2020高考数学复习第一轮课时规范练_Part248

合集下载

2020新课标高考第一轮总复习数学(课件 课时规范练) (2)

2020新课标高考第一轮总复习数学(课件 课时规范练) (2)
x+y+k≥0
新课标高考第一轮总复习•数学(文)
所表示的平面区域,如图中阴影部分所
示,由z=x+3y,得y=-
1 3
x+
z 3
,结合图形可知,当直线y=-
1 3
x+
z 3
过点A时,z
最小,联立方程,得
x=2, x+y+k=0,
解得A(2,-2-k),此时zmin=2+3(-2-k)
=2,解得k=-2.
能用平面区域表示二元一次不等式 围,以及简单线性规划问题的实际应
组.
用,加强转化与化归和数形结合思想
3.会从实际情境中抽象出一些简单的 的应用意识.本节内容在高考中以选
二元一次线性规划问题,并能加以解 择、填空题的形式进行考查,难度中
决.
低档.
上一页
返回导航
下一页
[基础梳理] 1.二元一次不等式(组)表示的平面区域
x-y+1≥0, 【例2】 (2016·高考全国卷Ⅱ)若x,y满足约束条件 x+y-3≥0,
x-3≤0, 的最小值为________.
则z=x-2y
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(文)
[解析] 作出可行域,如图中阴影部分所示,由z=x-2y,得y=12x-12z,作直线y =12x并平移,观察可知,当直线经过点A(3,4)时,zmin=3-2×4=-5.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(文)
跟踪训练 在本例(1)中条件不变,若过点A(1,2)的直线将不等式组所表示的平面 区域分成面积相等的两部分,求该直线方程. 解析:由题意可知,A(1,2),B(2,2),|AB|=1, 过点A的直线与BC交于D点, ∴S△ABD=12,∴D到AB的距离为1, ∴D为BC的中点,∴D52,1,

2020高考数学复习第一轮课时规范练_Part249

2020高考数学复习第一轮课时规范练_Part249

2499.(2019山西太原二模,文19)如图(1),在平面六边形ABFCDE 中,四边形ABCD 是矩形,且AB=4,BC=2,AE=DE=,BF=CF=,点M ,N 分别是AD ,BC 的中点,分别沿直线AD ,BC 将△ADE ,△BCF 翻折成如图(2)的空间几何体ABCDEF.
(1)利用下面的结论1或结论2,证明:E ,F ,M ,N 四点共面;
结论1:过空间一点作已知直线的垂面,有且只有一个;
结论2:过平面内一条直线作该平面的垂面,有且只有一个.
(2)若二面角E-AD-B 和二面角F-BC-A 都是60°,求三棱锥E-BCF 的体积
.
图(1)
图(2)
答案:
1.证明(1)∵ED ⊥平面ABCD ,
∴ED ⊥AD ,ED ⊥BD ,ED ⊥CM.
∵AE=BE ,
∴Rt△ADE ≌Rt△BDE ,
∴AD=BD.
连接DM ,则DM ⊥AB ,
∵AB ∥CD ,∠BCD=90°,BC=CD ,
∴四边形BCDM 是正方形,∴BD ⊥CM.
又DE ⊥CM ,BD ∩DE=D ,。

2020新课标高考第一轮总复习数学(课件 课时规范练) (11)

2020新课标高考第一轮总复习数学(课件 课时规范练) (11)

