食品工程原理
食品工程原理 杨同舟 第三版

食品工程原理杨同舟第三版摘要:一、食品工程原理简介1.食品工程定义2.食品工程的重要性3.食品工程原理的核心内容二、食品工程的基本概念1.食品成分2.食品性质3.食品加工过程三、食品工程原理的应用1.食品加工技术2.食品分析与检测3.食品安全与质量管理四、食品工程的发展趋势1.生物技术在食品工程中的应用2.功能性食品的研究与发展3.食品工程与可持续发展正文:食品工程原理是研究食品的组成、性质、加工过程以及食品分析与检测、食品安全与质量管理等基本理论和技术的学科。
杨同舟所著的《食品工程原理》第三版对食品工程的基本概念、应用及发展趋势进行了全面系统的阐述。
食品工程原理涉及食品的成分、性质等方面的基本知识。
食品成分主要包括碳水化合物、蛋白质、脂肪、维生素、矿物质和水等,而食品性质则包括颜色、口感、质地、稳定性等。
在食品加工过程中,这些成分和性质会发生变化,因此需要研究和掌握食品工程原理以优化食品加工技术。
食品工程原理在食品分析与检测、食品安全与质量管理等方面也有着广泛的应用。
例如,在食品分析与检测中,可以通过研究食品的成分和性质来分析食品的品质和新鲜度;在食品安全与质量管理中,需要对食品中的有害物质进行检测和控制,确保食品的安全。
随着科学技术的发展,食品工程原理在生物技术、功能性食品等方面也取得了突破。
生物技术在食品工程中的应用,如基因工程、发酵工程等,可以提高食品的生产效率和品质;而功能性食品的研究与发展,则可以为人们的健康提供更多的保障。
总之,食品工程原理作为食品科学的一个重要分支,对食品的生产、加工、分析与检测以及食品安全与质量管理等方面都具有重要意义。
食品工程原理总结

食品工程原理第4章颗粒与流体之间的相对流动球形颗粒的表示方法:用直径d全面表示。
非球形颗粒的表示方法:1)体积等效直径2)表面积等效直径3)比表面积等效直径颗粒群的特性:任何颗粒群都具有某种粒度分布。
颗粒粒度的测量方法:筛分法、显微镜法、沉降法、电阻变化法、光散射与衍射法、比表面积法。
固体流态化的概念和状态:概念:流体通过固定床层向上流动时的流速增加而且超过某一限度时,床层浮起的现象称为固体流态化。
状态:流体经过固体颗粒床层的三种状态:当流体自下而上通过固体颗粒床层时,根据颗粒特性和流体速度的不同,存在三种状态: 固定床阶段、流化床阶段、气力输送阶段过滤常数包括:1)滤饼常数2)过滤常数:与滤浆物性和过滤操作压差有关。
只有在恒压过滤是才能成为常数。
第5章液体搅拌调匀度:指一种或几种组分的浓度或其他物理量和温度等在搅拌体系内的均匀性。
混合的均匀度的表示:分隔尺度:混合物各个局部小区域体积的平均值。
可以反映混合物的混合程度。
分隔尺度愈大,表示物料分散情况愈差。
分隔强度:混合物各个局部小区域的浓度与整个混合物的平均浓度的偏差的平均值。
可以反映混合物的混合程度。
分隔强度愈大,表示物料混合愈不充分。
混合的原理:1)对流混合;2)扩散混合;3)剪力混合混合速率:指混合过程中物料的实际状态与其中组分达到完全随机分配状态之间差异消失的速率。
乳化:将两种通常不互溶的液体进行密切混合的一种特殊的液体混合操作,包含混合和均质化。
它是一种液体以微小球滴或固型微粒子(称分散相)均匀分散在另一种液体(称连续相)之中的现象。
乳化机理:由于乳化剂具有表面活性,它向分散相-连续相的界面吸附,使界面能降低,防止两相恢复原状。
此外,因乳化剂分子膜将液滴包住,可防止碰撞的液滴彼此又合并。
同时由于形成表面双电层,使液滴在相互接近时,因电的相斥作用防止凝聚。
乳化剂的这种作用使原热力学不稳定体系的乳液可以保持为稳定体系。
第6章粉碎和筛分粒度:颗粒的大小称为粒度。
食品工程原理知识点总结

食品工程原理知识点总结一、食品工程的概念与发展食品工程是指利用科学技术对食品进行加工、生产和保鲜的过程。
它涉及了食品生产的各个环节,包括原料采购、生产加工、包装储存、销售和配送等。
