安阳县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案
安阳县高级中学2018-2019学年上学期高三数学10月月考试题

安阳县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 2. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .3. 方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆 4. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >85. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )6. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .4 B .4 C.4 D .347. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=8. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .79. 设复数z 满足z (1+i )=2,i 为虚数单位,则复数z 的虚部是( )A1 B ﹣1 Ci D ﹣i10.将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .11.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 12.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .150二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 14.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题(本大共6小题,共70分。
河南省安阳市2019届高三第三次模拟考试数学试卷(理)及答案

数学(理科)·答案(1)B (2)D (3)A (4)C (5)A (6)B (7)D (8)C (9)A (10)D (11)B (12)D(13)π3(14)-1 (15)327a (16)1,2⎛⎫+∞ ⎪⎝⎭(17)解:(Ⅰ)当2n …时,由 22n n n S a a =+得21112n n n S a a ---+=,两式相减得111()()20n n n n n n n a a a a a a a ----++--=,即11()(1)0n n n n a a a a --+--=,11n n a a -∴-=,…………………………………………(3分)当1n =时,021121=-+a a a ,11,1(1)1n a a n n ∴=∴=+-⨯=.……………………(5分)(Ⅱ)211=-n n b b ,11b =,121-⎪⎭⎫⎝⎛=∴n n b ,112n n c n -⎛⎫∴=⨯ ⎪⎝⎭.………………………(8分)0111211112,222111112,2222n n nn T n T n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两式相减得1111111112112222212nn n nn T n n -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-1121,22n nn ⎡⎤⎛⎫⎛⎫=--⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∴111111244144422222n n n n n nn T n n --⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=--⨯=-⨯-⨯=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.…………(12分)(18)解:(Ⅰ)∵过圆柱母线的截面ACEF 是正方形, ∴平面ACEF ^平面ABC , AE CF ^. 又AB 为圆柱的底面直径,∴AC BC ^,∴BC ^平面ACEF ,又AE ⊂平面ACEF ,∴BC AE ^. ∵CF BC C Ç=,故AE ^平面BCF , 又ÌAE ABE 平面,∴平面ABE ^平面BCF .…………………………………………(6分) (Ⅱ)解法一:如图,设AE CF M ?,由(Ⅰ)知AE ^平面BCF ,过E 作^EH BF 于H ,连接MH ,则MH BF ⊥,EHM \?为二面角E BF C --的平面角,60EHM \??.…………………………(8分)设BC t =,则BE EH ==在Rt EMH V中,依题意得sin ?EHM解得1t =,故圆柱的底面直径AB.…………………………………………(12分)解法二:建立空间直角坐标系如图,设=BC t ,则(0,,0),(1,0,1),(0,0,1),(1,0,0),(1,,1),(1,0,0),B t F E A BF t EF \=-=uuu ruuu r设平面BEF 的一个法向量为(,,)m x y z = ,则00ìïïíïïïî??EF BFuuu r uuu r m m ,即0ìïïíïïî=-+=x x ty z ,令1y =,得(0,1,)=t m .设平面BCF 的一个法向量为n ,由AE ^平面BCF ,得(1,0,1)n =-.∴1cos ,2==m n ,解得1=t , 故圆柱的底面直径AB.………………………………………………………(12分) (19)解:(Ⅰ)设该选手在M 处射中为事件A ,在N 处射中为事件B ,则事件,A B 相互独立,且()0.25P A =,()0.75P A =,2()P B q =,2()1P B q =-.根据分布列知: 当0X =时,22()()()()0.75(1)P ABB P A P B P B q ==-=0.03, 所以210.2q -=,20.8q =.………………………………………………………………(3分) 当2X =时, 1()()()P P ABB ABB P ABB P ABB =+=+()()()()()()0.75P A P B P B P A P B P B =+=2q ()2120.24q -⨯=,当3X =时, 222()()()()0.25(1)0.01P P ABB P A P B P B q ===-=,当4X =时, 3P =22()()()()0.750.48P ABB P A P B P B q ===,当5X =时, 4P =()()()P ABB AB P ABB P AB +=+222()()()()()0.25(1)0.250.24P A P B P B P A P B q q q =+=-+=, 所以随机变量X 的分布列为:故随期望()00.0320.2430.0140.4850.24 3.63E X =⨯+⨯+⨯+⨯+⨯=.………………………………………………………………………………………………(8分) (Ⅱ)该选手选择上述方式发射飞镖得分超过3分的概率为0.480.240.72+=. 该选手选择都在N 处发射飞镖得分超过3分的概率为()P BBB BBB BB ++()()()P BBB P BBB P BB =++222222(1)0.896q q q =-+=.所以该选手选择都在N 处发射飞镖得分超过3分的概率大.……………………………(12分)(20)解:(Ⅰ)由题意设M 的方程为:22221(0)x y a b a b+=>>,则1b =,即221a c -=,又c a =,解得2a =.所以椭圆M 的标准方程为2214x y +=.……………………………………………………(4分)(Ⅱ)设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AP PC λ=,则()()01300130x x x x y y y y λλ-=-⎧⎪⎨-=-⎪⎩,所以()()01301311x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,因为点C 在椭圆上,所以223314x y +=, 即()()220101221114x x y y λλλλ+-+-⎡⎤⎡⎤⎣⎦⎣⎦+=,整理得 ()()()222222010010111114424x x y x x y y y λλλ⎛⎫⎛⎫++-++++= ⎪ ⎪⎝⎭⎝⎭,又点A 在椭圆上,所以221114x y +=,从而可得()()()22220001011114142x y x x y y λλλ⎛⎫++-++=- ⎪⎝⎭,① 又因为AB CD ∥,故有BP PD λ=,同理可得()()()22220002*********x y x x y y λλλ⎛⎫++-++=- ⎪⎝⎭,② ②-①得,()()01201240x x x y y y -+-=.