课时规范练A 组 基础对点练1.下列所给图象是函数图象的个数为( B )A .1 B.2 C .3D.42.已知函数f (x )=⎩⎨⎧0,x >0,π,x =0,π2+1,x <0,则f (f (f (-1)))的值等于( C )A .π2-1 B.π2+1 C .πD.03.f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( C )A .-2 B.-3 C .9 D.-94.函数f (x )=1log 2x -1的定义域为( C )A .(0,2) B.(0,2] C .(2,+∞)D.[2,+∞)5.函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( C )A .(2,3) B.(2,4] C .(2,3)∪(3,4] D.(-1,3)∪(3,6]6.函数f (x )=1-2x +1x +3的定义域为( A ) A .(-3,0]B.(-3,1]C .(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]7.设x ∈R ,则f (x )与g (x )表示同一函数的是( B )A .f (x )=x 2,g (x )=x 2B .f (x )=(x )2x ,g (x )=x(x )2C .f (x )=1,g (x )=(x -1)0D .f (x )=x 2-9x +3,g (x )=x -38.已知函数f (x )=2x +1(1≤x ≤3),则( B ) A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4)9.图中的图象所表示的函数的解析式为( B )A .y =32|x -1|(0≤x ≤2) B .y =32-32|x -1|(0≤x ≤2) C .y =32-|x -1|(0≤x ≤2) D .y =1-|x -1|(0≤x ≤2)10.设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( C )A .3 B.6 C .9D.1211.函数y =3-2x -x 2的定义域是__[-3,1]__.12.若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )的表达式为__g (x )=2x -1__. 解析:∵函数f (x )=2x +3,g (x +2)=f (x )=2x +3=2(x +2)-1,∴g (x )=2x -1. 13.已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=__0__.14.(2018·高考江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx 2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为 22 .解析:由f (x +4)=f (x )得函数f (x )的周期为4,所以f (15)=f (16-1)=f (-1)=⎪⎪⎪⎪⎪⎪-1+12=12,因此f (f (15))=f ⎝ ⎛⎭⎪⎫12=cos π4=22.B 组 能力提升练1.已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( A )A .-74 B.-54 C .-34D.-14解析:因为f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,f (a )=-3,所以⎩⎪⎨⎪⎧ a >1,-log 2(a +1)=-3或⎩⎪⎨⎪⎧a ≤1,2a -1-2=-3,解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.2.若函数y =f (x )的定义域是[0,2 016],则函数g (x )=f (x +1)x -1的定义域是( B )A .[-1,2 015] B.[-1,1)∪(1,2 015] C .[0,2 016]D.[-1,1)∪(1,2 016]解析:要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)的定义域为[-1,2 015],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015,x -1≠0,故函数g (x )的定义域为[-1,1)∪(1,2 015].3.已知函数f (x )=⎩⎪⎨⎪⎧f (x +2),x <2,⎝ ⎛⎭⎪⎫13x,x ≥2,则f (-1+log 35)的值为( A )A.115 B.53 C .15D.23解析:∵-1+log 35<2,∴f (-1+log 35)=f (-1+log 35+2)=f (1+log 35)=f (log 315)=⎝ ⎛⎭⎪⎫13log 315=115,故选A. 4.已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=( A ) A .x +1 B.2x -1 C .-x +1D.x +1或-x -1解析:设f (x )=kx +b ,则由f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2.解得k =1,b =1,则f (x )=x +1.故选A. 5.设函数f (x )满足f ⎝⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( A ) A.21+x B.21+x 2C.1-x 21+x 2D.1-x 1+x解析:令1-x 1+x =t ,则x =1-t1+t ,代入f ⎝ ⎛⎭⎪⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,故选A.6.设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 015)=( D ) A .0 B.1 C .2 015D.2 016 解析:令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2;令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 015)=2 016.