2015-2016年浙江省温州市泰顺七中八年级上学期期中数学试卷及参考答案
浙江省温州市五校联考2015-2016学年八年级(上)期中数学试卷(解析版)

2015-2016学年浙江省温州市五校联考八年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在△ABC中,∠A=50°,∠B=70°,则∠C的度数是()A.40°B.60°C.80°D.100°2.下列选项中的三条线段的长度,能组成三角形的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,113.下列学习用具中,不是轴对称图形的是()A.B. C.D.4.下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.面积相等的两个三角形全等5.下列各图中,正确画出AC边上的高的是()A.B.C. D.6.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是()A.6 B.5 C.4 D.37.已知命题:若a>b,则.下列哪个反例可以说明这是个假命题()A.a=2,b=1 B.a=2,b=﹣1 C.a=1,b=2 D.a=﹣2,b=﹣18.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.10°B.15°C.25°D.30°9.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB 于点E,D,则△DBC的周长为()A.6 B.7 C.8 D.910.如图所示,某人到岛上去探宝,从A处登陆后先往北走9km,又往东走6km,再折回向北走3km,往西一拐,仅走1km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是()km.A.10 B.11 C.12 D.13二、填空题(本题有8小题,每小题3分,共24分)11.已知等边△ABC的周长为6,则它的边长等于.12.写出命题“两直线平行,内错角相等”的逆命题:.13.已知等腰三角形两条边的长分别是4和6,则它的周长等于.14.在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=2:3:4,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有.15.如图,已知∠AFB=∠CED,AF=CE,要使△ABF≌△CDE,应补充的直接条件是(写一个即可)16.如图,AD是△ABC的中线,∠ADC=45°.把△ADC沿直线AD折过来,点C落在点C′的位置上,如果BC=2,那么BC′=.17.如图,在Rt△ABC中,AB=8,BC=6,BD是斜边AC上的中线,CE⊥DB,则CE=.18.如图,△ABC内角∠ABC的平分线BP与外角∠ACD的平分线CP交于点P,如果已知∠BPC=67°,则∠CAP=.三、解答题(本题有6小题,共46分)19.如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的示意图,并标出各角的度数.20.如图,已知△ABC中,AB=AC,AD平分∠BAC,请将“等腰三角形三线合一”定理的证明过程补充完整.解:∵AD平分∠BAC∴∠=∠在△ABD和△ACD中∴△ABD≌△ACD∴BD=DC∠ADB=∠ADC=×180°=90°即AD是BC上中线,也是BC上的高.21.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相等的刻度分别与M,N重合,过角尺顶点C作射线OC即可得∠AOC=∠BOC.请说明理由.22.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.(1)△ADE与△BEC全等吗?请说明理由;(2)若AD=3,AB=7,请求出△ECD的面积.23.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求AE的长;(2)求BD的长.24.如图,△ABC和△ACD都是边长为2厘米的等边三角形,两个动点P,Q同时从A点出发,点P以0.5厘米/秒的速度沿A→C→B的方向运动,点Q以1厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(1)当t=2时,PQ=;(2)求点P、Q从出发到相遇所用的时间;(3)当t取何值时,△APQ是等边三角形;请说明理由;(4)当P在线段AC上运动时,是否存在t使△APQ是直角三角形?若存在请直接写出t 的值或t的取值范围,若不存在,请说明理由.2015-2016学年浙江省温州市五校联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.在△ABC中,∠A=50°,∠B=70°,则∠C的度数是()A.40°B.60°C.80°D.100°【考点】三角形内角和定理.【分析】根据三角形内角和定理即可得到结果.【解答】解:∠C=180°﹣∠A﹣∠B=60°.故选B.2.下列选项中的三条线段的长度,能组成三角形的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵1+2=3<4,∴不能够组成三角形,故本选项错误;B、∵4+5=9,∴不能够组成三角形,故本选项错误;C、∵6+4=10>8,∴能够组成三角形,故本选项正确;D、∵5+5=10<11,∴不能够组成三角形,故本选项错误.故选C.3.下列学习用具中,不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.4.下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.面积相等的两个三角形全等【考点】命题与定理.【分析】分别根据等腰三角形的判定定理、绝对值的性质及全等三角形的判定定理对各选项进行逐一分析即可.【解答】解:A、有两条边相等的三角形是等腰三角形是真命题,故本选项正确;B、两直线平行,同位角相等,故本选项错误;C、如果|a|=|b|,那么a=±b,故本选项错误;D、面积相等的两个三角形不一定全等,故本选项错误.故选A.5.下列各图中,正确画出AC边上的高的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.6.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是()A.6 B.5 C.4 D.3【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=×8=4.故选C.7.已知命题:若a>b,则.下列哪个反例可以说明这是个假命题()A.a=2,b=1 B.a=2,b=﹣1 C.a=1,b=2 D.a=﹣2,b=﹣1【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、a=2,b=1,a>b,则是真命题,故A错误;B,a=2,b=﹣1,a>b,则>是假命题,故B正确;C、a=1,b=2,a<b,则>是假命题,故C正确;D、a=﹣2,b=﹣1,a<b,则>是假命题,故D正确;故选:B.8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.10°B.15°C.25°D.30°【考点】三角形内角和定理;三角形的外角性质.【分析】根据直角三角形的性质可得∠BAC=45°,根据邻补角互补可得∠EAF=135°,然后再利用三角形的外角的性质可得∠AFD=135°+30°=165°.即可.【解答】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选B9.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB 于点E,D,则△DBC的周长为()A.6 B.7 C.8 D.9【考点】线段垂直平分线的性质.【分析】根据勾股定理求出AB,根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵∠C=90°,AC=4,BC=3,∴AB==5,∵DE是AC边的中垂线,∴DA=DC,△DBC的周长=BD+CD+BC=BD+AD+BC=5+3=8,故选:C.10.如图所示,某人到岛上去探宝,从A处登陆后先往北走9km,又往东走6km,再折回向北走3km,往西一拐,仅走1km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是()km.A.10 B.11 C.12 D.13【考点】勾股定理的应用.【分析】过点B作过点A的东西方向所在直线的垂线,构造直角三角形,利用勾股定理完成.【解答】解:如图,作过点A的东西方向的直线AD,过点B作BC⊥AD于C,则AC=6﹣1=5km,BC=9+3=12km,在Rt△ABC中,由勾股定理求得AB===13(km).所以登陆点A与宝藏埋藏点B之间的距离是13km.故选D.二、填空题(本题有8小题,每小题3分,共24分)11.已知等边△ABC的周长为6,则它的边长等于2.【考点】等边三角形的性质.【分析】根据等边三角形的性质和三角形周长的概念即可求得.【解答】解:∵△ABC是等边三角形,∴AB=BC=CA,∵等边△ABC的周长为6,∴AB+BC+CA=6,∴3AB=6,∴AB=2,故等边三角形的边长为2,故答案为2.12.写出命题“两直线平行,内错角相等”的逆命题:内错角相等,两直线平行.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:内错角相等∴其逆命题为:内错角相等地,两直线平行.13.已知等腰三角形两条边的长分别是4和6,则它的周长等于14或16.【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长与底边长两种情况讨论求解即可.【解答】解:①当6是腰长时,三边分别为6、6、4时,能组成三角形,周长=6+6+4=16,②当6是底边时,三边分别为6、4、4,能组成三角形,周长=6+4+4=14,综上所述,等腰三角形的周长为14或16.