2)若平面ABCD内有一经过点C的曲线E,该曲线上的任一动点Q都满足PQ与AD所成角的大小恰等于PC 与AD所成角.试判断曲线E的形状并说明理由;(3)在平面ABCD内,设点Q是(2)题中的曲线E在直角梯形ABCD内部(包括边界)的一段曲线CG上的动点,其中G为曲线E和DC的交点.以B为圆心,BQ为半径r的圆分别与梯形的边AB、BC交于M、N两点.当Q点在曲线段CG上运动时,试求圆半径r的范围及VP﹣BMN的范围.20. (10分)(2017·虹口模拟) 在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.21. (10分) (2016高一上·台州期末) 如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足=λ .(1)若λ= ,用向量,表示;(2)若| |=4,| |=3,且∠AOB=60°,求• 的取值范围.22. (10分) (2017高二下·长春期中) 已知函数(1)求函数f(x)的极值(2)若x∈[﹣1,+∞),求函数f(x)的最值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、。

广东省广州市普通高中2017_2018学年高二数学上学期期末模拟试题10201801180335

广东省广州市普通高中2017_2018学年高二数学上学期期末模拟试题10201801180335

上学期高二数学期末模拟试题10第Ⅰ卷(共50分)一.选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,有且只有一项符合题目要求)1.已知p:x 3,q:x2 9则p是q的条件A、充分不必要B、必要不充分C、充要D、既不充分又不必要2.在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数可以是A、1个或2个或3个或4个B、0个或2个或4个C、1个或3个D、0个或4个3.若a、b、c为任意向量,m∈R,则下列等式不一定成立的是A、(a+b)+c=a+(b+c)B、(a+b)·c=a·c+b·c C、m(a+b)=m a+m b D、(a·b)c=a(b·c)4.已知a=(-3,2,5),b=(1,x,-1),且a⊥b,则x的值为A、3 B、4 C、5 D、65.已知椭圆的中心在原点,焦点在x轴上,焦距等于6,离心率等于则此椭圆的方程是3 5x y B、x y A、222211 1003610064C、x yD、2212516x y2212596.双曲线的离心率为2,则双曲线的两条渐近线的夹角是A、45°B、30°C、60°D、90°7.设正实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于A、13B、14C、16D、128.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子(假设它落在正方形区域内任何位置的机会均等),它落在阴影区域内的概率为面积为()23,则阴影区域的A、43B、83C、23D、无法计算x y2209.不等式组x y20表示的平面区域的面积是y0- 1 -A、3B、4C、5D、610.若函数f(x) 2x2的图像上点P(1,2)及邻近点Q(1 x,2 y)则yx的值为A、4B、4xC、4 2( x)2D、4 2 x第Ⅱ卷(共80分)二、填空题: (本题共5小题,每题5分,共25分)11.一个总体含有1000个个体,以系统抽样的方式从该总体中抽取一个容量为20的样本,则抽样间距为12.抛物线y x2的焦点坐标是13.平面直角坐标系中,圆心在原点,半径为1的园的方程是x2 y2 1.根据类比推理:空间直角坐标系中,球心在原点,半径为1的球的方程是14.已知向量a、b、c两两之间的夹角为60°,其模长都为1,则|a-b+2c|等于15.抛物线C:y2 4x被直线l:2x y 1 0截得的弦长为三、解答题(本题共4小题,共45分,解答应写出文字说明,证明过程或演算步骤.)16.(10分)证明不等式:a 3 a 2<a 1 a,其中a≥0.17.(11分)用数学归纳法证明等式:12n222…=1 33 5(2n 1)(2n 1)n n24n 2对于一切n N 都成立.x y2218.(11分)在双曲线中,F1、F2分别为其左右焦点,点P在双曲线上运动,求△PF1F21927的重心G的轨迹方程.- 2 -19.(13分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB =2,M是PD的中点.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成角的正弦值;(3)以AC的中点O为球心、AC为直径的球交PC于点N求点N到平面ACM的距离.参考答案一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,有且只有一项符合题目要求)二、填空题: (本题共5小题,每题5分,共25分)11.50112.(0,)413.x2 y2 z2 114.515.15三、解答题:(本题共4小题,共45分.解答应写出文字说明,证明过程或演算步骤.)16.用分析法证明注意格式的规范性- 3 -17.用数学归纳法证明注意格式的规范性y218.(y≠0)x2 13(3)由条件可得AN⊥NC106所求距离为27- 4 -。