因为P 点不在坐标轴上,所以000,0x y ≠≠, 又易知AB 不与坐标轴平行,所以直线AB 的斜率0121204x y y k x x y -==--,为定值.………………………………………………………………………………………………(12分) (21)解:(Ⅰ)()1a x af x x x-'=-=,()0,x ∈+∞,因为0a >,令()0f x '=,得x a =,当0x a <<时()0f x <¢,当x a >时()0f x >¢, 所以()f x 的单调递减区间为()0,a ,单调递增区间为(),a +∞.所以()()min 1ln f x f a a a a ==--.由题意得()min 0f x …,则()1ln 0f a a a a =--…. …………………………………………………………………………………………………(3分)令()1ln g a a a a =--,可得()ln g a a '=-,因此()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 10g a g ==,故1ln 0a a a --…成立的解只有1a =.故实数a 的取值集合为{}1.…………………………………………………………………(6分)(Ⅱ)要证明1111e <1n n n n +⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭,只要证()11ln 111ln 1n n n n ⎛⎫⎛⎫+<<++ ⎪ ⎪⎝⎭⎝⎭,即证111ln 11n n n⎛⎫<+< ⎪+⎝⎭,令11x n =+,只要证()11ln 112x x x x -<<-<≤,………(8分) 由(Ⅰ)可知,当1a =时,()1ln f x x x =--在(]1,2上单调递增,因此()()10f x f >=,即ln 1x x <-.………………………………………………………………………………(10分)令()1ln 1x x x ϕ=+-,则()221110x x x x xϕ-'=-=>,所以()x ϕ在(]1,2上单调递增,因此()()10x ϕϕ>=,即1ln 10x x+->,综上可知原不等式成立.……………………(12分)(22)解:(Ⅰ)因为AE 与圆相切于点A ,所以BAE ACB =行. 因为AB AC =,所以ABC ACB =行,所以ABC BAE =行,所以AE BC ∥.因为BD AC ∥,所以四边形ACBE 为平行四边形.………………(5分) (Ⅱ)因为AE 与圆相切于点A ,所以2()AE EB EB BD =?,即26(5)EB EB =?,解得4BE =,根据(Ⅰ)有4,6AC BE BC AE ====, 设CF x =,由BD AC ∥,得AC CF BD BF =,即456x x =-,解得83x =,即83CF =. ………………………………………………………………………………………………(10分) (23)解:(Ⅰ)易求得直线:4320l x y --=,圆C :222()x a y a -+=,a =,解得2a =-或29a =. ………………………………(5分) (Ⅱ)因为直线l 过点(),a a ,所以2a =,可得圆C :22(2)4x y -+=,所以圆心(2,0)到直线:4320l x y --=65=,故弦长为165=.…(10分)(24)解:(Ⅰ)由36x a -++>得36x a +<-. 当6a …时,x ∈∅,当6a >时,(6)36a x a --<+<-,得39a x a -<<-.综上所述:当6a …时,原不等式的解集为∅;当6a >时,原不等式的解集为(3,9)a a --.…………………………………………………………………………………(5分)(Ⅱ)因为函数2()y f x =的图象恒在函数y =()g x 的图象的上方,++ 故2()()0f x g x ->,即213a x x <-++恒成立.设()213h x x x =-++,则313()531311<>x x h x x x x x ---⎧⎪=--⎨⎪+⎩……,,,. 易知当1x =时,()h x 取得最小值4,故4a <.所以a 的取值范围是(,4)-∞.………………………………………………………………(10分)。
安阳县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

安阳县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为()A .30°B .45°C .60°D .90°2. 把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)3. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)4. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的()A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件5. 已知函数,关于的方程()有3个相异的实数根,则的()x e f x x=x 2()2()10f x af x a -+-=a R Îa 取值范围是()A .B .C .D .21(,)21e e -+¥-21(,)21e e --¥-21(0,21e e --2121e e ìü-ïïí-ïïîþ【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.6. 设公差不为零的等差数列的前项和为,若,则( ){}n a n n S 4232()a a a =+74S a = A .B .C .7D .1474145【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.n 7. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或8. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)9. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是()A .B .C .D .10.(2011辽宁)设sin (+θ)=,则sin2θ=()A .﹣B .﹣C .D .11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]12.已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( )A .4B .5C .6D .9二、填空题13.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 . 14.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .15.函数()满足且在上的导数满足,则不等式)(x f R x ∈2)1(=f )(x f R )('x f 03)('>-x f 的解集为.1log 3)(log 33-<x x f 【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.16.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 . 17.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 . 18.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有 种(用数字作答).A B C D 三、解答题19.已知集合P={x|2x 2﹣3x+1≤0},Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}.(1)若a=1,求P ∩Q ;(2)若x ∈P 是x ∈Q 的充分条件,求实数a 的取值范围.20.(本题满分12分)已知数列的前项和为,().}{n a n n S 233-=n n a S +∈N n (1)求数列的通项公式;}{n a (2)若数列满足,记,求证:().}{n b 143log +=⋅n n n a b a n n b b b b T ++++= 32127<n T +∈N n 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前项和.重n 点突出运算、论证、化归能力的考查,属于中档难度.21.已知、、是三个平面,且,,,且.求证:、αβc αβ=I a βγ=I b αγ=I a b O =I 、三线共点.22.如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.23.