故答案为:14或16.14.在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=2:3:4,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①③④.【考点】三角形内角和定理.【分析】直接利用直角三角形的性质进而判断得出答案.【解答】解:①当∠A+∠B=∠C,则∠C=90°,故能确定△ABC是直角三角形,②∠A:∠B:∠C=2:3:4,可得∠C=180°×=80°,故不能确定△ABC是直角三角形,③∠A=90°﹣∠B,能确定△ABC是直角三角形,④∠A=∠B=∠C,则∠A+∠B=∠C,故能确定△ABC是直角三角形,故答案为:①③④.15.如图,已知∠AFB=∠CED,AF=CE,要使△ABF≌△CDE,应补充的直接条件是∠C=∠A或∠B=∠D或FB=DE(写一个即可)【考点】全等三角形的判定.【分析】添加∠C=∠A ,可利用ASA 定理判定△ABF ≌△CDE .【解答】解:添加∠C=∠A ,在△ABF 和△CDE 中,,∴△ABF ≌△CDE (ASA ).故答案为:∠C=∠A .16.如图,AD 是△ABC 的中线,∠ADC=45°.把△ADC 沿直线AD 折过来,点C 落在点C ′的位置上,如果BC=2,那么BC ′= .【考点】翻折变换(折叠问题).【分析】首先根据折叠的性质可得:∠ADC=∠ADC ′=45°,即DC ′⊥DC ,且DC=DC ′=BD ,由此可得△BDC ′是个直角边为4的等腰直角三角形,由此得解.【解答】解:∵把△ABC 沿直线AD 折过来,点C 落在点C ′的位置,∴△ADC ≌△ADC ′,∴∠ADC=∠ADC ′=45°,DC=DC ′=BD ,∴△BDC ′是等腰直角三角形,且直角边为1,那么斜边BC ′=.故答案为:.17.如图,在Rt △ABC 中,AB=8,BC=6,BD 是斜边AC 上的中线,CE ⊥DB ,则CE= 4.8 .【考点】直角三角形斜边上的中线.【分析】由勾股定理得AC=10,由直角三角形斜边上的中线定理得到BD=5,S △BCD =S △ABC =12,由三角形的面积公式即可求得结论.【解答】解:在Rt △ABC 中,∵AB=8,BC=6,∴AC==10,∵BD 是斜边AC 上的中线,∴BD=×10=5,S △BCD =S △ABC =×8×6=12,∴CE==4.8, 故答案为4.8.18.如图,△ABC 内角∠ABC 的平分线BP 与外角∠ACD 的平分线CP 交于点P ,如果已知∠BPC=67°,则∠CAP= 23° .【考点】三角形的外角性质.【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP ,即可得出答案【解答】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD=x °,∵CP 平分∠ACD ,∴∠ACP=∠PCD=x °,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∵∠BPC=67°,∴∠ABP=∠PBC=∠PCD ﹣∠BPC=(x ﹣67)°,∴∠BAC=∠ACD ﹣∠ABC=2x °﹣(x °﹣67°)﹣(x °﹣67°)=134°,∴∠CAF=46°,在Rt △PFA 和Rt △PMA 中,,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP=∠PAC=23°.故答案为:23°.三、解答题(本题有6小题,共46分)19.如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的示意图,并标出各角的度数.【考点】作图—应用与设计作图;等腰三角形的性质.【分析】方法一:在钝角剪出一个20°的角,与原来的20°角构成底角是20°的等腰三角形,根据三角形的一个外角等于与它不相邻的两个内角的和可得另一个三角形是底角为40°的等腰三角形;方法二:在钝角剪出一个40°的角,与原来的40°角构成底角是40°的等腰三角形,根据三角形的一个外角等于与它不相邻的两个内角的和可得另一个三角形是底角为80°的等腰三角形.【解答】解:剪裁如图所示..20.如图,已知△ABC中,AB=AC,AD平分∠BAC,请将“等腰三角形三线合一”定理的证明过程补充完整.解:∵AD平分∠BAC∴∠BAD=∠CAD在△ABD和△ACD中∴△ABD≌△ACD(SAS)∴BD=DC(全等三角形的对应边相等)∠ADB=∠ADC=×180°=90°即AD是BC上中线,也是BC上的高.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】由角平分线定义得出∠BAD=∠CAD,由SAS证明△ABD≌△ACD,再根据全等三角形的性质和三角形内角和定理即可得出结论.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD (SAS),∴BD=DC (全等三角形的对应边相等)∠ADB=∠ADC=×180°=90°即AD是BC上中线,也是BC上的高.故答案为:BAD;CAD;AB=AC;∠BAD=∠CAD;AD=AD;SAS;全等三角形的对应边相等.21.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相等的刻度分别与M,N重合,过角尺顶点C作射线OC即可得∠AOC=∠BOC.请说明理由.【考点】全等三角形的判定与性质.【分析】利用SSS证明△MOC≌△NOC即可得到∠AOC=∠BOC.【解答】解:∵OM=ON,CM=CN,OC=OC,∴△MOC≌△NOC,∴∠AOC=∠BOC.22.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.(1)△ADE与△BEC全等吗?请说明理由;(2)若AD=3,AB=7,请求出△ECD的面积.【考点】勾股定理;三角形的面积;直角三角形全等的判定.【分析】(1)首先根据等角对等边证明DE=CE,证明△EBC是直角三角形,然后利用HL 定理证明△ADE与△BEC全等.(2)首先根据勾股定理求出DE、EC的长度,再证明△ECD是直角三角形,然后求△ECD 面积.【解答】解:(1)△ADE≌△BEC.∵∠1=∠2,∴DE=EC.∵AD∥BC,∴∠B+∠A=180°.又∵∠A=90°,∴∠A=∠B=90°.∴△ADE与△BEC是直角三角形.在Rt△ADE与Rt△BEC中,∵∴△ADE≌△BEC(HL).(2)∵△ADE≌△BEC,∴AE=BC,∠ADE=∠BEC.∵AD=3,AB=7,∴AE=BC=4.∴DE=EC=5.又∵∠ADE+∠AED=90°,∴∠DEC=90°.∴△DEC的面积为:==.23.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC 于D,过点D作DE垂直AB于点E,(1)求AE的长;(2)求BD的长.【考点】角平分线的性质;勾股定理.【分析】(1)利用勾股定理列式求出BC,根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BE=BC,再根据AE=AB﹣BE计算即可得解;(2)设CD=DE=x,利用勾股定理列式求出x,再利用勾股定理列式计算即可求出BD.【解答】解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB﹣BE=10﹣6=4;(2)设CD=DE=x,则AD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8﹣x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD===3.24.如图,△ABC和△ACD都是边长为2厘米的等边三角形,两个动点P,Q同时从A点出发,点P以0.5厘米/秒的速度沿A→C→B的方向运动,点Q以1厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(1)当t=2时,PQ=;(2)求点P、Q从出发到相遇所用的时间;(3)当t取何值时,△APQ是等边三角形;请说明理由;(4)当P在线段AC上运动时,是否存在t使△APQ是直角三角形?若存在请直接写出t 的值或t的取值范围,若不存在,请说明理由.【考点】三角形综合题.【分析】(1)先求出AP,AQ的长度,再根据等边三角形的性质得到△APQ为直角三角形,利用勾股定理即可解答;(2)△ABC是等边三角形,边长是2厘米.点P、Q从出发到相遇,即两人所走的路程的和是6cm.设从出发到相遇所用的时间是t秒.列方程就可以求出时间.(3)当P在AC上,Q在AB上时,AP≠AQ,则一定不是等边三角形,当△APQ是等边三角形时,Q一定在边CD上,P一定在边CB上,若△APQ是等边三角形,则CP=DQ,根据这个相等关系,就可以得到一个关于t的方程,就可以得到t的值.(4)P在线段AC上运动时,存在t使△APQ是直角三角形,t的取值范围:0<t<4.【解答】解:(1)当t=2时,AP=2×0.5=1厘米,AQ=2×1=2厘米,如图1,∵△ABC是边长为2厘米的等边三角形,∴PQ⊥AC,∴PQ=.故答案为:.(2)由0.5t+t=6,解得t=4.(3)当0≤t≤4时,都不存在;当4<t≤6时,如图2,若△APQ是等边三角形,此时点P在BC上,点Q在CD上,且△ADQ≌△ACP,则CP=DQ,即6﹣t=0.5t﹣2,解得:.(4)P在线段AC上运动时,存在t使△APQ是直角三角形,t的取值范围:0<t<4.2016年12月12日。
2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
2015-2016学年八年级上学期期中考试数学试卷

2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………
温州市五校联考2015-2016年八年级上期中数学试卷含答案解析

(4)当 P 在线段 AC 上运动时,是否存在 t 使△APQ 是直角三角形?若存在请直接写出 t
的值或 t 的取值范围,若不存在,请说明理由.