故选D.7.设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是( C ) A .f (x )=x -1x B.f (x )=e x -1 C .f (x )=x +4xD.f (x )=tan x解析:A 项,当x =1时,f (1)=1-1=0, 此时02≥12不成立;B 项,当x =-1时,f (-1)=1e -1∈(-1,0), 此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f ⎝ ⎛⎭⎪⎫5π4=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.故选C.8.已知函数f (x )=⎩⎨⎧21-|x |,x ≤1,-(x -2)2,x >1,若f (m )=14,则f (1-m )=( B ) A .-1 B.-4 C .-9D.-16解析:当x >1时,函数值非正,据此可得m ≤1,即21-|m |=14⇒m =±3,由m ≤1可知m =-3,则f (1-m )=f (4)=-(4-2)2=-4.故选B. 9.设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( D )A .1 B.78 C.34D.12解析:f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫3×56-b =f ⎝ ⎛⎭⎪⎫52-b .当52-b <1,即b >32时,3×⎝ ⎛⎭⎪⎫52-b -b =4,解得b =78(舍).当52-b ≥1,即b ≤32时,252-b =4,解得b =12.故选D.10.已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( D )A .(-∞,0] B.(-∞,1] C .[-2,1]D.[-2,0]解析:y =|f (x )|的图象如图所示,y =ax 为过原点的一条直线,当a >0时,与y =|f (x )|在y 轴右侧总有交点,不符合题意.当a =0时成立.当a <0时,找与y =|-x 2+2x |,x ≤0相切的情况,y ′=2x -2,设切线方程为y =(2x 0-2)(x -x 0),由分析可知x 0=0,所以a =-2.综上,a ∈[-2,0].11.(2018·安徽马鞍山二模)已知函数f (x )=mx +12x +n的图象关于点(1,2)对称,则( B )A .m =-4,n =2 B.m =4,n =-2 C .m =-4,n =-2D.m =4,n =2解析:因为f (x )=mx +12x +n=m 2(2x +n )-mn2+12x +n=m 2+1-mn22x +n ,所以函数的定义域为x ≠-n 2,值域为y ≠m 2,所以函数图象两渐近线方程为x =-n 2,y =m2,对称中心为⎝ ⎛⎭⎪⎫-n 2,m 2,所以⎩⎪⎨⎪⎧-n 2=1,m2=2,解得⎩⎪⎨⎪⎧m =4,n =-2,故选B.12.给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫作离实数x 最近的整数,记作{x },即{x }=m .现给出下列关于函数f (x )=|x -{x }|的四个命题:①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4; ③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎡⎦⎥⎤-12,12.其中真命题的序号是( B ) A .①② B.①③ C .②④D.③④解析:①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=⎪⎪⎪⎪⎪⎪-12-⎩⎨⎧⎭⎬⎫-12=⎪⎪⎪⎪⎪⎪-12+1=12,∴①正确. ②∵3-12<3.4≤3+12,∴{3.4}=3, ∴f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4, ∴②错误.③∵0-12<-14≤0+12,∴⎩⎨⎧⎭⎬⎫-14=0,∴f ⎝ ⎛⎭⎪⎫-14=⎪⎪⎪⎪⎪⎪-14-0=14. ∵0-12<14≤0+12,∴⎩⎨⎧⎭⎬⎫14=0,∴f ⎝ ⎛⎭⎪⎫14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14,∴③正确. ④y =f (x )的定义域为R ,值域是⎣⎢⎡⎦⎥⎤0,12,∴④错误.故选B.13.已知函数f (x ),g (x )分别由下表给出,则f (g (1))的值为__1____2__.解析:∵g (1)=3,∴f (g (1))=f (3)=1,由表格可以发现g (2)=2,f (2)=3,∴f (g (2))=3,g (f (2))=1,故满足f (g (x ))>g (f (x ))的x 的值为2. 14.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是__[-4,2]__.解析:由题意得⎩⎨⎧x ≤0,x2+1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,即-4≤x ≤2,即不等式的解集为[-4,2].15.若函数f (2x )的定义域是[-1,1],则函数f (2x -1)+f (2x +1)的定义域是 ⎣⎢⎡⎦⎥⎤-12,12 . 解析:因为函数f (2x )的定义域是[-1,1],所以-2≤2x ≤2,所以函数f (x )的定义域为[-2,2],所以f (2x -1)+f (2x +1)的定义域应满足的条件为-2≤2x -1≤2且-2≤2x +1≤2,即-12≤x ≤32且-32≤x ≤12,所以-12≤x ≤12,所以函数f (2x -1)+f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-12,12.16.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是 ⎣⎢⎡⎭⎪⎫14,+∞ .解析:x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14.。