2017-2018学年广东省广州市高二(上)期末数学试卷(理科)附解析

2017-2018学年广东省广州市高二(上)期末数学试卷(理科)附解析

2017-2018学年广东省广州市高二(上)期末数学试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.设集合A={-1,0,1},B={x|x2-2x-3≤0},则A∩B=()A. 0,B.C.D.2.若直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,则实数k的取值范围是()A. B. C. D.3.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A. B. C. D.4.已知cos(-x)=,则sin2x=()A. B. C. D.5.椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E的标准方程为()A. B. C. D.6.在某项体育比赛中,七位裁判为一个选手打出的分数如下:90,89,90,95,93,94,93去掉一个最高分和一个最低分,所剩分数的平均值和方差为()A. 92,2B. 92,C. 93,2D. 93,7.若当x∈R时,函数f(x)=a|x|(a>0,且a≠1).满足0<f(x)≤1,则函数y=log a||的图象大致是()A. B.C. D.8.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是()A. B. C. D.9.若正整数N除以正整数m后的余数为r,则记为N≡r(modm),例如10≡2(mod 4).下面程序框图的算法源于我国古代算术《中国剩余定理》,则执行该程序框图,输出的i等于()A. 8B. 16C. 32D. 4110.已知椭圆C的中心在原点,左焦点F1右焦点F2均在x轴上,A为椭圆的有顶点,B为椭圆的上端点,P是椭圆上的一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率是()A. B. C. D.11.已知圆x2+y2=1,点A(1,0),△ABC内接于圆,且∠BAC=60°,当B、C在圆上运动时,BC中点的轨迹方程是()A. B.C. D.12.如图,在正方体ABCD-AB1C1D1中,E、F分别为棱DD1、AB上的点,则下列判断正确的个数有()①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共20.0分)13.命题“∀x∈R,x2+x+1≥0”的否定是______.14.已知向量||=1,||=2,且,,则向量,的夹角为______.15.函数f(x)=A sin(ωx+φ),(A>0,ω>0,0<φ<π)的图象如图所示,则f()的值为______.16.设函数f(x)=x+,记函数g(x)=,求函数g(x)在区间[-2,-]上的最小值为______.三、解答题(本大题共6小题,共70.0分)17.已知锐角△ABC内角A,B,C所对应的边分别是a,b,c,且2a sin B=b,(1)求角A的大小;(2)若a=,b=2,求cos C.18.已知公比大于1的等比数列{a n}中,a2=2且6是a1+3与a3+4的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+••+nb n=a n,求数列{b n}的通项公式.19.如图所示,在三棱柱ABC-A1B1C1中,四边形AA1B1B是边长为2的正方形,四边形BB1C1C是以∠BB1C1=60°的菱形,平面AA1B1B⊥平面BB1C1C,AC1=2(1)求证:B1C⊥AC1;(2)求平面AB1C1与平面BB1C1C所成二面角的正切值.20.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为1:5,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.21.已知函数f(x)=.(1)用函数单调性的定义证明f(x)为R上的增函数;(2)若对任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求实数m的取值范围.22.在平面直角坐标系xOy中,已知椭圆C:>的离心率为,且椭圆C上一点N到点Q(0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.(Ⅰ)求椭圆C的方程;(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当<时,求实数t的取值范围.答案和解析1.【答案】A【解析】解:集合A={-1,0,1},B={x|x2-2x-3≤0}=[-1,3],则A∩B={-1,0,1},故选:A.根据题意和交集的运算直接求出A∩B.本题考查交集及其运算,以及不等式的解法,属于基础题.2.【答案】A【解析】解:解方程组,得,x=k+6,y=k+2∵直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,∴x=k+6>0,y=k+2<0,∴-6<k<-2.故选:A.解方程组,得,x=k+6,y=k+2,由直线y=-2x+3k+14与直线x-4y=-3k-2的交点位于第四象限,知x=k+6>0,y=k+2<0,由此能求出实数k 的取值范围.本题考查两条直线的交点坐标的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.3.【答案】A【解析】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A.根据题意,设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案本题考查等可能事件的概率,涉及用列举法列举基本事件,注意按一定的顺序,做到不重不漏.4.【答案】B【解析】解:由cos(-x)=,可得cos cosx+sinxsin=即(sinx+cosx)=.∴sinx+cosx=.那么(sinx+cosx)2=.即1+2sinxcosx=.∴sin2x=-故选:B.利用和与差公式化简,在平方即可求解;本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.5.【答案】C【解析】解:设左右焦点为F1、F2,上顶点为A,正方形边长=2,∴|AF|=|AF2|=a=2,|F1F2|=2,c=b=,1则椭圆E的标准方程为:+=1.故选:C.用正方形的正方形边长为2,得|AF1|=|AF2|=a=2,|F1F2|=2,c=b即可本题考查用待定系数法求椭圆的标准方程,属于基础题.6.【答案】B【解析】解:由题意知,所剩数据为90,90,93,94,93,所以其平均值为90+(3+4+3)=92;方差为(22×2+12×2+22)=2.8,故选:B.平均数就将剩余5个数的和除以5即可得到;方差就是将数据代入方差公式s2=[(x 1-)2+(x2-)2+(x3-)2+…+(x n-)2]即可求得.本题考查平均数与方差的求法,属基础题.7.【答案】A【解析】解:∵当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1.因此,必有0<a<1,易知函数y=log a||为偶函数,当x>0时,y=log a||=-log a x,此时函数为增函数,∴当x<0时,函数y=log a||,此时函数为减函数,只有A符合,故选:A.根据题意可得0<a<1,再根据函数的奇偶性和单调性即可判断本题考查指数函数与对数函数的图象及性质,属于基础题.8.【答案】B【解析】解:∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,∵俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上∴俯视图是有2条对角线且为实线的正方形,故选:B.相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).根据三视图看到方向,可以确定三个识图的形状,判断答案.本题考查了几何体的三视图,属于基础题.9.【答案】B【解析】解:模拟程序的运行,可得N=11,i=1i=2,N=13不满足条件“N=2(mod 3)”,i=4,N=17,满足条件“N=2(mod 3)”,不满足条件“N=1(mod5)”,i=8,N=25,不满足条件“N=2(mod 3)”,i=16,N=41,满足条件“N=2(mod 3)”,满足条件“N=1(mod5)”,退出循环,输出i的值为16.故选:B.模拟程序的运行过程,分析循环中各变量值的变化情况,即可得出答案.本题考查了程序框图的应用问题,当循环的次数不多,或有规律时,采用模拟循环的方法解答,是基础题.10.【答案】D【解析】解:如图,设椭圆方程为,∴x=-c时,y2=,∴P(-c,),F2(c,0);又A(a,0),B(0,b),PF2∥AB;∴;∴-=-;∴b=2c;a==c;∴=;即椭圆的离心率为:.故选:D.先画出图形,设椭圆方程为,求出P,F2,A,B四点的坐标,从而根据PF2∥AB即可得kPF2=kAB,从而可得到b=2c,根据a2=b2+c2即可得出a=c,从而得到该椭圆的离心率.考查椭圆的标准方程,根据椭圆标准方程可表示椭圆的焦点及顶点坐标,根据椭圆的方程,已知椭圆上点的横坐标能求其纵坐标,根据两点坐标求直线斜率,以及两平行直线的斜率关系,椭圆离心率的概念及计算.11.【答案】D【解析】解:设BC中点是D,∵圆心角等于圆周角的一半,∴∠BOD=60°,在直角三角形BOD中,有OD=OB=,故中点D的轨迹方程是:x2+y2=,如图,由角BAC的极限位置可得,x<,故选:D.将圆周角为定值转化为圆心角为定值,结合圆心距构成的直角三角形得OD=,从而得BC中点的轨迹方程.