15.如图,已知∠AFB=∠CED,AF=CE,要使△ABF≌△CDE,应补充的直接条件是
(写一个即可)
第 2 页(共 18 页)
16.如图,AD 是△ABC 的中线,∠ADC=45°.把△ADC 沿直线 AD 折过来,点 C 落在点
(2)若 AD=3,AB=7,请求出△ECD 的面积.
23.已知,如图,△ABC 中,∠C=90°,AB=10,AC=8,BD 为∠ABC 的角平分线交 AC
于 D,过点 D 作 DE 垂直 AB 于点 E,
(1)求 AE 的长;
(2)求 BD 的长.
24.如图,△ABC 和△ACD 都是边长为 2 厘米的等边三角形,两个动点 P,Q 同时从 A
点出发,点 P 以 0.5 厘米/秒的速度沿 A→C→B 的方向运动,点 Q 以 1 厘米/秒的速度沿
第 1 页(共 18 页)
8.如图,一副分别含有 30°和 45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠
B=45°,∠E=30°,则∠BFD 的度数是( )
18.如图,△ABC 内角∠ABC 的平分线 BP 与外角∠ACD 的平分线 CP 交于点 P,如果已
知∠BPC=67°,则∠CAP= .
三、解答题(本题有 6 小题,共 46 分)
A. B. C. D.
6.如图,在 Rt△ABC 中,∠ACB=90°,D 是 AB 的中点,若 AB=8,则 CD 的长是
2015-2016年浙江省温州市泰顺七中八年级上学期数学期中试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2015-2016学年浙江省温州市泰顺七中八年级(上)期中数学试卷一、选择题(每小题3分,共计30分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.1+a>1+b C.﹣3a>﹣3b D.<3.(3分)下列各语句是真命题的是()A.三个角对应相等的三角形全等B.一组对边平行,另一组对边相等的四边形是平行四边形C.三角形的内角和小于180°D.三角形的两边之和大于第三边4.(3分)下列各组数中不能作为直角三角形三边长的是()A.3,4,5 B.4,5,6 C.5,12,13 D.12,16,205.(3分)已知三角形的两边分别为3和7,则此三角形的第三边可能是()A.3 B.4 C.5 D.106.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)在△ABC中,AD是的角平分线,自D向AB、AC两边作垂线,垂足为E、F,则下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF8.(3分)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.90°B.80°C.70°D.60°9.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.5510.(3分)矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A 与点C重合,折叠后在某一面着色(如图),则着色部分的面积为()A.16 B.C.22 D.8二、填空题(每小题3分,共计24分)11.(3分)△ABC中,已知∠A=90°,∠B=65°,则∠C=.12.(3分)足球比赛中,每队上场队员人数n不超过11,这个数量关系用不等式表示:.13.(3分)如图,已知∠ABC=∠DBC,要使△ABC≌△DBC,请添加一个条件.(只需写出一个条件)14.(3分)如图,∠ACB=Rt∠,D为AB的中点,已知BC=6,AC=8,则CD的长为.15.(3分)一个等腰三角形的两边长为4cm、9cm,则这个三角形的周长为cm.16.(3分)如图,在Rt△ABC中,BC=3,AC=4,CD⊥AB,则CD的长为.17.(3分)如图,把一张等腰直角三角形纸片和一张等边三角形纸片叠在一起(等腰直角三角形的斜边等于等边三角形的边长),若AB=4,则CD=.18.(3分)如图,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为cm/s,使得A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等.三、解答题(第19题8分,第20题5分,第21题8分,第22题5分,第23题8分,第24题12分,共计46分)19.(8分)作图题:用直尺与圆规作图,保留作图痕迹,不写作法.(1)如图1,在直线a上找一个点P,使PA=PB.(2)如图2,在直线a上找一点M,使得M到边AB和AC的距离相等.20.(5分)实数a和b在数轴上的位置如图所示,试比较5﹣3a与5﹣3b的大小关系,并说明理由.21.(8分)如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:(1)△ABD≌△ACE;(2)OB=OC.22.(5分)如图,已知△ABC中,AB=BC,点E是AC边上的中点,过点E作DE ∥BC,求证:△BDE是等腰三角形.23.(8分)如图,已知△ABC中,AD⊥BC于点D,BF=AC,DF=DC.(1)求证:BE⊥AC;(2)如果∠C=60°,CD=2,求AB的长.24.(12分)(1)问题发现与探究:如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM⊥AE于点M,连接BE,则:①线段AE、BD之间的大小关系是,∠ADB=°,并说明理由.②求证:AD=2CM+BD.(2)问题拓展与应用:如图2、图3,等腰Rt△ABC中,∠ACB=90°,过点A作直线,在直线上取点D,∠ADC=45°,连结BD,BD=1,AC=,则点C到直线的距离是,写出计算过程.2015-2016学年浙江省温州市泰顺七中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:D.2.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.1+a>1+b C.﹣3a>﹣3b D.<【解答】解:A、两边都减3,不等号的方向不变,故A错误;B、两边都加1,不等号的方向不变,故B正确;C、两边都乘以﹣3,不等号的方向改变,故C错误;D、两边都除以3,不等号的方向不变,故D错误;故选:B.3.(3分)下列各语句是真命题的是()A.三个角对应相等的三角形全等B.一组对边平行,另一组对边相等的四边形是平行四边形C.三角形的内角和小于180°D.三角形的两边之和大于第三边【解答】解:A、三个角对应相等的三角形全等,错误,为假命题;B、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故错误,为假命题;C、三角形的内角和为180°,故错误,为假命题,D、三角形的两边之和大于第三边,正确,为真命题,故选:D.4.(3分)下列各组数中不能作为直角三角形三边长的是()A.3,4,5 B.4,5,6 C.5,12,13 D.12,16,20【解答】解:A、32+42=52,符合勾股定理的逆定理,故错误;B、42+52≠62,不符合勾股定理的逆定理,故正确;C、52+122=132,符合勾股定理的逆定理,故错误;D、122+162=202,符合勾股定理的逆定理,故错误.故选:B.5.(3分)已知三角形的两边分别为3和7,则此三角形的第三边可能是()A.3 B.4 C.5 D.10【解答】解:设第三边的长为x,则7﹣3<x<7+3,解得4<x<10.故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)在△ABC中,AD是的角平分线,自D向AB、AC两边作垂线,垂足为E、F,则下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF【解答】解:如图,∵AD是的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∠ADE=∠ADF,∴结论错误的是BD=CD.故选:C.8.(3分)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.90°B.80°C.70°D.60°【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C,∴∠B=(180°﹣120°)=30°,∵AB的垂直平分线交BC于点D,∴DB=DA,∴∠BAD=∠B=30°,∴∠DAC=∠BAC﹣∠BAD=120°﹣30°=90°.