2020高考数学复习第一轮课时规范练_Part2

2020高考数学复习第一轮课时规范练_Part2

A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)3.若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值范围是()A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}4.(2019贵州贵阳测试)下列命题正确的是()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若,则a<bD.若a>b,c>d,则a-c>b-d5.(2019重庆一中调研,文5)若a>1>b>-1,则下列不等式恒成立的是()A.a>b2B.C.D.a2>2b6.不等式<0的解集为()A.{x|1<x<2}B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}D.{x|x<-1或1<x<2}7.若不等式mx2+2mx-4<2x2+4x对任意x都成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪[2,+∞)D.(-∞,2]〚导学号24190850〛8.(2019陕西西安模拟)已知存在实数a满足ab2>a>ab,则实数b的取值范围是.9.已知关于x的不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是.10.已知a∈R,关于x的不等式ax2+(1-2a)x-2>0的解集有下列四种说法:①原不等式的解集不可能为⌀;②若a=0,则原不等式的解集为(2,+∞);③若a<-,则原不等式的解集为;④若a>0,则原不等式的解集为∪(2,+∞).其中正确的个数为.11.对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则k的取值范围是.综合提升组12.(2019吉林长春模拟)若<0,则在下列不等式:①;②|a|+b>0;③a->b-;④ln a2>ln b2中,正确的不等式是()A.①④B.②③C.①③D.②④13.若关于x的不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为()14.(2019河南郑州月考)已知实数x,y满足0<xy<4,且0<2x+2y<4+xy,则x,y的取值范围是()A.x>2,且y>2B.x<2,且y<2C.0<x<2,且0<y<2D.x>2,且0<y<2〚导学号24190851〛15.(2019江西九江模拟)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是.创新应用组16.(2019辽宁大连模拟)已知函数f(x)=(ax-1)(x+b),如果不等式f(x)>0的解集是(-1,3),那么不等式f(-2x)<0的解集是()A.B.C.D.〚导学号24190852〛17.(2019湖北襄阳高三1月调研,文15)已知f(x)=若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则t的取值范围是.〚导学号24190853〛答案:1.D当a=1,b=-2时,A不正确,B不正确,C不正确;对于D,a>|b|≥0,则a2>b2,故选D.2.C由题意得A={x|-1≤x≤1}=[-1,1],B={y|0<y<1}=(0,1),所以A∩B=(0,1),故选C.3.D由题意知当a=0时,满足条件.当a≠0时,由集合A={x|ax2-ax+1<0}=⌀,可知得0<a≤4.综上,可知0≤a≤4.4.C取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,∴B错误;∵,∴c≠0,又c2>0,∴a<b,C正确;取a=c=2,b=d=1,可知D错误.5.A对于A,∵-1<b<1,∴0≤b2<1.∵a>1,∴a>b2,故A正确;对于B,若a=2,b=,此时满足a>1>b>-1,但,故B错误;对于C,若a=2,b=-,此时满足a>1>b>-1,但,故C错误;对于D,若a=,b=,此时满足a>1>b>-1,但a2<2b,故D错误.6.D因为不等式<0等价于(x+1)·(x-1)(x-2)<0,所以该不等式的解集是{x|x<-1或1<x<2}.故选D.7.A原不等式等价于(m-2)x2+2(m-2)x-4<0,当m=2时,对任意x不等式都成立;当m-2<0时,Δ=4(m-2)2+16(m-2)<0,∴-2<m<2.综上,得m∈(-2,2].8.(-∞,-1)∵ab2>a>ab,∴a≠0.当a>0时,有b2>1>b,即解得b<-1;当a<0时,有b2<1<b,即无解.综上可得b<-1.9.∵不等式ax2+bx+a<0(ab>0)的解集是空集,∴a>0,b>0,且Δ=b2-4a2≤0.∴b2≤4a2.∴a2+b2-2b≥+b2-2b=≥-.。