本题主要考查求轨迹方程,解决与平面几何有关的轨迹问题时,要充分考虑到图形的几何性质,这样会使问题的解决简便些.12.【答案】B【解析】解:如图对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.对于②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB1,而E点在面上的投影到此棱BB1的距离是定值,故正确;对于③在平面A1B1C1D1内总存在与平面B1EF平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;对于④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如F与A重合,E与D重合时的二面角与F与B重合,E与D重合时的情况就不一样.故此命题不正确综上,②③是正确的故选:B.由正方体的结构特征,对所给的几个命题用线面,面面之间的位置关系直接判断正误即可本题考点是棱柱的结构特征,考查对正方体的几何特征的了解,以及线面垂直,线面平行等位置关系的判定,二面角的求法等知识,涉及到的知识点较多,综合性强.13.【答案】∃x∈R,x2+x+1<0【解析】解:因为全称命题的否定是特称命题,所以命题“∀x∈R,x2+x+1≥0”的否定是:∃x∈R,x2+x+1<0;故答案为:∃x∈R,x2+x+1<0.直接利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定特称命题与全称命题的关系,基本知识的考查.14.【答案】【解析】解:+=(1,),可得|+|=,即有2+2+2•=3,即为1+4+2•=3,即有•=-1,则cos<,>==-,由0≤<,>≤π,可得<,>=.故答案为:.由向量模的公式及向量的平方即为模的平方,可得•=-1,再由夹角公式计算即可得到所求值.本题考查向量的夹角的求法,考查向量的数量积的定义和性质,考查运算能力,属于中档题.15.【答案】【解析】解::(1)由题设图象知,A=2,周期T=(-),解得:T=π.∴ω==2.∵点(,2)在函数图象上,∴2sin(2×+φ)=2,即sin(+φ)=1.∵0<φ<π,∴φ=.故得f(x)=2sin(2x),那么f()=2sin(2×)=故答案为:.根据图象求出A,ω和φ,即可求函数f(x)的解析式;可求f()的值本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.16.【答案】2【解析】解:当x>0时,g(x)=f(x)=x+,当x<0时,g(x)=f(-x)=-x-,导数为g′(x)=-1+,可得-2<x<-1时,g′(x)<0,g(x)递减;-1<x<-时,g′(x)>0,g(x)递增,可得x=-1处g(x)在区间[-2,-]上取得最小值,且为2.故答案为:2.分别求得x>0,x<0时g(x)的解析式,运用导数判断单调性,可得最小值.本题考查分段函数的运用:求解析式,考查导数的运用:求单调性和最值,考查运算能力和推理能力,属于基础题.17.【答案】(本题满分为10分)解:(1)∵2a sin B=b,∴2sin A sin B=sin B,∴由sin B≠0,可得:2sin A=,sin A=,∵△ABC为锐角三角形,∴∠A=…5分(2)∵a=,b=2,∠A=,∴由余弦定理可得:7=22+c2-2×,可得:c2-2c-3=0,解得:c=3或-1(舍去),∴cos C===…10分【解析】(1)利用正弦定理把已知等式转化,求得sinA的值,进而求得A.(2)利用余弦定理求得c,进而根据余弦定理求得cosC的值.本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用正弦定理完成边角问题的转化和化归,属于基础题.18.【答案】解:(1)公比q大于1的等比数列{a n}中,a2=2且6是a1+3与a3+4的等差中项,可得a1q=2,12=(a1+3)+(a3+4),即有12=(a1+3)+(a1q2+4),解得a1=1,q=2,(q=舍去),则a n=a1q n-1=2n-1,n∈N*;(2)数列{b n}满足b1+2b2+3b3+••+nb n=a n,①可得n=1时,b1=a1=1;由n≥2时,b1+2b2+3b3+••+(n-1)b n-1=a n-1,②①-②可得nb n=a n-a n-1=2n-1-2n-2=2n-2,则b n=,可得b n=,,.【解析】(1)由等比数列的通项公式和等差数列的中项性质,解方程可得公比q,进而得到所求通项公式;(2)令n=1,可得首项b1,将n换为n-1,相减可得b n,n≥2,即可得到所求通项公式.本题考查等差数列中项性质和等比数列的通项公式,数列递推式的应用,考查化简运算能力,属于中档题.19.【答案】(1)证明:连接BC1,∵BB1C1C是菱形,BC1,B1C是菱形的对角线,∴BC1⊥B1C,∵AA1B1B是正方形,∴AB⊥BB1,∵平面AA1B1B⊥平面BB1C1C且平面AA1B1B∩平面BB1C1C=BB1,∴AB⊥平面BB1C1C,∵B1C⊂平面BB1C1C,∴AB⊥B1C,又AB∩BC1=B,AB,BC1⊂平面ABC1,∴B1C⊥平面ABC1,则B1C⊥AC1;(2)解:连接AB1,取B1C1的中点E,∵四边形AA1B1B是边长为2的正方形,∴,又∵AC1=2,∴△AB1C1是等腰三角形,则AE⊥B1C1,又四边形BB1C1C是以∠BB1C1=60°的菱形,E是B1C1的中点,∴,则∠BEB1=90°,即BE⊥B1C1.∴∠AEB是平面AB1C1与平面BB1C1C所成二面角的平面角,由(1)知AB⊥平面BB1C1C,BE⊂平面BB1C1C,∴AB⊥BE,可得△ABE是直角三角形.∵BE=,AB=2,∴tan∠AEB=.【解析】(1)连接BC1,由已知可得BC1⊥B1C,AB⊥BB1,再由平面AA1B1B⊥平面BB1C1C结合面面垂直的性质得AB⊥平面BB1C1C,则AB⊥B1C,由线面垂直的判定可得B1C⊥平面ABC1,则B1C⊥AC1;(2)连接AB1,取B1C1的中点E,由已知可得∠AEB是平面AB1C1与平面BB1C1C所成二面角的平面角,然后求解三角形可得平面AB1C1与平面BB1C1C所成二面角的正切值.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了二面角的平面角的求法,是中档题.20.【答案】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34),共10个,其中年人均用水量都不超过30吨的基本事件(19,25),(19,28),(25,28),共3个,∴从郊区的这5户居民中随机抽取2户,其年人均用水量都不超过30吨的概率:P=.(2)设该城市郊区的居民用户数为a,则其城区的居民用户数为3a,依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:=>80%,故此方案符合国家保“基本”政策.【解析】(1)从5户郊区居民用户中随机抽取2户,利用列举法求出其年人均用水量构成的所有基本事件和其中年人均用水量都不超过30吨的基本事件,由此能求出从郊区的这5户居民中随机抽取2户,其年人均用水量都不超过30吨的概率.(2)设该城市郊区的居民用户数为a,则其城区的居民用户数为3a,依题意,求出该城市年人均用水量不超过30吨的居民用户的百分率,从而得到此方案符合国家保“基本”政策.本题主要考查古典概率、茎叶图等知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.21.【答案】解:(1)任取x1,x2∈R,且x1<x2,则f(x1)-f(x2)=-=[(e-e)+(-)]=[(e-e)(1+)]=,∵x1<x2,∴e<e,∴e-e<0,e+1>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)为R上的增函数.(2)x∈R,∵f(-x)==-=-f(x),∴f(x)是奇函数.又∵f(x)为R上的增函数,∴不等式f(mt2+1)+f(1-mt)>0⇔f(mt2+1)>f(mt-1),∴mt2+1>mt-1对任意的t∈R都成立,即mt2-mt+2>0对任意的t∈R都成立,①m=0时,不等式化为2>0恒成立,符合题意;②m≠0时,有△ ,即0<m<8,综上所述:实数m的取值范围是:[0,8).【解析】(1)用单调性定义证明即可;(2)先判断函数奇偶性,再利用函数奇偶性和单调性将不等式化为mt2+1>mt-1,最后对m分两种情况讨论.本题考查了函数的奇偶性和单调性、分类讨论思想,属中档题.22.【答案】解:(Ⅰ)∵,∴a2=4b2,则椭圆方程为,即x2+4y2=4b2.设N(x,y),则=,当y=-1时,|NQ|有最大值为,解得b2=1,∴a2=4,椭圆方程是;(Ⅱ)设A(x1,y1),B(x2,y2),P(x,y),AB方程为y=k(x-3),由,整理得(1+4k2)x2-24k2x+36k2-4=0.由△=242k4-16(9k2-1)(1+4k2)>0,得<,,.∴,,,则,.由点P在椭圆上,得,化简得36k2=t2(1+4k2)①,又由<,即<,将x1+x2,x1x2代入得<,化简得(8k2-1)(16k2+13)>0,则>,>,∴<<②,由①,得,联立②,解得3<t2<4,∴<<或<<.【解析】(Ⅰ)由离心率e=及a2=b2+c2可得关于a,b的方程,由此可简化椭圆方程,设N(x,y),则|NQ|可表示为关于y的函数,据此可求得其最大值为4,解得b,进而求得a;(Ⅱ)设A(x1,y1),B(x2,y2),P(x,y),AB方程为y=k(x-3),与椭圆方程联立消掉y得x的二次方程,由△>0得,由韦达定理及可用k、t表示出点P的坐标,代入椭圆方程得36k2=t2(1+4k2)①,由弦长公式及可得,故②,联立①②可求得t的范围;本题考查直线方程、椭圆方程、直线与椭圆的位置关系、向量的线性运算,考查学生的运算能力、解决问题的能力,综合性较强.。