故选:A.9.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.55【解答】解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=11+5=16,故选:C.10.(3分)矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A 与点C重合,折叠后在某一面着色(如图),则着色部分的面积为()A.16 B.C.22 D.8【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG 为直角三角形,在Rt △CFG 中,FC 2﹣CG 2=FG 2,即FC 2﹣42=(8﹣FC )2,解得:FC=5,∴S △CEF =FC•AD=×5×4=10,则着色部分的面积为:S 矩形ABCD ﹣S △CEF =AB•AD ﹣10=8×4﹣10=22.故选:C .二、填空题(每小题3分,共计24分)11.(3分)△ABC 中,已知∠A=90°,∠B=65°,则∠C= 25° .【解答】解:∵∠A=90°,∠B=65°,∴∠C=180°﹣90°﹣65°=25°.故答案为:25°.12.(3分)足球比赛中,每队上场队员人数n 不超过11,这个数量关系用不等式表示: n ≤11 .【解答】解:根据题意,可得:n ≤11,故答案为:n ≤1113.(3分)如图,已知∠ABC=∠DBC ,要使△ABC ≌△DBC ,请添加一个条件 AB=DB 或∠A=∠D 或∠ACB=∠DCB .(只需写出一个条件)【解答】解:已知∠ABC=∠DBC ,BC=BC ,当AB=DB 时, ∵,∴△ABC ≌△BDC (SAS );当∠A=∠D时,∵,∴△ABC≌△BDC(AAS);当∠ACB=∠DCB时,∵,∴△ABC≌△BDC(ASA).故答案为:AB=DB或∠A=∠D或∠ACB=∠DCB.14.(3分)如图,∠ACB=Rt∠,D为AB的中点,已知BC=6,AC=8,则CD的长为5.【解答】解:∵BC=6,AC=8,∴AB==10,∵∠ACB=90°,D为AB的中点,∴CD=AB=5,故答案为:5.15.(3分)一个等腰三角形的两边长为4cm、9cm,则这个三角形的周长为22 cm.【解答】解:(1)若4cm为腰长,9cm为底边长,由于4+4<9,则三角形不存在;(2)若9cm为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22cm.故答案为:22.16.(3分)如图,在Rt△ABC中,BC=3,AC=4,CD⊥AB,则CD的长为.【解答】解:在Rt△ABC中,AB为斜边,AC=3,BC=4,则AB==5,∵△ABC的面积S=AC•BC=AB•CD,解得:CD==,故答案为:.17.(3分)如图,把一张等腰直角三角形纸片和一张等边三角形纸片叠在一起(等腰直角三角形的斜边等于等边三角形的边长),若AB=4,则CD=6﹣2.【解答】解:延长CD交AB于H,∵AD=BD,AC=BC,∴CD垂直平分AB,∴AH=BH=2,∵∠ADB=90°,∴DH=AB=2,∵AC=AB=4,∴CH==6,∴CD=CH﹣DH=6﹣2,故答案为:6﹣2.18.(3分)如图,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为1或1.5cm/s,使得A、C、P 三点构成的三角形与B、P、Q三点构成的三角形全等.【解答】解:设点Q的运动速度是xcm/s,∵∠CAB=∠DBA=60°,∴A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等,有两种情况:①AP=BP,AC=BQ,则1×t=4﹣1×t,解得:t=2,则3=2x,解得:x=1.5;②AP=BQ,AC=BP,则1×t=tx,4﹣1×t=3,解得:t=1,x=1,故答案为:1或1.5.三、解答题(第19题8分,第20题5分,第21题8分,第22题5分,第23题8分,第24题12分,共计46分)19.(8分)作图题:用直尺与圆规作图,保留作图痕迹,不写作法.(1)如图1,在直线a上找一个点P,使PA=PB.(2)如图2,在直线a上找一点M,使得M到边AB和AC的距离相等.【解答】解:如图所示:.20.(5分)实数a和b在数轴上的位置如图所示,试比较5﹣3a与5﹣3b的大小关系,并说明理由.【解答】解:如图所示:∵a<b<0,∴﹣3a>﹣3b,∴5﹣3a>5﹣3b.21.(8分)如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:(1)△ABD≌△ACE;(2)OB=OC.【解答】证明:(1)∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,即∠OBC=∠OCB,∴OB=OC.22.(5分)如图,已知△ABC中,AB=BC,点E是AC边上的中点,过点E作DE ∥BC,求证:△BDE是等腰三角形.【解答】证明:∵△ABC中,AB=BC,点E是AC边上的中点,∴∠ABE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠DEB=∠ABE,∴△BDE是等腰三角形.23.(8分)如图,已知△ABC中,AD⊥BC于点D,BF=AC,DF=DC.(1)求证:BE⊥AC;(2)如果∠C=60°,CD=2,求AB的长.【解答】证明:(1)∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF与Rt△ACD中,,∴Rt△BDF≌Rt△ACD,∴∠1=∠3,∠2=∠4(对顶角相等)又∵在Rt△BDF中,∠1+∠3=90°,∴∠2+∠4=90°,即BE⊥AC;(2)∵∠C=60°,CD=2,∴AD=2,∵Rt△BDF≌Rt△ACD,∴BD=AD,∴AB=AD=2.24.(12分)(1)问题发现与探究:如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM⊥AE于点M,连接BE,则:①线段AE、BD之间的大小关系是AE=BD,∠ADB=90°,并说明理由.②求证:AD=2CM+BD.(2)问题拓展与应用:如图2、图3,等腰Rt△ABC中,∠ACB=90°,过点A作直线,在直线上取点D,∠ADC=45°,连结BD,BD=1,AC=,则点C到直线的距离是或,写出计算过程.【解答】解:(1)①∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠DCE=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACD≌△BCE,∴AE=BD,∠AEC=∠BDC,∵∠CED=∠CDE=45°,∴∠AEC=135°,∴∠BDC=135°,∴∠ADB=90°;故答案为:AE=BD,90°;②在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE;(2)如图2,过C作CH⊥AD于H,CE⊥CD交AD于E,则△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,∵AB=AC=2,∴AD==,∴DE=AD﹣AE=﹣1,∵△CDE是等腰直角三角形,∴CH=DE=,如图3所示,过C作CH⊥AD于H,CE⊥CD交AD于E,则△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,∵AB=AC=2,∴AD==,∴DE=AE+AD=1+,∵△CDE是等腰直角三角形,∴CH=DE=,∴点C到直线的距离是或,故答案为:或.。
浙江省温州市八年级(上)期中数学试卷