【30份】2020版高考数学北师大版(理)一轮复习课时规范练

【30份】2020版高考数学北师大版(理)一轮复习课时规范练

【30份】2020版高考数学北师大版(理)一轮复习课时规范练目录课时规范练1集合的概念与运算 (2)课时规范练2不等关系及简单不等式的解法 (5)课时规范练3命题及其关系、充要条件 (11)课时规范练4简单的逻辑联结词、全称量词与存在量词 (15)课时规范练5函数及其表示 (20)课时规范练6函数的单调性与最值 (24)课时规范练7函数的奇偶性与周期性 (30)课时规范练8幂函数与二次函数 (35)课时规范练9指数与指数函数 (40)课时规范练10对数与对数函数 (45)课时规范练11函数的图像 (50)课时规范练12函数与方程 (55)课时规范练13函数模型及其应用 (61)课时规范练14导数的概念及运算 (68)课时规范练15导数与函数的小综合 (72)课时规范练16定积分与微积分基本定理 (78)课时规范练17任意角、弧度制及任意角的三角函数 (82)课时规范练18同角三角函数的基本关系及诱导公式 (88)课时规范练19三角函数的图像与性质 (94)课时规范练20函数y=A sin(ωx+φ)的图像及应用 (102)课时规范练21两角和与差的正弦、余弦与正切公式 (112)课时规范练22三角恒等变换 (121)课时规范练23解三角形 (129)课时规范练24平面向量的概念及线性运算 (137)课时规范练25平面向量基本定理及向量的坐标表示 (143)课时规范练26平面向量的数量积与平面向量的应用 (149)课时规范练27数系的扩充与复数的引入 (154)课时规范练28数列的概念与表示 (158)课时规范练29等差数列及其前n项和 (163)课时规范练30等比数列及其前n项和 (169)2019年5月课时规范练1集合的概念与运算基础巩固组1.(2018厦门外国语学校一模,2)已知集合A={x|y=lg(x-1)},B={x||x|<2},则A∩B=()A.(-2,0)B.(0,2)C.(1,2)D.(-2,2)2.已知全集U=R,集合A={x|x<-2或x>2},则?U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)3.(2018百校联盟四月联考,1)设集合A={-1,0,1,2},B={y|y=2x,x∈A},则A∪B中元素的个数为()A.5B.6C.7D.84.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.(2018北京101中学3月模拟,1)已知集合A={x|x(x-2)<0},B={x|ln x>0},则A∩B是()A.{x|x>0}B.{x|x>2}C.{x|1<x<2}D.{x|0<x<2}6.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=()A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}7.(2018山东济南二模,1)设全集U=R,集合A={x|x-1≤0},集合B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A.{x|x<3}B.{x|-3<x≤1}C.{x|x<2}D.{x|-2<x≤1}8.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(?U A)∩B=()A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]9.(2018湖南衡阳一模,1)已知集合A={x|(x+1)(x-3)<0},B={x|y=ln x},则A∩B=()A.{0,3}B.(0,3)C.(-1,3)D.{-1,3}10.已知集合A={x|x(x-4)<0},B={0,1,5},则A∩B=.11.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是.12.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A?B的B的个数为.综合提升组13.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A?B,则实数a的取值范围是()A.(-1,+∞)B.[-1,+∞)C.(3,+∞)D.[3,+∞)14.(2018河北衡水中学十模,1)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(?U B)=()A.{1,3}B.{0,2}C.{0,1,3}D.{2}15.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]16.已知集合A={x|4≤2x≤16},B=[a,b],若A?B,则实数a-b的取值范围是.创新应用组17.已知集合A={x|x<a},B={x|1<x<2},且A∪(?R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>218.若集合A={x|x2+4x+k=0,x∈R}中只有一个元素,则实数k的值为.参考答案课时规范练1集合的概念与运算1.C由题意,可知A={x|x>1},B={x|-2<x<2},∴A∩B={x|1<x<2},表示为区间即(1,2),故选C.2.C因为A={x|x<-2或x>2},所以?U A={x|-2≤x≤2}.故选C.3.B因为A={-1,0,1,2},B=,所以A∪B=-1,0,,1,2,4,A∪B中元素的个数为 6.4.D由(x-2)(x-3)≥0,解得x≥3或x≤2,所以S={x|x≤2或x≥3}.因为T={x|x>0},所以S∩T={x|0<x≤2或x≥3},故选D.5.C由题意,集合A={x|x(x-2)<0}={x|0<x<2},B={x|ln x>0}={x|x>1},所以A∩B={x|1<x<2}.故选C.6.D集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0}={x|-3<x<0},∴M∩N={-2,-1}.故选D.7.D由题意可得:A={x|x≤1},B={x|-2<x<3},∴A∩B={x|-2<x≤1},故选 D.8.C∵全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(?U A)∩B={4,8}.故选 C.9.B A={x|-1<x<3},B={x|x>0},所以A∩B=(0,3),故选 B.10.{1}A={x|x(x-4)<0}=(0,4),所以A∩B={1}.11.(4,+∞)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A?B,则a>4.12.4因为A={1,2}且A?B,所以B={1,2}或B={1,2,3}或B={1,2,4}或B={1,2,3,4}.13.C由题意,A=[-1,3],B=(-∞,a),∵A?B,∴a>3,∴a的取值范围是(3,+∞).14.A∵全集U=Z,A={0,1,2,3},B={x|x2=2x},∴?U B={x|x∈Z,且x≠0,且x≠2},∴A∩(?U B)={1,3}.故选 A.A∪B).15.C由题意可知阴影部分对应的集合为(?U(A∩B))∩(∵A={x|-2<x<0},B={x|-1≤x≤1},∴A∩B={x|-1≤x<0},A∪B={x|-2<x≤1},∵?U(A∩B)={x|x<-1或x≥0},∴(?U(A∩B))∩(A∪B)={x|0≤x≤1或-2<x<-1}.故选 C.16.(-∞,-2]集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].因为A?B,所以a≤2,b≥4.所以a-b≤2-4=-2.故实数a-b的取值范围是(-∞,-2].17.C∵A∪(?R B)=R,∴B?A,∴a≥2,故选C.18.4由题意x2+4x+k=0有两个相等的实根,∴Δ=16-4k=0,解得k=4.2019年5月课时规范练2不等关系及简单不等式的解法基础巩固组1.已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.函数f(x)=的定义域是()A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,2)∪(2,+∞)D.(1,2)∪(2,3)3.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系为()A.a<b≤cB.b≤c<aC.b<c<aD.b<a<c4.使不等式2x2-5x-3≥0成立的一个充分不必要条件是()A.x≥0B.x<0或x>2C.x∈{-1,3,5}D.x≤-或x≥35.若函数f(x)=的定义域为R,则实数m的取值范围为()A.[-4,0]B.[-4,0)C.(-4,0)D.(-∞,4]∪{0}。

2020版高考数学一轮复习课时规范练6函数的单调性与最值理北师大版(最新整理)