广东广州市普通高中2017-2018学年上学期高二数学期末模拟试题+01+Word版含答案

广东广州市普通高中2017-2018学年上学期高二数学期末模拟试题+01+Word版含答案

上学期高二数学期末模拟试题01一、选择题:本大题共12小题,每小题5分,共60分.每小题选项中只有一项符合题意要求。

1.下面四个条件中,使a b >成立的充分不必要条件为( ) A .1a b >+ B .1a b >- C .22a b > D .33a b >2.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 3.不等式x -1x +2>1的解集是( )A .{x|x<-2}B .{x|-2<x<1}C .{x|x<1}D .{x|x ∈R}4.设M =2a(a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M>N B .M ≥N C .M<N D .M ≤N5. 若双曲线()013222>=-a y ax 的离心率为2,则a 等于( ) A. 2 B. 3 C. 23D. 16.设a >0,b >0,若3是a 3与b3的等比中项,则1a +1b 的最小值为( )A .8B .4C .1 D.147. 已知△ABC 的顶点B ,C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,则椭圆的另一个焦点在BC 边上,则△ABC 的周长是( ) A. 32B. 6C. 34D. 128. 双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值是( )9.在△ABC 中,a =15,b =10,A =60°,则cosB =( ) A .-223 B.223 C .-63D.6310.若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( )A .a =﹣8 b =﹣10b =﹣9C .a =﹣1 b =9D .a =﹣1 b =211.已知1F 、2F 为双曲线右焦点,点P 在C 上,∠21PF F =060,则P12. 已知直线12--=k kx y 与曲线4212-=x y 有公共点,则k 的取值范围是 ( ) A.B. ⎪⎭⎫⎝⎛∞+⋃⎥⎦⎤ ⎝⎛-,2141,21 C. ⎪⎭⎫⎝⎛∞+⋃⎪⎭⎫ ⎝⎛--,2141,21D. ⎪⎭⎫⎝⎛∞+-,21 二、填空题:本大题共4个小题,每小题4分,共16分.把答案填在答题纸相应位置。

【精品】2017-2018学年广东省广州八十九中9、12班高二(上)期末数学试卷(文科)

【精品】2017-2018学年广东省广州八十九中9、12班高二(上)期末数学试卷(文科)
2017-2018 学年广东省广州八十九中 9、12 班高二(上)期末数 学试卷(文科)
一、填空题(每小题 5 分,共 60 分) 1.(5 分)已知集合 A={ x| x2﹣ 2x≤0} ,B={ x| ﹣1<x<1} ,则 A∩ B=( ) A.{ x| 0≤x<1} B.{ x| ﹣ 1< x≤ 0} C.{ x| ﹣1<x<1} D. { x| ﹣ 1< x≤ 2} 2.(5 分)设命题 p: ? n∈N,n2> 2n,则¬ p 为( ) A.? n∈ N,n2>2n B. ? n∈N,n2≤ 2n C.? n∈ N, n2≤2n D. ? n∈N,n2=2n 3.(5 分)设 a,b 是实数,则 “+ab> 0”是“ a>b 0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
【解答】 解:根据题意,双曲线 C: ﹣ =1( a>0,b>0)的离心率为 ,
第 8 页(共 20 页)
则有 e2= =
=1+ = ,
即 = ,即有 = ,
又由双曲线的焦点在 x 轴上,则其渐近线方程为: y=± x; 故选: C. 【点评】 本题考查双曲线的标准方程,注意双曲线的焦点的位置.
10.( 5 分)已知 log2a>log2b,则下列不等式一定成立的是(
【 解 答 】 解 : ∵ ∥ , ∴ ﹣ 3x=12 , ∴ x= ﹣ 4 , ∴

故选: C. 【点评】 本题考查向量的共线以及向量的求法,是基础题.
5.(5 分)已知 { an} 为等比数列, a4+a7=2,a5a6=﹣8,则 a1+a10=( )
A.7 B.5 C.﹣ 5 D.﹣ 7
【分析】 由 a4+a7=2,及 a5a6=a4a7=﹣8 可求 a4, a7,进而可求公比 q,代入等比 数列的通项可求 a1,a10,即可

2017-2018学年广东省广州市高二(上)学业水平测试数学试卷与解析word(必修)

2017-2018学年广东省广州市高二(上)学业水平测试数学试卷与解析word(必修)