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在一些美术字中,有些是轴对称图形.下列汉字字体中,可以看作轴对称图形的是()A. 最B. 美C. 温D. 州2.已知△ABC的两个内角∠A=30°,∠B=70°,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A. B.C. D.4.下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,8,4C. 6,4,5D. 5,2,85.如图,在△ABC中,∠B=65°,∠DCA=100°,则∠A的度数是()A. 55∘B. 45∘C. 35∘D. 25∘6.等腰三角形的边长是3和8,则它的周长是()A. 11B. 14C. 19D. 14或197.下列选项中,可以用来证明命题“若|a|>0,则a>0”是假命题的反例的是()A. a=−1B. a=0C. a=1D. a=28.在Rt△ABC中,∠ACB=90°,斜边AB的中垂线DE分别交BC,AB于点D,E.已知BD=5,CD=3,则AC的长为()A. 8B. 4C. 34D. 29.如图,在△ABC中,∠C=29°,D为边AC上一点,且AB=AD,DB=DC,则∠A的度数为()A. 54∘B. 58∘C. 61∘D. 64∘10.如图,△ABC与△CED均为等边三角形,且B,C,D三点共线.线段BE,AD相交于点O,AF⊥BE于点F.若OF=1,则AF的长为()A. 1B. 2C. 3D. 2二、填空题(本大题共8小题,共24.0分)11.若等边三角形的一边长为4厘米,则它的周长为______厘米.12.如图,已知∠ACB=∠DBC,请添加一个条件______,使得△ABC≌△DCB.13.命题“在同一个三角形中,等角对等边”的逆命题是______.14.如图,BD是Rt△ABC斜边AC上的中线,若∠CDB=130°,则∠C=______度.15.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.16.一个等腰三角形的底边长为5,一腰上的中线把它的周长分成的两部分的差为2,则这个等腰三角形的腰长为______.17.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=______度.18.如图,∠ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连接EF,则EF的最小值为________。
温州市五校联考2015-2016年八年级上期中数学试卷含答案解析

2015-2016学年浙江省温州市五校联考八年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在△ABC中,∠A=50°,∠B=70°,则∠C的度数是()A.40°B.60°C.80°D.100°2.下列选项中的三条线段的长度,能组成三角形的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,113.下列学习用具中,不是轴对称图形的是()A.B. C.D.4.下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.面积相等的两个三角形全等5.下列各图中,正确画出AC边上的高的是()A.B.C. D.6.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是()A.6 B.5 C.4 D.37.已知命题:若a>b,则.下列哪个反例可以说明这是个假命题()A.a=2,b=1 B.a=2,b=﹣1 C.a=1,b=2 D.a=﹣2,b=﹣18.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.10°B.15°C.25°D.30°9.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB 于点E,D,则△DBC的周长为()A.6 B.7 C.8 D.910.如图所示,某人到岛上去探宝,从A处登陆后先往北走9km,又往东走6km,再折回向北走3km,往西一拐,仅走1km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是()km.A.10 B.11 C.12 D.13二、填空题(本题有8小题,每小题3分,共24分)11.已知等边△ABC的周长为6,则它的边长等于.12.写出命题“两直线平行,内错角相等”的逆命题:.13.已知等腰三角形两条边的长分别是4和6,则它的周长等于.14.在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=2:3:4,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有.15.如图,已知∠AFB=∠CED,AF=CE,要使△ABF≌△CDE,应补充的直接条件是(写一个即可)16.如图,AD是△ABC的中线,∠ADC=45°.把△ADC沿直线AD折过来,点C落在点C′的位置上,如果BC=2,那么BC′=.17.如图,在Rt△ABC中,AB=8,BC=6,BD是斜边AC上的中线,CE⊥DB,则CE=.18.如图,△ABC内角∠ABC的平分线BP与外角∠ACD的平分线CP交于点P,如果已知∠BPC=67°,则∠CAP=.三、解答题(本题有6小题,共46分)19.如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的示意图,并标出各角的度数.20.如图,已知△ABC中,AB=AC,AD平分∠BAC,请将“等腰三角形三线合一”定理的证明过程补充完整.解:∵AD平分∠BAC∴∠=∠在△ABD和△ACD中∴△ABD≌△ACD∴BD=DC∠ADB=∠ADC=×180°=90°即AD是BC上中线,也是BC上的高.21.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相等的刻度分别与M,N重合,过角尺顶点C作射线OC即可得∠AOC=∠BOC.请说明理由.22.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.(1)△ADE与△BEC全等吗?请说明理由;(2)若AD=3,AB=7,请求出△ECD的面积.23.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求AE的长;(2)求BD的长.24.如图,△ABC和△ACD都是边长为2厘米的等边三角形,两个动点P,Q同时从A点出发,点P以0.5厘米/秒的速度沿A→C→B的方向运动,点Q以1厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(1)当t=2时,PQ=;(2)求点P、Q从出发到相遇所用的时间;(3)当t取何值时,△APQ是等边三角形;请说明理由;(4)当P在线段AC上运动时,是否存在t使△APQ是直角三角形?若存在请直接写出t 的值或t的取值范围,若不存在,请说明理由.2015-2016学年浙江省温州市五校联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.在△ABC中,∠A=50°,∠B=70°,则∠C的度数是()A.40°B.60°C.80°D.100°【考点】三角形内角和定理.【分析】根据三角形内角和定理即可得到结果.【解答】解:∠C=180°﹣∠A﹣∠B=60°.故选B.2.下列选项中的三条线段的长度,能组成三角形的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵1+2=3<4,∴不能够组成三角形,故本选项错误;B、∵4+5=9,∴不能够组成三角形,故本选项错误;C、∵6+4=10>8,∴能够组成三角形,故本选项正确;D、∵5+5=10<11,∴不能够组成三角形,故本选项错误.故选C.3.下列学习用具中,不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.4.下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.面积相等的两个三角形全等【考点】命题与定理.【分析】分别根据等腰三角形的判定定理、绝对值的性质及全等三角形的判定定理对各选项进行逐一分析即可.【解答】解:A、有两条边相等的三角形是等腰三角形是真命题,故本选项正确;B、两直线平行,同位角相等,故本选项错误;C、如果|a|=|b|,那么a=±b,故本选项错误;D、面积相等的两个三角形不一定全等,故本选项错误.故选A.5.下列各图中,正确画出AC边上的高的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.6.