2020版高考数学一轮复习课时规范练6函数的单调性与最值理北师大版(最新整理)

2020版高考数学一轮复习课时规范练6 函数的单调性与最值理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2020版高考数学一轮复习课时规范练6 函数的单调性与最值理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2020版高考数学一轮复习课时规范练6 函数的单调性与最值理北师大版的全部内容。

课时规范练6 函数的单调性与最值基础巩固组1。

(2018北京石景山一模,2)下列函数中既是奇函数,又在区间(0,+∞)上递减的函数为()A。

y= B.y=—x3C。

x D.y=x+2。

已知函数f(x)=x2-2ax+a在区间(—∞,1)内有最小值,则函数g(x)=在区间(1,+∞)内一定()A。

有最小值B。

有最大值C.是减函数D。

是增函数3。

设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x—2)>0}=()A。

{x|x<-2或x>4} B。

{x|x〈0或x〉4}C。

{x|x<0或x>6} D.{x|x<-2或x>2}4.已知函数f(x)=是R上的增函数,则实数a的取值范围是()A.(1,+∞) B。

[4,8)C。

(4,8) D。

(1,8)5。

已知函数f(x)=,则该函数的递增区间为()A.(-∞,1]B。

[3,+∞)C。

(-∞,-1] D.[1,+∞)6.函数f(x)=x|x|,若存在x∈[1,+∞),使得f(x-2k)—k〈0,则k的取值范围是()A。

(2,+∞) B.(1,+∞)C。

D.7。

已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)内递增。

若实数a 满足f(log2a)+f(lo a)≤2f(1),则a的取值范围是()A.[1,2] B。

2020版高考数学一轮复习课时规范练2不等关系及简单不等式的解法(理)北师大版

2020版高考数学一轮复习课时规范练2不等关系及简单不等式的解法(理)北师大版

2020版高考数学一轮复习课时规范练2不等关系及简单不等式的解法(理)北师大版课时规范练2 不等关系及简单不等式的解法基础巩固组1.已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.函数f(x)=的定义域是()A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,2)∪(2,+∞)D.(1,2)∪(2,3)3.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系为()A.a<b≤c< p="">B.b≤c<a< p="">C.b<c<a< p="">D.b<a<c< p="">4.使不等式2x2-5x-3≥0成立的一个充分不必要条件是()A.x≥0B.x<0或x>2C.x∈{-1,3,5}D.x≤-或x≥35.若函数f(x)=的定义域为R,则实数m的取值范围为()A.[-4,0]B.[-4,0)C.(-4,0)D.(-∞,4]∪{0}6.不等式<0的解集为()A.{x|1<x<2}< p="">B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}< p="">D.{x|x<-1或1<x<2}< p="">7.若不等式mx2+2mx-4<2x2+4x对任意x都成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,2]8.已知存在实数a满足ab2>a>ab,则实数b的取值范围是.9.已知关于x的不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是.综合提升组10.已知不等式>0的解集为(-1,2),m是a和b的等比中项,则=()A.1B.-3C.-1D.311.若关于x的不等式f(x)=ax2-x-c>0的解集为{x|-2<x< p="">12.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a 的取值范围是.13.对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则k的取值范围是.14.已知二次函数f(x)=ax2+x+1对x∈[0,2]恒有f(x)>0,求a的取值范围.创新应用组15.已知函数f(x)=(ax-1)(x+b),如果不等式f(x)>0的解集是(-1,3),那么不等式f(-2x)<0的解集是()A.B.C.D.16.若ax2+bx+c<0的解集为{x|x<-1或x>3},则对于函数f(x)=cx2+bx+a应有()A.f(5)<f(0)<f(-1)< p="">B.f(5)<f(-1)<f(0)< p="">C.f(-1)<f(0)<f(5)< p="">D.f(0)<f(-1)<f(5)< p="">17.已知f(x)=若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则t 的取值范围是.