食品工程的发展历史悠久,随着科学技术的不断进步,食品工程也在不断发展和创新。
食品工程的发展受到了食品安全、食品营养和科技创新等多方面因素的影响。
在当前社会中,人们对于食品的质量和安全要求越来越高,因此食品工程的发展也变得越来越重要。
同时,随着科学技术的不断进步,食品工程也在不断进行创新,以满足人们对于食品的需求。
二、食品工程的基本原理1. 热力学原理热力学是食品工程中非常重要的基本原理之一,它主要研究物质的热力学性质,比如热量、温度和压力等。
热力学原理可以辅助工程师更好地理解食品加工的过程,比如加热、冷却、干燥等过程。
通过热力学原理的应用,可以更好地控制食品加工的质量和生产效率。
2. 流体力学原理流体力学原理是研究流体运动和压力变化规律的学科,它在食品工程中也起着非常重要的作用。
比如,液体在管道中的流动、气体在食品加工过程中的传递等,都需要运用流体力学原理来进行分析和控制。
通过研究流体力学原理,工程师可以更好地控制食品加工过程中的液体和气体流动,从而保证生产效率和质量。
3. 物质传递原理物质传递原理是研究物质在不同介质中传递规律的学科,比如热量传递、质量传递等。
在食品工程中,物质传递原理也是相当重要的,它可以帮助工程师更好地控制食品加工过程中的传热、传质等过程。
通过研究物质传递原理,可以更好地优化食品加工过程,提高生产效率和质量。
4. 生物化学原理食品工程中,生物化学原理也是非常重要的,它主要研究食品中的组成、代谢和变化规律。
通过研究生物化学原理,可以更好地理解食品的特性和变化规律,从而更好地控制食品加工过程中的生物化学变化。
同时,生物化学原理也可以帮助工程师更好地利用微生物等生物技术手段来增强食品的品质和营养。
5. 工程原理食品工程中的工程原理主要包括机械、电气、控制等方面的技术原理,比如食品加工设备的设计、安装和调试等。
食品科学概论-食品工程原理

食品的冷冻原理
制冷-从低于环境温度的物体中吸取热量,并
将其转移给环境介质的过程。
食品工业上冷冻温度范围在-100度以上
制冷量-在一定操作条件下,单位时间制冷剂
从被冷冻物质取出的热量
制冷剂-氨、氟利昂-12、氟利昂-22 载冷剂-水、盐水、有机化合物
由冰点下降至形成冰晶的临界温度而尚不冻结的现象
食品的粉碎
颗粒群的粒度分布 列表法 图解法 函数法 粒度测定方法 筛分法 沉降法 显微镜法 库尔特计数法 -透过法、吸附法
食品的筛分
泰勒标准 1in=2.54cm(目)
食品的搅拌混合、均质和乳化原理
均质度-一种或几种组分的浓度或其他物理量 分离尺度-表示组分或热量等可分散的“参量” 的未分散部分的大小 分离强度-表示两相邻块间浓度、温度等参量 的差异,同时也表示团块中的参量值与完全均 匀后的参量平均值之间的差异 混合的机制 对流混合-混合器运动部件表面对物料的相对 运动;分离尺度大时 分子扩散混合-分离尺度小时 剪力混合-对高黏度流体的混合
将能量传递给食品---(传热过程) 促使食品物料中水分向表面转移并排放到物料 周围的外部环境中,完成脱水干制的过程--传质过程) 湿热的转移是食品干燥原理的核心问题。
影响湿热传递的主要因素
(一)食品物料的组成与结构 (1)食品成分在物料中的位置;(2)溶质浓度 (3)结合水的状态;(4)细胞结构 (二)物料的表面积 (三)空气的湿度 (四)空气温度 (五)空气流速 (六)大气压力或真空度 (七)物料干燥温度
(三)冰晶的洗涤
膜浓缩(膜分离)
膜浓缩--类似于过滤的浓缩方法,只不过“过滤介 质”为天然或人工合成的高分子半透膜,如果“过 滤”膜只允许溶剂通过,把溶质截留下来,使溶质 在溶液中的相对浓度提高,就称为膜浓缩。 膜分离的种类 以推动力本质的不同: 静压力差为推动力的过程 以蒸汽压差为推动力的过程 以浓度差为推动力的过程 以电位差为推动力的过程
食品工程原理

食品工程原理复习1.单元操作与三传理论的概念及关系。
2.粘度的概念及牛顿内摩擦(粘性)定律。