(本小题满分12分)在多面体中,四边形与均为正方形,平面ABCDEFG ABCD CDEF CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)求二面角的大小的余弦值.D FGE --24.已知,数列{a n }的首项(1)求数列{a n }的通项公式;(2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .安阳县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.2.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.3.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.4.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.5.【答案】D第Ⅱ卷(共90分)6. 【答案】C.【解析】根据等差数列的性质,,化简得,∴4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.1741767142732a dS d a a d d⋅+===+7. 【答案】D【解析】解:∵f (x )是定义在R 上的偶函数,当0≤x ≤1时,f (x )=x 2,∴当﹣1≤x ≤0时,0≤﹣x ≤1,f (﹣x )=(﹣x )2=x 2=f (x ),又f (x+2)=f (x ),∴f (x )是周期为2的函数,又直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.8.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.9.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.10.【答案】A【解析】解:由sin (+θ)=sin cos θ+cos sin θ=(sin θ+cos θ)=,两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,则sin2θ=2sin θcos θ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题. 11.【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选D. 1()12201620162=⨯⨯=考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称()311533212f x x x x =-+-性和的.第Ⅱ卷(非选择题共90分)12.【答案】B【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2;②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1;③x=2时,y=0,1,2,∴x ﹣y=2,1,0;∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B . 二、填空题13.【答案】 ﹣3<a <﹣1或1<a <3 .【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a <﹣1或1<a <3.故答案为:﹣3<a <﹣1或1<a <3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题.14.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键.15.【答案】)3,0(【解析】构造函数,则,说明在上是增函数,且x x f x F 3)()(-=03)(')('>-=x f x F )(x F R .又不等式可化为,即,13)1()1(-=-=f F 1log 3)(log 33-<x x f 1log 3)(log 33-<-x x f )1()(log 3F x F <∴,解得.∴不等式的解集为.1log 3<x 30<<x 1log 3)(log 33-<x x f )3,0(16.【答案】 .【解析】解:∵F是抛物线y2=4x的焦点,∴F(1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.17.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O的半径为3,球O1的半径为1,则,在Rt△OMO1中,OO1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.18.【答案】 27 【解析】解:若A方格填3,则排法有2×32=18种,若A方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.三、解答题19.【答案】【解析】解:(1)当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}则P∩Q={1}(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}∵x∈P是x∈Q的充分条件,∴P⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型. 20.【答案】【解析】21.【答案】证明见解析.【解析】考点:平面的基本性质与推论.22.【答案】【解析】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V A﹣PBC=V P﹣ABC,,得,故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.23.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.GH∈AGH AGH⊥EFG∵平面,∴平面平面.……………………………5分24.【答案】【解析】解:(Ⅰ),,数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n为n的增函数,S n>2012,即(4n﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用. 。
安阳市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

安阳市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]2. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R),则不等式f (x )<2x+1的解集为( )A .(1,+∞)B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)3. 已知集合M={0,1,2},则下列关系式正确的是( )A .{0}∈MB .{0}MC .0∈MD .0M∉⊆4. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日5. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( )A .﹣2B .﹣4C .0D .46. (文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位 B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位7. 设集合,,则(){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B =I A.B.C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.8. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且P 22221(0,0)x y a b a b-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率12PF PF ⊥2PF M N N 2PF 是( )A.B.2D.52【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.9. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)10.如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=()A .﹣6B .﹣2C .2D .611.设D 为△ABC 所在平面内一点,,则()A .B .C .D .12.