2017-2018学年广东省广州市高二(上)学业水平测试数学试卷(必修)一、选择题(共12小题,每题5分,共60分)1.(5分)已知集合A={1,2,3},B={x|x﹣3<0},则A∪B=()A.{1,2}B.{1,2,3}C.(﹣∞,3]D.(﹣∞,3)2.(5分)直线3x+y﹣1=0与直线x﹣3y+1=0的位置关系是()A.平行B.垂直C.相交但不垂直D.不能确定3.(5分)在等比数列{a n}中,a1=1,公比q≠±1,若a k=a2a5,则k等于()A.5 B.6 C.7 D.84.(5分)下列函数中,在区间[0,+∞)上单调递增的是()A.y=﹣x2B.y=lnx C.y=x+D.y=5.(5分)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶6.(5分)执行如图所示的程序框图,若输入x=1,则输出k的值为()A.12 B.13 C.14 D.157.(5分)若tanθ=2,则sin2θ=()A.B.C.﹣ D.﹣8.(5分)已知变量x,y满足约束条件,则z=x﹣2y的最小值为()A.﹣6 B.﹣5 C.1 D.39.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若m⊥n,m∥α,n∥β,则α∥βB.若m⊥n,α∩β=m,n⊄α,则α⊥βC.若m∥n,m⊥α,n⊥β,则α⊥βD.若m∥n,n⊥β,m⊂α,则α⊥β10.(5分)已知函数f(x)=x3,若a=﹣f(log3),b=f(log39.1),c=f(20.9),则a,b,c大大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b11.(5分)若函数y=sin(2x+φ)(﹣π<φ<π)的图象向右平移个单位后,与函数y=sin(2x﹣)的图象重合,则φ的值为()A.﹣B.﹣C.D.12.(5分)已知函数f(x)=,若a≠b,且f(a)=f(b),则a2+b2()A.既有最大值,也有最小值B.有最大值,无最小值C.有最小值,无最大值D.既无最大值,也无最小值二、填空题(共4小题,每题5分,共20分)13.(5分)已知向量=(2,﹣3),=(m,﹣2),且⊥,则m=.14.(5分)若函数f(x)=2x+是奇函数,则实数a的值为.15.(5分)向面积为S的△ABC内任意投一点P,则△PBC的面积不小于的概率为.16.(5分)《九章算术》是我国古代内容极为丰富的数学弭名著,书中把“底面为直角三角形的直棱柱”称为堑堵,今有一将堑堵,其高为2,底面直角三角形的斜边长为4,则该堑堵的外接球的表面积为.三、解答题(本题共6小题,70分)17.(10分)已知等差数列{a n}的公差为2,前n项和为S n,且a3+S3=18.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.18.(12分)一台机器的使用年限x(年)和所支出的维修费用y(万元)有如下统计数据:已知y与x之间有线性相关关系.(Ⅰ)求y与x的回归方程;(2)估计使用年限为10年时,维修费用约是多少?参考公式:线性回归方程=bx+a中斜率和截距公式分别为:b=,a=﹣b.19.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,且b2+c2=a2+bc.(Ⅰ)求A;(Ⅱ)若a=2,b=1,求sin(C﹣A).20.(12分)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PA⊥ABCD,点E是PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)若AB=1,BC=,∠ABC=45°,PA=2,求点C到平面BDE的距离.21.(12分)已知圆C与y轴相切于点A(0,1),且被x轴所截得的弦长为2,圆心C在第一象限.(Ⅰ)求圆C的方程;(Ⅱ)若点P是直线l:2x+y+5=0上的动点,过P作圆C的切线,切点为B,当△PBC的面积最小时,求切线PB的方程.22.(12分)已知二次函数f(x)=ax2+bx+c的两个零点x1,x2,且f(1)=2a.(Ⅰ)求的取值范围;(Ⅱ)若a>c,且函数g(x)=f(x﹣x1)+f(x﹣x2)在区间[0,1]上的最大值为,试判断点(a,b)是否在直线x+y=1上?并说明理由.2017-2018学年广东省广州市高二(上)学业水平测试数学试卷(必修)参考答案与试题解析一、选择题(共12小题,每题5分,共60分)1.(5分)已知集合A={1,2,3},B={x|x﹣3<0},则A∪B=()A.{1,2}B.{1,2,3}C.(﹣∞,3]D.(﹣∞,3)【解答】解:由B={x|x﹣3<0},得B={x|x<3},则A∪B={x|x≤3}=(﹣∞,3],故选:C2.(5分)直线3x+y﹣1=0与直线x﹣3y+1=0的位置关系是()A.平行B.垂直C.相交但不垂直D.不能确定【解答】解:直线3x+y﹣1=0化为y=﹣3x+1,∴k1=﹣3.直线x﹣3y+1=0化为y=x+.∴k2=.∴k1•k2=(﹣3)×=﹣1.∴此两条直线垂直.故选:B.3.(5分)在等比数列{a n}中,a1=1,公比q≠±1,若a k=a2a5,则k等于()A.5 B.6 C.7 D.8【解答】解:在等比数列{a n}中,a1=1,公比q≠±1,若a k=a2a5,则a1q k﹣1=a12q5,可得k﹣1=5,即k=6,故选:B.4.(5分)下列函数中,在区间[0,+∞)上单调递增的是()A.y=﹣x2B.y=lnx C.y=x+D.y=【解答】解:对于A,函数在区间[0,+∞)上单调递减,不合题意;对于B,函数在区间(0,+∞)上单调递增,不合题意;对于C,y′=1﹣=,令y′<0,解得:0<x<1,故函数在(0,1)递减,不合题意;对于D,函数在[0,+∞)递增,符合题意;故选:D.5.(5分)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶【解答】解:一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.6.(5分)执行如图所示的程序框图,若输入x=1,则输出k的值为()A.12 B.13 C.14 D.15【解答】解:模拟程序的运行,可得x=1,k=10执行循环体,x=3,k=11不满足条件x>2k,执行循环体,x=7,k=12不满足条件x>2k,执行循环体,x=15,k=13不满足条件x>2k,执行循环体,x=31,k=14此时,满足条件x>2k,退出循环,输出k的值为14.故选:C.7.(5分)若tanθ=2,则sin2θ=()A.B.C.﹣ D.﹣【解答】解:∵tanθ=2,则sin2θ====.故选:A.8.(5分)已知变量x,y满足约束条件,则z=x﹣2y的最小值为()A.﹣6 B.﹣5 C.1 D.3【解答】解:由z=x﹣2y得y=x﹣z,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线y=x﹣z,由图象可知当直线y=x﹣z,过点A时,直线y=x﹣z的截距最大,此时z 最小,由,解得,即A(﹣1,2).代入目标函数z=x﹣2y,得z=﹣1﹣2×2=﹣5.∴目标函数z=x﹣2y的最小值是﹣5.故选:B.9.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若m⊥n,m∥α,n∥β,则α∥βB.若m⊥n,α∩β=m,n⊄α,则α⊥βC.若m∥n,m⊥α,n⊥β,则α⊥βD.若m∥n,n⊥β,m⊂α,则α⊥β【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊥n,m∥α,n∥β,则α与β相交或平行,故A错误;在B中,若m⊥n,α∩β=m,n⊄α,则α与β相交或平行,故B错误;在C中,若m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故C错误;在D中,若m∥n,n⊥β,m⊂α,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.10.