牛顿黏性定律的数学表达式是,服从此定律的流体称为牛顿流体。
3.理想流体的概念及意义。
4.热力体系:指某一由周围边界所限定的空间内的所有物质。
边界可以是真实的,也可以是虚拟的。
边界所限定空间的外部称为外界。
5.稳定流动:各截面上流体的有关参数(如流速、物性、压强)仅随位置而变化,不随时间而变。
6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。
7. 1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。
8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。
9.管中稳定流动连续性方程:在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积成反比。
截面积愈大之处流速愈小,反之亦然。
对于圆形管道,不可压缩流体在管道中的流速与管道内径的平方成反比。
10.雷诺准数和影响流体流动类型的因素:u、d、ρ越大,μ越小,就越容易从层流转变为湍流。
上述中四个因素所组成的复合数群duρ/μ,是判断流体流动类型的准则。
11.根据柏努利方程式,等径管路的水头损失即管路两端压强之差。
12.流体湍流流动时的速度分布是由三层构成,它们分别是层流内层、缓冲层和湍流中心。
13.管路计算的目的是确定流量、管径和能量之间的关系。
管路计算包括设计型计算和操作型计算两种类型。
管路计算是连续性方程、柏努利方程、摩擦阻力计算式三式的具体应用。
14.流体流经并联管路系统时,遵循的原则是各并联管段的压强降相等、主管总流量等于各并联管段之和。
15.离心泵叶轮按有无挡板可分为闭式,半闭式,开式。
离心泵按叶轮串联的多少可分为单级泵,多级泵。
16.离心泵多采用后弯叶片是因为输送液体希望获得的是静压头。
食品工程原理

食品工程原理(一)食品冷冻技术了解食品冷冻冷藏对食品保鲜作用的基本原理。
⏹过程:食品中的自由水形成冰晶体⏹特点:食品的冰点低于水的冰点(见附录表15 P.685)⏹食品的物理性质变化:⏹密度降低,内压升高,比热容降低,热导率升高⏹见图6-47 (1)(2)P.354冻结速度对食品结构的影响:冻结过程进行得越慢,细胞间隙里的水分就会形成冰晶聚集,冰晶颗粒越大,水分重新分布越显著,越容易破坏食品的细胞组织;反之,快速冻结使细胞内的水分大多数在原地冻结,冰晶体分布均匀且颗粒较小,可以在食品解冻时最大程度地保持食品原有的组织状态。
(二)颗粒与流涕之间的相对运动1、了解离心沉降的基本原理。
1 沉降:分散相在连续相中运动。
⏹定义:利用分散相与连续相之间的密度差,使分散相相对于连续相运动而实现分离的操作。
⏹如果沉降在重力场中进行,就称为重力沉降。
例如,将一桶含有泥砂的河水静置一段时间,水中的泥砂沉到桶底,就得到了比较清洁的水。
这个过程就是重力沉降过程,作用原理就是泥砂的密度大于水。
2 过滤:连续相相对于分散相运动。
3 离心分离:依靠分离设备的旋转,使物系处于离心场下从而使悬浮液分离的操作。
2、了解液体过滤的基本原理。
(三)乳化1、了解食品乳化操作基本原理;HLB概念及其在选择乳化剂时的参照意义。
(四)粉碎与筛分1、了解各种粉碎方法与原理。
2、了解食品工业上的应用。
(五)吸附1、了解基本概念;吸附过程和吸附理论。
2、了解吸附技术在食品工业中的应用。
(六)浸出和萃取1、了解浸出和萃取理论的基本概念以及操作原理、2、了解浸出和萃取在食品工业中的应用。
(七)液体浓缩1、了解液体浓缩的基本方法及原理。
2、了解各种蒸发设备的结构、特点及其适用范围。
3、了解浓缩过程在食品工业中的应用。
(八)食品干燥1、了解临界水含量的概念;平衡水分与自由水分、结合水分与非结合水分的概念。