过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( )A .8B .10C .6D .4二、填空题13.在(x 2﹣)9的二项展开式中,常数项的值为 .14.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如表:x 681012y 2356根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元. 15.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 . 16.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单P t 位:小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了0ektP P -=0P k 10%消除的污染物,则需要___________小时.27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.17.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .18.已知直线:()被圆:所截的弦长是圆心到直线的043=++m y x 0>m C 062222=--++y x y x C 距离的2倍,则.=m 三、解答题19.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,请在此正方体中取出四个顶点构成一个三棱锥,满足三棱锥的四个面都是直角三角形,并求此三棱锥的体积.20.已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.(Ⅰ)求直线l的方程;(Ⅱ)求点P(2,2)到直线l的距离.21.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.22.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.23.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.24.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.安阳市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.2.【答案】A【解析】解:令F(x)=f(x)﹣2x﹣1,则F′(x)=f′(x)﹣2,又∵f(x)的导数f′(x)在R上恒有f′(x)<2,∴F′(x)=f′(x)﹣2<0恒成立,∴F(x)=f(x)﹣2x﹣1是R上的减函数,又∵F(1)=f(1)﹣2﹣1=0,∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,即不等式f(x)<2x+1的解集为(1,+∞);故选A.【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.3.【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确.对于D,是元素与集合的关系,错用集合的关系,所以不正确.故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用4.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础. 5. 【答案】B【解析】解:因为f (x )+f (y )=f (x+y ),令x=y=0,则f (0)+f (0)=f (0+0)=f (0),所以,f (0)=0;再令y=﹣x ,则f (x )+f (﹣x )=f (0)=0,所以,f (﹣x )=﹣f (x ),所以,函数f (x )为奇函数.又f (3)=4,所以,f (﹣3)=﹣f (3)=﹣4,所以,f (0)+f (﹣3)=﹣4.故选:B .【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题. 6. 【答案】C 【解析】试题分析:,故向上平移个单位.()2222log 2log 2log 1log g x x x x ==+=+考点:图象平移.7. 【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.||2x ≤22x -≤≤{}|22A x x =-≤≤{}1,2A B =I 8. 【答案】A. 【解析】9. 【答案】D【解析】解:因为f (x )为偶函数,所以f (x )=f (|x|),因为f (x )在(﹣∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,由f (﹣1)<f (lg x ),得|lg x|>1,即lg x >1或lg x <﹣1,解得x >10或0<x <.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.10.【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:===2+4﹣2+2=6.故选:D.【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.11.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.12.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A二、填空题13.【答案】 84 .【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.14.【答案】 7.5 【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.15.【答案】 7+ 【解析】解:如图所示,设∠APB=α,∠APC=π﹣α.在△ABP与△APC中,由余弦定理可得:AB2=AP2+BP2﹣2AP•BPcosα,AC2=AP2+PC2﹣2AP•PCcos(π﹣α),∴AB2+AC2=2AP2+,∴42+32=2AP2+,解得AP=.∴三角形ABP的周长=7+.故答案为:7+.【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.16.【答案】15【解析】由条件知,所以.消除了的污染物后,废气中的污染物数量为5000.9e kP P -=5e0.9k-=27.1%,于是,∴,所以小时.00.729P 000.729e kt P P -=315e 0.7290.9e kt k --===15t =17.【答案】 0.6 .【解析】解:随机变量ξ服从正态分布N (2,σ2),∴曲线关于x=2对称,∴P (ξ>0)=P (ξ<4)=1﹣P (ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题. 18.【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=三、解答题19.【答案】【解析】解:连结BD ,B 1D ,B 1C ,则三棱锥B 1﹣BCD 即为符合条件的一个三棱锥,三棱锥的体积V==.【点评】本题考查了正方体的结构特征,棱锥的体积计算,属于基础题. 20.【答案】【解析】解:(Ⅰ)联立,解得其交点坐标为(4,2).…因为直线l与直线2x﹣2y﹣5=0平行,所以直线l的斜率为1.…所以直线l的方程为y﹣2=1×(x﹣4),即x﹣y﹣2=0.…(Ⅱ)点P(2,2)到直线l的距离为.…【点评】本题考查直线方程的求法,点到直线距离公式的应用,考查计算能力.21.【答案】【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,∴k≥(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠∅,所以f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,g(x)min=g(e)=2e,所以m>2e.【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.22.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.23.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.24.【答案】【解析】解:(1)∵函数f(x)=x2﹣mx在[1,+∞)上是单调函数∴x=≤1∴m≤2∴实数m的取值范围为(﹣∞,2];(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.第11 页,共11 页。