(5分)已知函数f(x)=x3,若a=﹣f(log3),b=f(log39.1),c=f(20.9),则a,b,c大大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【解答】解:∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(20.9)<f(log39.1)<f(log310),即c<b<a,故选:C11.(5分)若函数y=sin(2x+φ)(﹣π<φ<π)的图象向右平移个单位后,与函数y=sin(2x﹣)的图象重合,则φ的值为()A.﹣B.﹣C.D.【解答】解:把函数y=sin(2x+φ)(﹣π<φ<π)的图象向右平移个单位后,得到y=sin(2x﹣+φ)的图象,根据所得图象与函数y=sin(2x﹣)的图象重合,可得﹣+φ=2kπ﹣,k ∈Z.令k=0,可得φ=,故选:C.12.(5分)已知函数f(x)=,若a≠b,且f(a)=f(b),则a2+b2()A.既有最大值,也有最小值B.有最大值,无最小值C.有最小值,无最大值D.既无最大值,也无最小值【解答】解:函数f(x)=,若a≠b,且f(a)=f(b),可设a>1,则f(a)=,f(b)=,可得=,即为a﹣1=1﹣b,可得b=2﹣a,则a2+b2=a2+(2﹣a)2=2a2﹣4a+4=2(a﹣1)2+2,由于a>1,可得2(a﹣1)2+2>2,则a2+b2无最大值,也无最小值.故选:D.二、填空题(共4小题,每题5分,共20分)13.(5分)已知向量=(2,﹣3),=(m,﹣2),且⊥,则m=﹣3.【解答】解:根据题意,向量=(2,﹣3),=(m,﹣2),若⊥,则有•=2m+(﹣3)×(﹣2)=0,解可得m=﹣3;故答案为:﹣314.(5分)若函数f(x)=2x+是奇函数,则实数a的值为﹣1.【解答】解:函数f(x)=2x+是奇函数,可得f(x)的定义域为R,f(﹣x)=﹣f(x),即为2﹣x+a•2x=﹣2x﹣a•2﹣x,化为(1+a)(2x+2﹣x)=0,可得a+1=0,解得a=﹣1.故答案为:﹣1.15.(5分)向面积为S的△ABC内任意投一点P,则△PBC的面积不小于的概率为.【解答】解:记事件A={△PBC的面积不小于},基本事件空间是三角形ABC的面积,如图所示;事件A的几何度量为图中去掉阴影部分的面积,其中DE是三角形的中位线;因为阴影部分的面积是整个三角形面积的,所以P(A)=1﹣=1﹣=.故答案为:.16.(5分)《九章算术》是我国古代内容极为丰富的数学弭名著,书中把“底面为直角三角形的直棱柱”称为堑堵,今有一将堑堵,其高为2,底面直角三角形的斜边长为4,则该堑堵的外接球的表面积为20π.【解答】解:∵今有一将堑堵,其高为2,底面直角三角形的斜边长为4,∴该堑堵的外接球半径R==,∴该堑堵的外接球的表面积S=4πR2=4π×5=20π.故答案为:20π.三、解答题(本题共6小题,70分)17.(10分)已知等差数列{a n}的公差为2,前n项和为S n,且a3+S3=18.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【解答】解:(Ⅰ)等差数列{a n}的公差d=2,前n项和为S n,且a3+S3=18.则:a3+3a2=18,即:a1+2d+3(a1+d)=18,解得:a1=2.所以:a n=a1+(n﹣1)d=2n.(Ⅱ)由于:a n=2n,则:,所以:.则:==1=.18.(12分)一台机器的使用年限x(年)和所支出的维修费用y(万元)有如下统计数据:已知y与x之间有线性相关关系.(Ⅰ)求y与x的回归方程;(2)估计使用年限为10年时,维修费用约是多少?参考公式:线性回归方程=bx+a中斜率和截距公式分别为:b=,a=﹣b.【解答】解:(1)=4,=0.5,故(x i﹣)(y i﹣)=0.6+0.2+0.2+0.6=1.6,=4+1+0+1+4=10,故=0.16,=0.5﹣0.16×4=﹣0.14,故回归方程是=0.16x﹣0.14;(2)x=10时,=1.46,故维修费用约是1.46万元.19.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,且b2+c2=a2+bc.(Ⅰ)求A;(Ⅱ)若a=2,b=1,求sin(C﹣A).【解答】解:(Ⅰ)由余弦定理可得cosA===,∵0<A<π,∴A=,(Ⅱ)由正弦定理可得=,∴sinB==,∵a>b,∴cosB=,∴sin(C﹣A)=sin(π﹣B﹣A﹣A)=﹣sin(B+2A)=﹣sinBcos2A﹣cosBsin2A=﹣×﹣×=﹣.20.(12分)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PA⊥ABCD,点E是PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)若AB=1,BC=,∠ABC=45°,PA=2,求点C到平面BDE的距离.【解答】证明:(Ⅰ)连结AC、BD,交于点O,连结OE,∵四棱锥P﹣ABCD的底面ABCD是平行四边形,∴O是AC中点,∵点E是PA的中点,∴OE∥PC,∵OE⊂平面BDE,PC⊄平面BDE,∴PC∥平面BDE.解:(Ⅱ)以A为原点,在平面ABCD中过A作AD的垂线为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,C(,,0),B(,﹣,0),D(0,,0),E(0,0,1),=(﹣,,0),=(﹣,,1),=(0,,0),设平面BDE的法向量=(x,y,z),则,取x=3,得=(3,1,),点C到平面BDE的距离d===.21.(12分)已知圆C与y轴相切于点A(0,1),且被x轴所截得的弦长为2,圆心C在第一象限.(Ⅰ)求圆C的方程;(Ⅱ)若点P是直线l:2x+y+5=0上的动点,过P作圆C的切线,切点为B,当△PBC的面积最小时,求切线PB的方程.【解答】解:(Ⅰ)∵圆C与y轴相切于点A(0,1),圆心C在第一象限,∴设圆心坐标为(a,1),则半径为r=a(a>0),又圆被x轴所截得的弦长为2,可得,得a=2.∴圆C的方程为(x﹣2)2+(y﹣1)2=4;(Ⅱ)如图,P为直线l:2x+y+5=0上的动点,过P作圆C的切线,切点为B,连接CB,则CB⊥PB,∴△PBC的面积S=.要使△PBC的面积最小,则|PB|最小,也就是|PC|最小,此时CP⊥l,由l:2x+y+5=0,可得k l=﹣2,则CP所在直线斜率为,由直线方程的点斜式可得CP:y﹣1=,即x﹣2y=0.联立,解得P(﹣2,﹣1),设切线方程为y+1=k(x+2),即kx﹣y+2k﹣1=0.由,解得k=0或k=.∴所求切线PB的方程为y=﹣1或4x﹣3y+5=0.22.(12分)已知二次函数f(x)=ax2+bx+c的两个零点x1,x2,且f(1)=2a.(Ⅰ)求的取值范围;(Ⅱ)若a>c,且函数g(x)=f(x﹣x1)+f(x﹣x2)在区间[0,1]上的最大值为,试判断点(a,b)是否在直线x+y=1上?并说明理由.【解答】解:(Ⅰ)二次函数f(x)=ax2+bx+c的两个零点x1,x2,且f(1)=2a,可得a+b+c=2a,即c=a﹣b,△=b2﹣4ac=b2﹣4a(a﹣b)>0,由a2>0,可得()2+﹣4>0,解得>2﹣2或<﹣2﹣2;(Ⅱ)若a>c,则b>0,且f(x1)=f(x2)=0,即ax12+bx1+c=ax22+bx2+c=0,x1+x2=﹣,x1x2=,g(x)=f(x﹣x1)+f(x﹣x2)=a(x﹣x1)2+b(x﹣x1)+c+a(x﹣x2)2+b(x﹣x2)+c=2ax2+x(2b﹣2ax1﹣2ax2)+ax12﹣bx1+ax22﹣bx2+2c=2ax2+4bx+,当a>0时,g(x)在[0,1]递增,最大值只能为g(1),由g(1)=2a+4b+=,可得(a+b)2=2,即a+b=,则(a,b)不在直线x+y=1上;当a<0时,g(x)的最大值为g(0)或g(1)或g(﹣),由g(0)==,解得b=1,若(a,b)在直线x+y=1上,则a+b=1,可得a=0显然不成立;由g(1)=2a+4b+=,可得(a+b)2=2,即a+b=,显然(a,b)不在直线x+y=1上;由g(﹣)==0显然不成立.综上可得,点(a,b)不在在直线x+y=1上.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2018年广东省广州八十九中高二上学期期末数学试卷(文科)与参考答案