平衡水分和自由水分⏹当一定状态的空气和湿物料接触,达到平衡时的水分就称为平衡水分,即湿物料中水分的活度pw/ps 与湿空气的相对湿度 相等时物料的含水量。
食品工程原理

单元操作:包含在不同食品加工工艺中的同一类基本工序称为单元操作。
静压强:单位流体面积上所受的垂直压力,称为流体的静压强。
流量:单位时间内流过管道任一截面的流体量称为流量。
过滤:过滤是使流体通过过滤介质分离固体颗粒的一种单元操作。
沉降分离:在外力场作用下,利用非均相物系分散相和连续相的密度差,使两相发生相对运动而实现混合物分离的操作称为沉降分离。
传热:是指两个物体之间或同一物体的两个不同部位之间由于温度不同而引起的热量移动。
蒸馏:蒸馏是利用组分挥发度的不同将液体混合物分离成较纯组分的单元操作。
理论板:理论板是指离开塔板的蒸气和液体呈平衡的塔板。
恒摩尔:是指易挥发组分与难挥发组分的摩尔气化潜热相等,其他热效应则可忽略不计或相互抵消,这样液体汽化和气体冷凝所需的热量刚好相互补偿,使得流经每一块塔板的气液两相摩尔流率保持不变。
吸收:用适当的液体和混合气体接触,使混合气体中的一个或几个组分溶解于液体,从而实现混合气体组分的分离,这种利用各组分溶解度不同而分离气体混合物的操作称为吸收。
分子蒸馏:是一种在高真空状态下进行分离操作的非平衡蒸馏过程。
反应型催化精馏:是以反应为主、精馏为辅的过程。
冷冻浓缩:是利用冰与水溶液之间的固液相平衡原理来实现分离的方法。
电渗析:电渗析是指在直流电场作用下,溶液中的荷电离子选择性的定向迁移,透过离子交换膜并得以去除的一种膜分离技术。
课程的研究方法:实验研究方法(经验法)、数学模型法(半经验半理论法)。
离心泵的优点:结构简单,操作容易,便于调节和自控;流量均匀,效率较高;流量和压头的实用范围较广;适用于输送腐蚀性或含有悬浮物的液体。
基本部件:旋转的叶轮和固定的泵壳。
过滤的程序:过滤阶段,采用恒速、恒压或先恒速后恒压方式;滤饼洗涤,除去或回收滤液;滤饼干燥,去除颗粒中的液体;卸除滤饼,可以间歇操作,也可连续操作。
提高流化质量的措施:分布板应有足够阻力;在流化床的不同高度上设置若干层水平挡板、挡钢或垂直管束等内部构件;采用小粒径、宽度分布的颗粒。
食品工程原理

食品工程原理食品工程是一门涉及食品加工、保存和营养学的学科,它综合了食品科学、生物工程学和化学工程学的知识,关注如何将原材料加工成安全、营养丰富、口感良好的食品。
在食品工程中,有许多基本原理和方法是我们需要了解的。
热处理原理热处理是食品工程中至关重要的一部分。
它包括加热、制冷、干燥等过程,目的是通过控制温度和时间来杀灭食品中的微生物,延长食品的保质期。
热处理可以分为热处理、灭菌和杀菌三种方式,每种方式都有其适用的食品和操作条件。
真空包装技术真空包装技术是一种常用于食品保存的方法。
通过将食品放入真空袋中,抽出袋内空气并密封,可以延长食品的保质期。
真空包装技术的原理是减少氧气含量,降低微生物活性,避免氧化反应,从而保持食品的新鲜度和口感。
酶促反应酶是一种生物催化剂,在食品加工中起着重要作用。
酶促反应是指在适当的温度和pH条件下,酶能够促使食品分子之间发生特定的化学反应,改变食品的性质。
通过控制酶促反应的条件和酶的种类,可以实现食品的改良和加工。
水活性水活性是指食品中水分子活跃性的程度,它对食品的微生物生长、口感和保存有着重要影响。
水活性越高,微生物生长速度越快,食品越容易变质;水活性越低,食品越容易保存。
在食品工程中,控制食品的水活性是保障食品质量和安全的重要手段。
营养学原理食品工程的最终目标是为消费者提供安全、营养丰富的食品。
了解食品中不同营养成分的特点,掌握食品加工过程对营养成分的影响,是食品工程师的基本要求。
通过合理设计食品原料和加工工艺,使食品既美味可口又满足人体所需的营养需求。
总的来说,食品工程是一门综合性学科,涉及多个学科领域的知识。