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是()A.6 B.5 C.4 D.3【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=×8=4.故选C.7.已知命题:若a>b,则.下列哪个反例可以说明这是个假命题()A.a=2,b=1 B.a=2,b=﹣1 C.a=1,b=2 D.a=﹣2,b=﹣1【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、a=2,b=1,a>b,则是真命题,故A错误;B,a=2,b=﹣1,a>b,则>是假命题,故B正确;C、a=1,b=2,a<b,则>是假命题,故C正确;D、a=﹣2,b=﹣1,a<b,则>是假命题,故D正确;故选:B.8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.10°B.15°C.25°D.30°【考点】三角形内角和定理;三角形的外角性质.【分析】根据直角三角形的性质可得∠BAC=45°,根据邻补角互补可得∠EAF=135°,然后再利用三角形的外角的性质可得∠AFD=135°+30°=165°.即可.【解答】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选B9.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB 于点E,D,则△DBC的周长为()A.6 B.7 C.8 D.9【考点】线段垂直平分线的性质.【分析】根据勾股定理求出AB,根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵∠C=90°,AC=4,BC=3,∴AB==5,∵DE是AC边的中垂线,∴DA=DC,△DBC的周长=BD+CD+BC=BD+AD+BC=5+3=8,故选:C.10.如图所示,某人到岛上去探宝,从A处登陆后先往北走9km,又往东走6km,再折回向北走3km,往西一拐,仅走1km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是()km.A.10 B.11 C.12 D.13【考点】勾股定理的应用.【分析】过点B作过点A的东西方向所在直线的垂线,构造直角三角形,利用勾股定理完成.【解答】解:如图,作过点A的东西方向的直线AD,过点B作BC⊥AD于C,则AC=6﹣1=5km,BC=9+3=12km,在Rt△ABC中,由勾股定理求得AB===13(km).所以登陆点A与宝藏埋藏点B之间的距离是13km.故选D.二、填空题(本题有8小题,每小题3分,共24分)11.已知等边△ABC的周长为6,则它的边长等于2.【考点】等边三角形的性质.【分析】根据等边三角形的性质和三角形周长的概念即可求得.【解答】解:∵△ABC是等边三角形,∴AB=BC=CA,∵等边△ABC的周长为6,∴AB+BC+CA=6,∴3AB=6,∴AB=2,故等边三角形的边长为2,故答案为2.12.写出命题“两直线平行,内错角相等”的逆命题:内错角相等,两直线平行.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:内错角相等∴其逆命题为:内错角相等地,两直线平行.13.已知等腰三角形两条边的长分别是4和6,则它的周长等于14或16.【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长与底边长两种情况讨论求解即可.【解答】解:①当6是腰长时,三边分别为6、6、4时,能组成三角形,周长=6+6+4=16,②当6是底边时,三边分别为6、4、4,能组成三角形,周长=6+4+4=14,综上所述,等腰三角形的周长为14或16.故答案为:14或16.14.在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=2:3:4,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①③④.【考点】三角形内角和定理.【分析】直接利用直角三角形的性质进而判断得出答案.【解答】解:①当∠A+∠B=∠C,则∠C=90°,故能确定△ABC是直角三角形,②∠A:∠B:∠C=2:3:4,可得∠C=180°×=80°,故不能确定△ABC是直角三角形,③∠A=90°﹣∠B,能确定△ABC是直角三角形,④∠A=∠B=∠C,则∠A+∠B=∠C,故能确定△ABC是直角三角形,故答案为:①③④.15.如图,已知∠AFB=∠CED,AF=CE,要使△ABF≌△CDE,应补充的直接条件是∠C=∠A或∠B=∠D或FB=DE(写一个即可)【考点】全等三角形的判定.【分析】添加∠C=∠A ,可利用ASA 定理判定△ABF ≌△CDE .【解答】解:添加∠C=∠A ,在△ABF 和△CDE 中,,∴△ABF ≌△CDE (ASA ).故答案为:∠C=∠A .16.如图,AD 是△ABC 的中线,∠ADC=45°.把△ADC 沿直线AD 折过来,点C 落在点C ′的位置上,如果BC=2,那么BC ′= .【考点】翻折变换(折叠问题).【分析】首先根据折叠的性质可得:∠ADC=∠ADC ′=45°,即DC ′⊥DC ,且DC=DC ′=BD ,由此可得△BDC ′是个直角边为4的等腰直角三角形,由此得解.【解答】解:∵把△ABC 沿直线AD 折过来,点C 落在点C ′的位置,∴△ADC ≌△ADC ′,∴∠ADC=∠ADC ′=45°,DC=DC ′=BD ,∴△BDC ′是等腰直角三角形,且直角边为1,那么斜边BC ′=.故答案为:.17.如图,在Rt △ABC 中,AB=8,BC=6,BD 是斜边AC 上的中线,CE ⊥DB ,则CE= 4.8 .【考点】直角三角形斜边上的中线.【分析】由勾股定理得AC=10,由直角三角形斜边上的中线定理得到BD=5,S △BCD =S △ABC =12,由三角形的面积公式即可求得结论.【解答】解:在Rt △ABC 中,∵AB=8,BC=6,∴AC==10,∵BD 是斜边AC 上的中线,∴BD=×10=5,S △BCD =S △ABC =×8×6=12,∴CE==4.8, 故答案为4.8.18.如图,△ABC 内角∠ABC 的平分线BP 与外角∠ACD 的平分线CP 交于点P ,如果已知∠BPC=67°,则∠CAP= 23° .【考点】三角形的外角性质.【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP ,即可得出答案【解答】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD=x °,∵CP 平分∠ACD ,∴∠ACP=∠PCD=x °,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∵∠BPC=67°,∴∠ABP=∠PBC=∠PCD ﹣∠BPC=(x ﹣67)°,∴∠BAC=∠ACD ﹣∠ABC=2x °﹣(x °﹣67°)﹣(x °﹣67°)=134°,∴∠CAF=46°,在Rt △PFA 和Rt △PMA 中,,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP=∠PAC=23°.故答案为:23°.三、解答题(本题有6小题,共46分)19.如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的示意图,并标出各角的度数.【考点】作图—应用与设计作图;等腰三角形的性质.【分析】方法一:在钝角剪出一个20°的角,与原来的20°角构成底角是20°的等腰三角形,根据三角形的一个外角等于与它不相邻的两个内角的和可得另一个三角形是底角为40°的等腰三角形;方法二:在钝角剪出一个40°的角,与原来的40°角构成底角是40°的等腰三角形,根据三角形的一个外角等于与它不相邻的两个内角的和可得另一个三角形是底角为80°的等腰三角形.【解答】解:剪裁如图所示..20.如图,已知△ABC中,AB=AC,AD平分∠BAC,请将“等腰三角形三线合一”定理的证明过程补充完整.解:∵AD平分∠BAC∴∠BAD=∠CAD在△ABD和△ACD中∴△ABD≌△ACD(SAS)∴BD=DC(全等三角形的对应边相等)∠ADB=∠ADC=×180°=90°即AD是BC上中线,也是BC上的高.