2018年广东省广州八十九中高二上学期期末数学试卷(文科)与参考答案

百度文库2017-2018学年广东省广州八十九中高二(上)期末数学试卷(文科)一、填空题(每小题5分,共60分)1.(5分)已知集合A={x|x2﹣2x≤0},B={x|﹣1<x<1},则A∩B=()A.{x|0≤x<1}B.{x|﹣1<x≤0}C.{x|﹣1<x<1}D.{x|﹣1<x≤2} 2.(5分)设命题p:?n∈N,n2>2n,则¬p为()A.?n∈N,n2>2n B.?n∈N,n2≤2n C.?n∈N,n2≤2n D.?n∈N,n2=2n 3.(5分)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知向量,,且∥,则的值为()A.13 B.14 C. D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣76.(5分)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是()A.B.12 C.D.87.(5分)如表是某厂1﹣4月份用水量(单位:百吨)的一组数据:月份x1234用水量 4.543 2.5由散点可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+a,则a等于()A.5.1 B.5.25 C.5.3 D.5.48.(5分)函数的零点所在的区间为()A. B. C. D.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=x10.(5分)已知log2a>log2b,则下列不等式一定成立的是()A.B.log2(a﹣b)>0 C.D.2a﹣b<111.(5分)已知F1,F2分别是双曲线C:﹣=1(a,b>0)的左、右焦点,点P在C上,若PF1⊥F1F2,且PF1=F1F2,则C的离心率是()A.﹣1 B.C.+1 D.﹣112.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6 C.12 D.7二、填空题(每小题5分,共20分)13.(5分)已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边为射线l:y=﹣2x(x≥0),则cosθ的值为.14.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.15.(5分)设实数x,y满足,则的最大值是.16.(5分)已知函数y=a1﹣x(a>0且a≠1)的图象恒过点A.若点A在直线mx+ny ﹣1=0(mn>0)上,则的最小值为.。

广东省广州市普通高中2017-2018学年高二数学上学期期末模拟试题03

广东省广州市普通高中2017-2018学年高二数学上学期期末模拟试题03

上学期高二数学期末模拟试题03、选择题:本大题共12小题,每小题5分,共60分•每小题选项中只有一项符合题意要求。

1 .设a R ,则a 1是丄:::1的( )aA .充分但不必要条件B C.充要条件 D2.下列函数中,最小值是 2的是(Ax 丄5丄1 /c兀、A . yB .y =sinx(0 :: x ) 5 xsinx 21 C. y 二二 x 亠,x D . y=2lgx — (x 1)ig x3.在 ABC 中,B=30 , C=45 , c=1,则最短边长为()A 6 D 21n /3A .B .C .D.——3 2 2 24. 已知点A (-3, -1)和B (4,-6)在直线l :3x-2y-a=0的两侧,贝U a 的取值范围是() A (-24 , 7) B (-7,24) C (-::,-7)(24,+:: ) D (—二,-24) (7,•::)5. 方程2x 2 -5x • 2 = 0的两个根可分别作为()的离心率。

A .椭圆和双曲线B .两条抛物线C.椭圆和抛物线 D .两个椭圆26.若双曲线的顶点为椭圆x 2 - 1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为21,则双曲线的方程是( )&有关命题的说法错误.的是()A .命题“若X 2-3X ,2=0则x =1 ”的逆否命题为:“若x = 1,则X 2-3X '2=0 ”B . “ x =1 ”是“ x 2 -3x • 2 =0 ”的充分不必要条件C.对于命题 p : T x 0 • R , x 02 x 0 1 ■■ 0 .则—p : - x • R , x 2 x 1 > 0.必要但不充分条件 .既不充分也不必要条件 )A. x 2 - y 2 =1B. y 2 - x 2 = 1 — 2 2 cC. x - y 二 22 2D. y - x 27.过双曲线x 2—厶=1的右焦点F 作直线l 交双曲线于A, B 两点,2若|AB|=4A . 1条B . 2条C. 3条D. 4条D.若p q为假命题,则p、q均为假命题9.在等比数列{a n}中,a5 a6 a^3 , a6 a7 a8=24,则a7 a8 a g=()A . 1 B2.3 C .5于D -害12.设 f (X )= X2-6X +5,若实数 X , y 满足条件f (y) w f (X )w 0, 则1的最大值为Xi —A . 5B . 3 C. 1 D . 9 — 4.5、填空题:本大题共 4个小题,每小题4分,共16分•把答案填在答题纸相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第一学期高二年级期末考试(数学文科)问 卷一、填空题(每小题5分,共60分)1.已知集合}{220A x x x =-≤,}{11B x x =-<<,则A B = ( )A .}{01x x ≤<B .}{10x x -<≤C .}{11x x -<<D .}{12x x -<≤ 2.设命题p :2,2n n N n ∃∈>,则p ⌝为( )A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2nn N n ∀∈≤ D .2,=2nn N n ∃∈ 3.设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知向量 p ()23=-,, q (),6x =,且//p q ,则 p q +的值为( )AB .13C .5 D5.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A .7B .7-C .5D .-56.如右图所示,一个简单空间几何体的三视图其主视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是( )A.4+ B .12 C. D .8 7.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,其回归方程是ˆ0.7yx a =-+,则a 等于( )A .5.2B .5.35C .5.15D .5.25 8.函数()2f x x=的零点所在的区间为( )A .10,2⎛⎫ ⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭ C .31,2⎛⎫ ⎪⎝⎭ D .3,22⎛⎫⎪⎝⎭俯视图第6题9.已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为错误!未找到引用源。