只有掌握了食品工程的基本原理和方法,才能更好地保证食品的品质和安全,满足人们对健康饮食的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年学术型硕士研究生招生考试大纲(食品工程原理)
学科、专业:食品科学(083201),粮食、油脂及植物蛋白工程(083202),农产品加工及贮藏工程(083203)
考试内容范围
绪论
本课程的性质、任务、研究对象和研究方法,本课程与其他有关课程的关系。
Δ物理量的因次、单位与单位换算:单位制与因次的概念。
几种主要单位制(SI.CGS制.MKS工程单位制)及我国的法定计量单位。
单位换算的基本方式。
第一章流体流动
流体的性质:连续介质的假定、密度、重度、比重、比容、牛顿粘性定律与粘度。
牛顿型与非牛顿型流体。
流体静力学:静压强及其特性;压强的单位及其换算;压强的表达方式;重力场中静止流体内压强的变化规律及其应用;离心力场中压强的变化规律。
流体流动现象:流体的流速和流量;稳定流动与不稳定流动;流体的流动型态;雷诺准数;当量直径与水力半径;滞流时流体在圆管中的速度分布;湍流时的时均速度与脉动速度;湍流时圆管中时均速度的分布;边界层的形成、发展及分离。
流体流动的基本方程:Δ物料衡算——连续性方程及其应用;Δ能量衡算方程;柏势利方程;Δ能量衡算方程和柏势利方程的应用。
流体阻力:Δ阻力损失的物理概念;边界层对流动阻力的影响;粘性阻力与惯性阻力;湍流粘度系数;Δ沿程阻力的计算;滞流时圆管直管中沿程阻力计算;滞流时的摩擦系数;湍流时的摩擦系数;因次分析法:用因次分析法找出表示摩擦阻力关系中的数群;粗糙度对摩擦系数的影响;Δ局部阻力的计算。
管路计算:管径的选择;Δ简单管路、并联管路及分支管路的计算;管路布置中应注意的主要事项。
流量与速度的测量:测速管、孔板、文丘里流量计及转子流量计的构造、原理及应用;流量计的选型、安装及使用。
第二章流体输送机械
概述:流体输送问题的重要性,流体输送机械的类别,泵的主要性能参数(扬程、流量、效率与功率)。
离心泵:Δ离心泵的基本构造与作用原理(包括轴向推力的平衡方法及气缚
现象);Δ离心泵的理论分析(离心泵基本方程,从基本方程分析离心泵的结构和性能);离心泵内各种损失);Δ离心泵的特性曲线及其应用;不同条件下离心泵特性曲线的换算;离心泵的气蚀现象与允许安装高度;Δ离心泵的工作点与理论调节;Δ离心泵的类型与选择。
其他类型泵:Δ往复泵的基本构造、作用原理及理论调节方法;Δ齿轮泵、螺杆泵及旋涡泵的作用原理及理论调节方法;各种泵的适用场合;Δ正位移泵与离心泵的比较。
离心式风机的特性曲线及选型。
第三章非均相物系的分离及固体流态化概念
概念:气态非均相物系与液态非均相物系;非均相物系分离在化工生产中的应用。
重力沉降:Δ颗粒沉降的基本规律(沉降过程的力学分析,自由沉降时沉降速度的计算)重力沉降器,悬浮液的沉聚过程;沉降过程的强化途径。
离心沉降:惯性离心力作用下的沉聚速度;Δ旋风分离器(基本构造.作用原理、分离效率.流体阻力、结构型式与选用);旋液分离器;沉降式离心机。
其他除尘方法及设备:电除尘、湿法除尘器、惯性除尘器、袋滤器;除尘方法的选择与比较。
过滤操作的基本概念:过程的特点;推动力与阻力;过滤介质;助滤剂。
过滤设备:板框压滤机、加压液滤机、转筒真空过滤机、过滤式离心机等。
过滤计算:过滤基本方程;Δ恒压及恒速过滤方程;Δ间歇式及连续式过滤机的计算;过滤常数的测定。
第四章传热
概述:化工生产中常见的传热过程;实现传热过程的三类设备(直接混合式,间壁式及畜热式);加热和冷却方法;载热体和冷却剂的选择;水蒸气的生产过程及其特性;饱和水蒸气表;传热的三种基本方式及其特点;化工中如常见的组合传热方式;稳定传热与不稳定传热。
热传导:热传导的基本概念;傅立叶定律;Δ导热系数;平壁(单层与多层)的稳定热传导;Δ圆筒壁(单层与多层)的稳定热传导;串联热阻的概念。