安阳市实验中学2018-2019学年高三上学期第三次月考试卷数学含答案

安阳市实验中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =2. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.653. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的164. 已知命题1:0,2p x x x∀>+≥,则p ⌝为( ) A .10,2x x x ∀>+< B .10,2x x x ∀≤+< C .10,2x x x ∃≤+< D .10,2x x x∃>+<5. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( )A .243B .363C .729D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.6.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()A .12+B .12+23πC .12+24πD .12+π7. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 8. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 9. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .98 10.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 11.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}12.拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .10二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .14.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其 中为自然对数的底数)的解集为 .15.已知一个算法,其流程图如图,则输出结果是 .16.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题(本大共6小题,共70分。
河南省安阳市内黄县第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

河南省安阳市内黄县第二中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.2. 执行如图的程序框图,则输出的s=( )A. B.﹣C. D.﹣3.“”是“”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 5. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .26. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣37. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.8. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.9. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.10.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
安阳县二中2018-2019学年高三上学期11月月考数学试卷含答案

安阳县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是()A .B .1C .D .2. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为()A .12B .10C .8D .23. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D . 4. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .35. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为()A .B .C .﹣D .﹣6. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .7. 若则的值为( )⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x )1(f 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .8B .C .2D .81218. 复数z=在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限9. 若命题“p 或q ”为真,“非p ”为真,则()A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假10.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .11.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是()A .B .C .D .12.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .4二、填空题13.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.14.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.15.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 . 16.设x,y满足的约束条件,则z=x+2y的最大值为 .17.已知x,y满足条件,则函数z=﹣2x+y的最大值是 .18.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有 个直角三角形.三、解答题19.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数.若p∨q 为真,p∧q为假.求实数a的取值范围.20.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n21.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km 的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?22.已知a>0,b>0,a+b=1,求证:(Ⅰ)++≥8;(Ⅱ)(1+)(1+)≥9.23.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E ,OE交AD于点F.(1)求证:DE是⊙O的切线.(2)若,求的值.24.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.安阳县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.2.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.3.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.4.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.5.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.6.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A 对应的集合,利用几何概型公式解答. 7. 【答案】B 【解析】试题分析:,故选B 。
安阳市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