参考答案课时规范练2 不等关系及简单不等式的解法1.D当a=1,b=-2时,A不正确,B不正确,C不正确;对于D,a>|b|≥0,则a2>b2.故选D.2.D由题意知解得故函数f(x)的定义域为(1,2)∪(2,3).3.A由c-b=4-4a+a2=(2-a)2≥0,得b≤c,再由b+c=6-4a+3a2,c-b=4-4a+a2,得b=1+a2,因为1+a2-a=+>0,所以b=1+a2>a.所以a<b≤c.< p="">4.C不等式2x2-5x-3≥0的解集是,由题意,选项中x的取值范围应该是上述解集的真子集,只有C满足.5.A由题意知,对任意的x∈R,有1-mx-mx2≥0恒成立,所以m=0或故-4≤m≤0,故选A.6.D因为不等式<0等价于(x+1)(x-1)(x-2)<0,所以该不等式的解集是{x|x<-1或1<x<2}.故选d.< p="">7.A原不等式等价于(m-2)x2+2(m-2)x-4<0,当m=2时,对任意x不等式都成立;当m-2<0时,Δ=4(m-2)2+16(m-2)<0,解得-2<m<2,< p=""> 综上,得m∈(-2,2].8.(-∞,-1)∵ab2>a>ab,∴a≠0.当a>0时,有b2>1>b,即解得b<-1;当a<0时,有b2<1<b,即无解.< p="">综上可得b<-1.9.∵不等式ax2+bx+a<0(ab>0)的解集是空集,∴a>0,b>0,且Δ=b2-4a2≤0.∴b2≤4a2.∴a2+b2-2b≥+b2-2b=-≥-.∴a2+b2-2b的取值范围是.10.A∵>0的解集为(-1,2),∴a<0,(ax+b)(x-2)>0,即x=-=-1,∴a=b.∵m是a和b的等比中项,则m2=ab,∴=1.11.B(方法一)由根与系数的关系知=-2+1,- =-2,解得a=-1,c=-2.所以f(x)=-x2-x+2.所以f(-x)= -x2+x+2=-(x+1)(x-2),图像开口向下,与x轴的交点为(-1,0),(2,0),故选B.(方法二)由题意可画出函数f(x)的大致图像,如图.又因为y=f(x)的图像与y=f(-x)的图像关于y轴对称,所以y=f(-x)的图像如图.12.(-∞,-2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max.令g(x)=x2-4x-2,x∈(1,4),则g(x)<-2.< p="">13.(-∞,1)函数f(x)=x2+(k-4)x+4-2k的图像的对称轴方程为x=-=.当<-1,即k>6时,f(x)的值恒大于零等价于f(-1)= 1+(k-4)×(-1)+4-2k>0,解得k<3,故k不存在;当-1≤≤1,即2≤k≤6时,f(x)的值恒大于零等价于f=+×+4-2k>0,即k2<0,故k不存在;当>1,即k<2时,f(x)的值恒大于零等价于f(1)=1+(k-4)+4-2k>0,即k<1.综上可知,当k<1时,对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k 的值恒大于零.14.解对x∈[0,2]恒有f(x)>0,即ax2>-(x+1),当x=0时显然满足ax2>-(x+1).当x≠0时,a>,即a>--.令t=,则t≥,g(t)=-t2-t=-+,g(t)max=g=-,可知a>-.∵f(x)=ax2+x+1是二次函数,∴a≠0.∴a>-,且a≠0.15.A由f(x)>0的解集为(-1,3),易知f(x)<0的解集为(-∞,-1)∪(3,+∞),故由f(-2x)<0得-2x<-1或-2x>3,∴x>或x<-.16.D由题意可知,-1,3是ax2+bx+c=0的两个实数根,且a<0,∴-1+3=-,-1×3=,∴=-2,=-3.∴f(x)=cx2+bx+a=a(-3x2-2x+1)=-3a+ a.∵a<0,抛物线开口向上,且对称轴为x=-,∴离对称轴越近,函数值越小.又=,=,=,∴f(0)<f(-1)<f(5).< p="">17.[,+∞)(方法一)∵对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,∴f(t+t)=f(2t)≥2f(t).当t<0时,f(2t)=-4t2≥2f(t)=-2t2,这不可能,故t≥0.∵当x∈[t,t+2]时,有x+t≥2t≥0,x≥t≥0,∴当x∈[t,t+2]时,不等式f(x+t)≥2f(x),即(x+t)2≥2x2,∴x+t≥x,∴t≥(-1)x对于x∈[t,t+2]恒成立.∴t≥(-1)(t+2),解得t≥.(方法二)当x<0时,f(x)=-x2递增,当x≥0时,f(x)=x2单调递增, ∴f(x)=在R上递增,且满足2f(x)=f(x),∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]上恒成立,∴x+t≥x在[t,t+2]上恒成立,即t≥(-1)x在x∈[t,t+2]恒成立,∴t≥(-1)(t+2),解得t≥,故答案为[,+∞).</f(-1)<f(5).<><-2.<></b,即无解.<></m<2,<></x<2}.故选d.<></b≤c.<></f(-1)<f(5)<></f(0)<f(5)<></f(-1)<f(0)<></f(0)<f(-1)<></x<></x<2}<></x<2,且x≠1}<> </x<2}<></a<c<></c<a<></a<></b≤c<>。