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】由角平分线定义得出∠BAD=∠CAD,由SAS证明△ABD≌△ACD,再根据全等三角形的性质和三角形内角和定理即可得出结论.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD (SAS),∴BD=DC (全等三角形的对应边相等)∠ADB=∠ADC=×180°=90°即AD是BC上中线,也是BC上的高.故答案为:BAD;CAD;AB=AC;∠BAD=∠CAD;AD=AD;SAS;全等三角形的对应边相等.21.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相等的刻度分别与M,N重合,过角尺顶点C作射线OC即可得∠AOC=∠BOC.请说明理由.【考点】全等三角形的判定与性质.【分析】利用SSS证明△MOC≌△NOC即可得到∠AOC=∠BOC.【解答】解:∵OM=ON,CM=CN,OC=OC,∴△MOC≌△NOC,∴∠AOC=∠BOC.22.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.(1)△ADE与△BEC全等吗?请说明理由;(2)若AD=3,AB=7,请求出△ECD的面积.【考点】勾股定理;三角形的面积;直角三角形全等的判定.【分析】(1)首先根据等角对等边证明DE=CE,证明△EBC是直角三角形,然后利用HL 定理证明△ADE与△BEC全等.(2)首先根据勾股定理求出DE、EC的长度,再证明△ECD是直角三角形,然后求△ECD 面积.【解答】解:(1)△ADE≌△BEC.∵∠1=∠2,∴DE=EC.∵AD∥BC,∴∠B+∠A=180°.又∵∠A=90°,∴∠A=∠B=90°.∴△ADE与△BEC是直角三角形.在Rt△ADE与Rt△BEC中,∵∴△ADE≌△BEC(HL).(2)∵△ADE≌△BEC,∴AE=BC,∠ADE=∠BEC.∵AD=3,AB=7,∴AE=BC=4.∴DE=EC=5.又∵∠ADE+∠AED=90°,∴∠DEC=90°.∴△DEC的面积为:==.23.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC 于D,过点D作DE垂直AB于点E,(1)求AE的长;(2)求BD的长.【考点】角平分线的性质;勾股定理.【分析】(1)利用勾股定理列式求出BC,根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BE=BC,再根据AE=AB﹣BE计算即可得解;(2)设CD=DE=x,利用勾股定理列式求出x,再利用勾股定理列式计算即可求出BD.【解答】解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB﹣BE=10﹣6=4;(2)设CD=DE=x,则AD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8﹣x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD===3.24.如图,△ABC和△ACD都是边长为2厘米的等边三角形,两个动点P,Q同时从A点出发,点P以0.5厘米/秒的速度沿A→C→B的方向运动,点Q以1厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(1)当t=2时,PQ=;(2)求点P、Q从出发到相遇所用的时间;(3)当t取何值时,△APQ是等边三角形;请说明理由;(4)当P在线段AC上运动时,是否存在t使△APQ是直角三角形?若存在请直接写出t 的值或t的取值范围,若不存在,请说明理由.【考点】三角形综合题.【分析】(1)先求出AP,AQ的长度,再根据等边三角形的性质得到△APQ为直角三角形,利用勾股定理即可解答;(2)△ABC是等边三角形,边长是2厘米.点P、Q从出发到相遇,即两人所走的路程的和是6cm.设从出发到相遇所用的时间是t秒.列方程就可以求出时间.(3)当P在AC上,Q在AB上时,AP≠AQ,则一定不是等边三角形,当△APQ是等边三角形时,Q一定在边CD上,P一定在边CB上,若△APQ是等边三角形,则CP=DQ,根据这个相等关系,就可以得到一个关于t的方程,就可以得到t的值.(4)P在线段AC上运动时,存在t使△APQ是直角三角形,t的取值范围:0<t<4.【解答】解:(1)当t=2时,AP=2×0.5=1厘米,AQ=2×1=2厘米,如图1,∵△ABC是边长为2厘米的等边三角形,∴PQ⊥AC,∴PQ=.故答案为:.(2)由0.5t+t=6,解得t=4.(3)当0≤t≤4时,都不存在;当4<t≤6时,如图2,若△APQ是等边三角形,此时点P在BC上,点Q在CD上,且△ADQ≌△ACP,则CP=DQ,即6﹣t=0.5t﹣2,解得:.(4)P在线段AC上运动时,存在t使△APQ是直角三角形,t的取值范围:0<t<4.2016年12月12日。
2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。
这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。
为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年浙江省温州市泰顺七中八年级(上)期中数学试卷一、选择题(每小题3分,共计30分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.1+a>1+b C.﹣3a>﹣3b D.<3.(3分)下列各语句是真命题的是()A.三个角对应相等的三角形全等B.一组对边平行,另一组对边相等的四边形是平行四边形C.三角形的内角和小于180°D.三角形的两边之和大于第三边4.(3分)下列各组数中不能作为直角三角形三边长的是()A.3,4,5 B.4,5,6 C.5,12,13 D.12,16,205.(3分)已知三角形的两边分别为3和7,则此三角形的第三边可能是()A.3 B.4 C.5 D.106.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)在△ABC中,AD是的角平分线,自D向AB、AC两边作垂线,垂足为E、F,则下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF8.(3分)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.90°B.80°C.70°D.60°9.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.5510.(3分)矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A 与点C重合,折叠后在某一面着色(如图),则着色部分的面积为()A.16 B.C.22 D.8二、填空题(每小题3分,共计24分)11.(3分)△ABC中,已知∠A=90°,∠B=65°,则∠C=.12.(3分)足球比赛中,每队上场队员人数n不超过11,这个数量关系用不等式表示:.13.(3分)如图,已知∠ABC=∠DBC,要使△ABC≌△DBC,请添加一个条件.(只需写出一个条件)14.(3分)如图,∠ACB=Rt∠,D为AB的中点,已知BC=6,AC=8,则CD的长为.15.(3分)一个等腰三角形的两边长为4cm、9cm,则这个三角形的周长为cm.16.(3分)如图,在Rt△ABC中,BC=3,AC=4,CD⊥AB,则CD的长为.17.(3分)如图,把一张等腰直角三角形纸片和一张等边三角形纸片叠在一起(等腰直角三角形的斜边等于等边三角形的边长),若AB=4,则CD=.18.(3分)如图,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为cm/s,使得A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等.三、解答题(第19题8分,第20题5分,第21题8分,第22题5分,第23题8分,第24题12分,共计46分)19.(8分)作图题:用直尺与圆规作图,保留作图痕迹,不写作法.(1)如图1,在直线a上找一个点P,使PA=PB.(2)如图2,在直线a上找一点M,使得M到边AB和AC的距离相等.20.(5分)实数a和b在数轴上的位置如图所示,试比较5﹣3a与5﹣3b的大小关系,并说明理由.21.