对流传热:对流传热的分析;传热边界层;对流传热速率方程;对流传热系数及其影响因素;因次分析在对流传热中的应用;有关准数的物理意义;Δ流体无相变时的对流传热系数(采用准数关联式综合实验数据的好处,使用公式时的注意事项);Δ蒸汽冷凝时的对流传热(两种冷凝方式);Δ影咱冷凝传热的因素,冷凝水除器及不凝性气体的排除;Δ蒸汽冷凝时对流传热系数的关联式;液体沸腾时的对流传热(液体沸腾传热的规律——自然对流、核状沸腾与液状沸腾,影响沸腾传热的因素,大容器沸腾及管内沸腾时对流传热系数的关联式);Δ工
业用换热器中对流传热系数的大致范围。
热辐射:基本概念:斯蒂芬一玻尔茨曼定律;克希科夫定律、两固体间的相互辐射传热;高温测定中的辐射误差、设备热损失。
Δ两流体间壁传热过程的计算:传热速率方程、传热速率或热负荷的计算、平均温度差的计算、传热系数计算式的推导、总热阻与分热阻.主要热阻与非主要热阻的概念、污垢热阻、工业用换热器中传热系数的大致范围、壁温的估算、利用传热效率和传热单元效法进行传热计算;传热的强化与削弱。
换热器:换热器的型式(夹套式、蛇管式、套管式、列管式、板式.板翘式、螺旋板式与翘片管式);特点及选型;Δ列管式换热器(结构、热应力及其消除方法、设计方法)。
第五章蒸馏
精馏过程的主要问题:Δ精馏原理;双组分溶液的气液相平衡(理想溶液与非理想溶液,拉乌尔定律;气液平衡图;t-x(y)图与x-y图;总压对x-y图的影响;恒沸点概念;挥发度与相对挥发度;平衡蒸馏、简单蒸馏及精馏的区别;利用t-x(y)图说明精馏原理。
Δ双组分连续精馏塔的计算:全塔物料衡算;理论塔板的概念;求取理论塔板数的途径;精馏段操作线方程;提馏段操作线方程;两操作线交点的轨迹——q线方程;逐板法及图解法求理论塔板数;不同进料状态的比较;回流比的确定(最小回流比,全回流与操作回流比);进料装置的热量衡算;理论塔板数的捷算法。
第六章吸收
概述:吸收在化工中的应用;吸收剂、吸收质与惰性气体;填料塔的构造;吸收过程的主要问题。
Δ吸收的基本理论:吸收过程的相平衡关系(相组成的各种表示方法与相互换算;气体在液体中的溶解度与亨利定律;影响吸收相平衡的因素);吸收过程的调节。
Δ单相流体中的传质机理(分子扩散与费克定律;扩散系数及其影响因素,在气相及液相中的稳定分子扩散、涡流扩散、对流扩散);两相流体间的传质机理;双膜理论;吸收速率方程(以不同浓度表示推动力的吸收速率方程,传质系数和推动力的严格对应关系及传质系数的换算,传质系数和传质分系数的关系)。
Δ吸收塔的计算:吸收剂的选择;物料衡算与操作线方程;液气比及吸收剂用量。
塔填料的选择:填料层高度的计算(图解积分法、对数平均推动力法、传质单元高度法等),板式吸收塔理论板数的计算。
传质单元高度的经验式。
第七章干燥
概述:干燥过程的应用;干燥方法(对流加热干燥、接触加热干燥、辐射加热干燥、介电加热干燥.冷冻干燥);对流干燥的流程;干燥过程的实质。
Δ湿空气的状态参数与湿度图;湿空气的状态参数(湿含量、相对湿度、焓、比热、比热容、干球温度、湿球温度、绝热饱和温度、露点);湿空气的湿度图的作法与应用。
Δ干燥过程的物料衡算与热量衡算;湿物料中水分含量的表示法;物料衡算;热量衡算;空气通过干燥器时的状态变化;利用湿度图求空气状态变化的方法;干燥器出口空气状态的选定原则;干燥器的热效率。
Δ固体物料的干燥机理:物料中所含水分的性质(平衡水分与自由水分;结合水分与非结合水分);干燥曲线与干燥速率曲线,根据干燥速率曲线分析干燥过程的机理(等速干燥阶段、降速干燥阶段、临界湿含量及其影响因素);影响干燥速率的因素;干燥过程可能对物料质量产生的影响:干燥条件的选择。
恒定干燥条件下干燥速率与干燥时间的计算。
干燥设备,厢式干燥器、气流干燥器、沸腾床干燥器、喷雾干燥器;干燥器的选型。
第八章实验课程内容
1、流体流动型态的观察与测定、柏势利方程实验;
2、管道阻力测定;
3、离心泵性能的测定;
4、过滤实验;
5、传热实验;
6、干燥实验。
参考书目:
《化工原理》(食品工程原理),王志魁编,化学工业出版社,第二版,1998。