2020版高考数学一轮复习课时规范练1集合的概念与运算理北师大版

2020版高考数学一轮复习课时规范练1集合的概念与运算理北师大版

课时规范练1 集合的概念与运算基础巩固组1.(2018厦门外国语学校一模,2)已知集合A={x|y=lg(x-1)},B={x||x|<2},则A∩B=()A.(-2,0)B.(0,2)C.(1,2)D.(-2,2)2.已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)3.(2018百校联盟四月联考,1)设集合A={-1,0,1,2},B={y|y=2x,x∈A},则A∪B中元素的个数为()A.5B.6C.7D.84.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.(2018北京101中学3月模拟,1)已知集合A={x|x(x-2)<0},B={x|ln x>0},则A∩B是()A.{x|x>0}B.{x|x>2}C.{x|1<x<2}D.{x|0<x<2}6.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=()A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}7.(2018山东济南二模,1)设全集U=R,集合A={x|x-1≤0},集合B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A.{x|x<3}B.{x|-3<x≤1}C.{x|x<2}D.{x|-2<x≤1}8.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁U A)∩B=()A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]9.(2018湖南衡阳一模,1)已知集合A={x|(x+1)(x-3)<0},B={x|y=ln x},则A∩B=()A.{0,3}B.(0,3)C.(-1,3)D.{-1,3}10.已知集合A={x|x(x-4)<0},B={0,1,5},则A∩B=.11.已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是.12.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B的个数为.综合提升组13.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A⊆B,则实数a的取值范围是()A.(-1,+∞)B.[-1,+∞)C.(3,+∞)D.[3,+∞)14.(2018河北衡水中学十模,1)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(∁U B)=()A.{1,3}B.{0,2}C.{0,1,3}D.{2}15.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]16.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是.创新应用组17.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>218.若集合A={x|x2+4x+k=0,x∈R}中只有一个元素,则实数k的值为.参考答案课时规范练1 集合的概念与运算1.C由题意,可知A={x|x>1},B={x|-2<x<2},∴A∩B={x|1<x<2},表示为区间即(1,2),故选C.2.C因为A={x|x<-2或x>2},所以∁U A={x|-2≤x≤2}.故选C.3.B因为A={-1,0,1,2},B=,所以A∪B=-1,0,,1,2,4,A∪B中元素的个数为6.4.D由(x-2)(x-3)≥0,解得x≥3或x≤2,所以S={x|x≤2或x≥3}.因为T={x|x>0},所以S∩T={x|0<x≤2或x≥3},故选D.5.C由题意,集合A={x|x(x-2)<0}={x|0<x<2},B={x|ln x>0}={x|x>1},所以A∩B={x|1<x<2}.故选C.6.D集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0}={x|-3<x<0},∴M∩N={-2,-1}.故选D.7.D由题意可得:A={x|x≤1},B={x|-2<x<3},∴A∩B={x|-2<x≤1},故选D.8.C∵全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(∁U A)∩B={4,8}.故选C.9.B A={x|-1<x<3},B={x|x>0},所以A∩B=(0,3),故选B.10.{1}A={x|x(x-4)<0}=(0,4),所以A∩B={1}.11.(4,+∞)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A⊆B,则a>4.12.4因为A={1,2}且A⊆B,所以B={1,2}或B={1,2,3}或B={1,2,4}或B={1,2,3,4}.13.C由题意,A=[-1,3],B=(-∞,a),∵A⊆B,∴a>3,∴a的取值范围是(3,+∞).14.A∵全集U=Z,A={0,1,2,3},B={x|x2=2x},∴∁U B={x|x∈Z,且x≠0,且x≠2},∴A∩(∁U B)={1,3}.故选A.15.C由题意可知阴影部分对应的集合为(∁U(A∩B))∩(A∪B).∵A={x|-2<x<0},B={x|-1≤x≤1},∴A∩B={x|-1≤x<0},A∪B={x|-2<x≤1},∵∁U(A∩B)={x|x<-1或x≥0},∴(∁U(A∩B))∩(A∪B)={x|0≤x≤1或-2<x<-1}.故选C.16.(-∞,-2]集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].因为A⊆B,所以a≤2,b≥4.所以a-b≤2-4=-2.故实数a-b的取值范围是(-∞,-2].17.C∵A∪(∁R B)=R,∴B⊆A,∴a≥2,故选C.18.4由题意x2+4x+k=0有两个相等的实根,∴Δ=16-4k=0,解得k=4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档