安阳市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( ) A .10 B .11 C.12 D .132.已知,,那么夹角的余弦值( )A.B.C .﹣2 D.﹣3. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-4.设集合( )A. B.C.D.5. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 7. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( )A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,8. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣9. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 10.在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=11.“互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 12.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABC D二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.14.不等式0<1﹣x 2≤1的解集为 .15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 16.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.三、解答题(本大共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安阳县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<2. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)3. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .300 4. 复数z=(﹣1+i )2的虚部为( ) A .﹣2 B .﹣2i C .2 D .05. 已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1216. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6π B .[,)6ππ C. (0,]3π D .[,)3ππ 7. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆)C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.8. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 9. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=10.在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .24 11.执行如图所示的程序框图,则输出结果S=( )A .15B .25C .50D .10012.=( )A .﹣iB .iC .1+iD .1﹣i二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn是向量与i的夹角,则++…+= .14.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 15.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.16.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1; ③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC的重心和外心,且•=5,则△ABC 的形状是直角三角形.三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.(本小题满分12分)椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,B是C 的长轴上的两个顶点,已知|PF |=1,k P A ·k PB =-12.(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.18.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.19.如图,四边形ABEF 是等腰梯形,,2,42,22AB EF AF BE EF AB ====,四边形ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .20.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .21.(本小题满分14分)设集合12432x A x -⎧⎫=⎨⎬⎩⎭≤≤,{}()222300B x x mx m m =+-<>.(1) 若2m =,求A B ⋂;(2) 若B A ⊇,求实数m 的取值范围.22.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12(1)求a ,b 的值.(2)当x ∈[1,2]时,求f (x )的最大值.(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x﹣m 的图象恒有两个交点.安阳县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 2. 【答案】A解析:抛物线C :y x 82=的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .3. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390.故选:C . 4. 【答案】A【解析】解:复数z=(﹣1+i )2=﹣2i 虚部为﹣2.故选:A .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.5. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n+++==,∴120n =,选C . 6. 【答案】C 【解析】考点:三角形中正余弦定理的运用. 7. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c=.12c c =,整理,得2()4ca=+1e =,故选D. 8. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点),另外,要选好基底向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等. 9. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 10.【答案】B 【解析】试题分析:由等差数列的性质可知,16a 84102=+=+a a a . 考点:等差数列的性质. 11.【答案】C【解析】解:根据程序框图,S=(﹣1+3)+(﹣5+7)+…+(﹣97+99)=50,输出的S 为50. 故选:C .【点评】本题主要考查了循环结构的程序框图,模拟执行程序框图,正确得到程序框图的功能是解题的关键,属于基础题.12.【答案】 B【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【答案】 .【解析】解:点An (n ,)(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,=,=,…, =,∴++…+=+…+=1﹣=,故答案为:. 【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.14.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'<⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭.115.【答案】3-【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273z a -=⨯+=,所以max 74z a =+=,故3a=-.16.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC <0, 即有C 为钝角.则三角形ABC 为钝角三角形;⑤不正确. 故答案为:①②③三、解答题(本大共6小题,共70分。