,则C 的渐近线方程为( ) A .12y x =±B .13y x =±C .14y x =± D .y x =± 10.已知22log log a b >,则下列不等式一定成立的是( )A .11a b >B .()2log 0a b ->C .1132a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .21a b-<11.已知21,F F 分别是双曲线1:2222=-by a x C (0,>b a )的左、右焦点,点P 在C 上,若211F F PF ⊥,且211F F PF =,则C 的离心率是( ) A .12- B .12+ C .215+ D .15- 12.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于A B 、两点, 则AB =( )AB .6C .12 D.二、填空题(每小题5分,共20分)13.已知角q 的顶点与原点重合,始边与x 轴正半轴重合,终边为射线l :2 (0)y x x =-?,则cos q 的值为 .14.偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -= .15.设实数,x y 满足20240230x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x 的最大值是 .16.已知函数1(0xy a a -=>且1)a ≠的图象恒过点A ,若点A 在直线1m x n y +=上,则12m n+的最小值为 .三、解答题(第17题10分,其他每题12分,共70分) 17.已知函数()2sin cos cos2f x x x x =+(x ∈R)(1)当x 取什么值时,函数()f x 取得最大值,并求其最大值; (2)若θ为锐角,且83f πθ⎛⎫+= ⎪⎝⎭,求tan θ的值.18.对某校高二年级学生参加社区服务次数进行统计,随机抽取N 名学生作为样本,得到这N 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中,N p 及图中a 的值;(2)在所取样本中,从参加社区服务的次数不少于9次的学生中任选2人,求至少有一人参加社区服务次数在区间[]12,15内的概率.19.如图,已知在侧棱垂直于底面的三棱柱111ABC A B C -中,33,5,cos 5AC AB CAB ==∠=,14,AA =点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)求证:11//AC CDB 平面; (3)求三棱锥 11A B CD -的体积.AB20.已知数列{}n a 满足715a =,且点*1(,)()n n a a n N +∈在函数2y x =+的图象上. (1)求数列{}n a 的通项公式;(2)设3n an b =,求数列{}n b 的前n 项和n T .21.已知圆C 与y 轴相切于点0,1A (),且被x 轴所截得的弦长为圆心C 在第一象限.(1)求圆C 的方程;(2)若点P 是直线:3450l x y ++=上的动点,过点P 作圆C 的切线,切点为B ,求PBC △面积的最小值.22.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,过点A (0,-b )和B (a ,0)的直线与原点的距离为32.(1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C 、D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.2017-2018学年第一学期高二年级期末考试(数学文科)参考答案一、选择题:ACDDBB DDACBC二、填空题: 13 514 3 、 315 2、 16三、解答题:17、解: (1) ()2sin cos cos2f x x x x =+sin 2cos 2x x =+22x x ⎫=+⎪⎪⎭s i n 24x π⎛⎫=+ ⎪⎝⎭. ………………3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x ………………5分(2) ∵8f πθ⎛⎫+= ⎪⎝⎭, 22πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …6分 ∴212cos 13θ-=. ……………7分∵θ为锐角,即02πθ<<, ∴cos θ=. ……………8分∴sin 3θ==. ∴sin tan cos 2θθθ==. ……10分18、解:(1)由分组[12,15)内的频数是2,频率是0.05,得20.05N=,所以40N =. ……2分 因为频数之和为40,所以104240n +++=,解得24n =.所以240.640n p N ===. ……4分因为a 是对应分组[6,9)的频率与组距的商,所以0.60.233p a ===. ……6分 (2)记“至少有一人参加社区服务次数在区间[12,15)内”为事件A .这个样本中参加社区服务次数不少于9次的学生共有426+=人. ……7分 记在区间[9,12)内的4人为1234,,,a a a a ,在区间[12,15)内的2人为12,b b . 从这6人中任选2人的所有可能结果有:1213141112{,},{,},{,},{,},{,},a a a a a a a b a b23242122343132414212{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}a a a a a b a b a a a b a b a b a b b b ,共15种. ……9分 事件A 包含的结果有:11122122313241{,},{,},{,},{,},{,},{,},{,},a b a b a b a b a b a b a b4212{,},{,}a b b b ,共9种. ……11分所以所求概率为93()0.6155P A ===. ……12分19、证明(1)在ABC 中,由余弦定理得4BC =,ABC ∴ 为直角三角形,AC BC ∴⊥ ……2分又1CC ⊥ 面ABC 1CC AC ∴⊥,1CC BC C ⋂=∴1AC BCC ⊥面1AC BC ∴⊥ ……4分(2)连结1B C 交1BC 于点E ,则E 为1BC 的中点,连结DE ,则在1ABC 中,1//DE AC ,又1DE CDB ⊂面,1AC CDB 面⊄ 则11//AC CDB 平面 ……8分(3)在11,ABC C CF AB F ABB A ABC ⊥⊥ 中过作垂足为由面面知11CF ABB A ⊥面1111A B CD C A DB V V --∴=, 而1111111541022DA B S A B AA ==⨯⨯= ……10分 又341255AC BC CF AB ⨯=== 1111210835A B CD V -∴=⨯⨯= ……12分20、解:(1)依题意得,得12n n a a +=+,即12n n a a +-=.………………1分 所以数列{}n a 是公差为2的等差数列.………………2分由715a =,得16215a +⨯=,解得13a =.………………3分 1(1)n a a n d =+-………………4分3(1)221n n =+-⨯=+.………………5分(2)因为2133n an n b +==,所以127b =.………………6分因为23121393n n n n b b +++==,所以{}n b 是公比为9的等比数列.………………8分所以1(1)1n n b q T q-=- ………………10分27(19)27(91)198n n ⨯-==--.………………12分21、解:(1)∵圆C 与y 轴相切于点0,1A (),圆心C 在第一象限∴可设圆心坐标为,1C R (),半径为R ………………1分∵圆C 被x轴所截得的弦长为∴22212R ⎛=+ ⎝⎭,得2R =, ………………3分 ∴圆C 的方程为()()22214x y -+-= ………………5分 (2)∵点P 是直线:3450l x y ++=上的动点 圆心C 到直线:3450l x y ++=3= …………7分即||PC 的最小值为3 …………8分 过点P 作圆C 的切线,切点为B ,连接BC ,有BC PC ⊥………9分 ∴PBC △的面积等于1||||2PB BC 而在RT PBC △中有222||||||PB PC BC =-,又||2BC R ==∴min ||PB ===………11分∴PBC △面积的最小值为min 1||||2PB BC =………12分22、解:(1)直线AB 的方程为:bx -ay -ab =0.依题意⎩⎪⎨⎪⎧c a =63,ab a 2+b 2=32,解得⎩⎨⎧a =3,b =1.∴椭圆方程为x 23+y 2=1. ………4分(2)假若存在这样的k 值,由⎩⎪⎨⎪⎧y =kx +2,x 2+3y 2-3=0,得 (1+3k 2)x 2+12kx +9=0. ………5分 ∴Δ=(12k )2-36(1+3k 2)>0.① 设C (x 1,y 1),D (x 2,y 2),则⎩⎨⎧x 1+x 2=-12k1+3k 2,x 1x 2=91+3k 2.② ………7分而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4.要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则y 1x 1+1·y 2x 2+1=-1.即y 1y 2+(x 1+1)(x 2+1)=0. ………9分 ∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0.③将②式代入③整理解得k =76.经验证k =76使①成立. ………11分综上可知,存在k =76,使得以CD 为直径的圆过点E . ………12分。

相关文档
最新文档