(8分)如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:(1)△ABD≌△ACE;(2)OB=OC.22.(5分)如图,已知△ABC中,AB=BC,点E是AC边上的中点,过点E作DE ∥BC,求证:△BDE是等腰三角形.23.(8分)如图,已知△ABC中,AD⊥BC于点D,BF=AC,DF=DC.(1)求证:BE⊥AC;(2)如果∠C=60°,CD=2,求AB的长.24.(12分)(1)问题发现与探究:如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM⊥AE于点M,连接BE,则:①线段AE、BD之间的大小关系是,∠ADB=°,并说明理由.②求证:AD=2CM+BD.(2)问题拓展与应用:如图2、图3,等腰Rt△ABC中,∠ACB=90°,过点A作直线,在直线上取点D,∠ADC=45°,连结BD,BD=1,AC=,则点C到直线的距离是,写出计算过程.2015-2016学年浙江省温州市泰顺七中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:D.2.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.1+a>1+b C.﹣3a>﹣3b D.<【解答】解:A、两边都减3,不等号的方向不变,故A错误;B、两边都加1,不等号的方向不变,故B正确;C、两边都乘以﹣3,不等号的方向改变,故C错误;D、两边都除以3,不等号的方向不变,故D错误;故选:B.3.(3分)下列各语句是真命题的是()A.三个角对应相等的三角形全等B.一组对边平行,另一组对边相等的四边形是平行四边形C.三角形的内角和小于180°D.三角形的两边之和大于第三边【解答】解:A、三个角对应相等的三角形全等,错误,为假命题;B、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故错误,为假命题;C、三角形的内角和为180°,故错误,为假命题,D、三角形的两边之和大于第三边,正确,为真命题,故选:D.4.(3分)下列各组数中不能作为直角三角形三边长的是()A.3,4,5 B.4,5,6 C.5,12,13 D.12,16,20【解答】解:A、32+42=52,符合勾股定理的逆定理,故错误;B、42+52≠62,不符合勾股定理的逆定理,故正确;C、52+122=132,符合勾股定理的逆定理,故错误;D、122+162=202,符合勾股定理的逆定理,故错误.故选:B.5.(3分)已知三角形的两边分别为3和7,则此三角形的第三边可能是()A.3 B.4 C.5 D.10【解答】解:设第三边的长为x,则7﹣3<x<7+3,解得4<x<10.故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)在△ABC中,AD是的角平分线,自D向AB、AC两边作垂线,垂足为E、F,则下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF【解答】解:如图,∵AD是的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∠ADE=∠ADF,∴结论错误的是BD=CD.故选:C.8.(3分)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.90°B.80°C.70°D.60°【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C,∴∠B=(180°﹣120°)=30°,∵AB的垂直平分线交BC于点D,∴DB=DA,∴∠BAD=∠B=30°,∴∠DAC=∠BAC﹣∠BAD=120°﹣30°=90°.故选:A.9.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.55【解答】解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=11+5=16,故选:C.10.(3分)矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A 与点C重合,折叠后在某一面着色(如图),则着色部分的面积为()A.16 B.C.22 D.8【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG 为直角三角形,在Rt △CFG 中,FC 2﹣CG 2=FG 2,即FC 2﹣42=(8﹣FC )2,解得:FC=5,∴S △CEF =FC•AD=×5×4=10,则着色部分的面积为:S 矩形ABCD ﹣S △CEF =AB•AD ﹣10=8×4﹣10=22.故选:C .二、填空题(每小题3分,共计24分)11.(3分)△ABC 中,已知∠A=90°,∠B=65°,则∠C= 25° .【解答】解:∵∠A=90°,∠B=65°,∴∠C=180°﹣90°﹣65°=25°.故答案为:25°.12.(3分)足球比赛中,每队上场队员人数n 不超过11,这个数量关系用不等式表示: n ≤11 .【解答】解:根据题意,可得:n ≤11,故答案为:n ≤1113.(3分)如图,已知∠ABC=∠DBC ,要使△ABC ≌△DBC ,请添加一个条件 AB=DB 或∠A=∠D 或∠ACB=∠DCB .(只需写出一个条件)【解答】解:已知∠ABC=∠DBC ,BC=BC ,当AB=DB 时, ∵,∴△ABC ≌△BDC (SAS );当∠A=∠D时,∵,∴△ABC≌△BDC(AAS);当∠ACB=∠DCB时,∵,∴△ABC≌△BDC(ASA).故答案为:AB=DB或∠A=∠D或∠ACB=∠DCB.14.(3分)如图,∠ACB=Rt∠,D为AB的中点,已知BC=6,AC=8,则CD的长为5.【解答】解:∵BC=6,AC=8,∴AB==10,∵∠ACB=90°,D为AB的中点,∴CD=AB=5,故答案为:5.15.(3分)一个等腰三角形的两边长为4cm、9cm,则这个三角形的周长为22 cm.【解答】解:(1)若4cm为腰长,9cm为底边长,由于4+4<9,则三角形不存在;(2)若9cm为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22cm.故答案为:22.16.(3分)如图,在Rt△ABC中,BC=3,AC=4,CD⊥AB,则CD的长为.【解答】解:在Rt△ABC中,AB为斜边,AC=3,BC=4,则AB==5,∵△ABC的面积S=AC•BC=AB•CD,解得:CD==,故答案为:.17.(3分)如图,把一张等腰直角三角形纸片和一张等边三角形纸片叠在一起(等腰直角三角形的斜边等于等边三角形的边长),若AB=4,则CD=6﹣2.【解答】解:延长CD交AB于H,∵AD=BD,AC=BC,∴CD垂直平分AB,∴AH=BH=2,∵∠ADB=90°,∴DH=AB=2,∵AC=AB=4,∴CH==6,∴CD=CH﹣DH=6﹣2,故答案为:6﹣2.18.(3分)如图,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为1或1.5cm/s,使得A、C、P 三点构成的三角形与B、P、Q三点构成的三角形全等.【解答】解:设点Q的运动速度是xcm/s,∵∠CAB=∠DBA=60°,∴A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等,有两种情况:①AP=BP,AC=BQ,则1×t=4﹣1×t,解得:t=2,则3=2x,解得:x=1.5;②AP=BQ,AC=BP,则1×t=tx,4﹣1×t=3,解得:t=1,x=1,故答案为:1或1.5.三、解答题(第19题8分,第20题5分,第21题8分,第22题5分,第23题8分,第24题12分,共计46分)19.(8分)作图题:用直尺与圆规作图,保留作图痕迹,不写作法.(1)如图1,在直线a上找一个点P,使PA=PB.(2)如图2,在直线a上找一点M,使得M到边AB和AC的距离相等.【解答】解:如图所示:.20.(5分)实数a和b在数轴上的位置如图所示,试比较5﹣3a与5﹣3b的大小关系,并说明理由.【解答】解:如图所示:∵a<b<0,∴﹣3a>﹣3b,∴5﹣3a>5﹣3b.21.(8分)如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:(1)△ABD≌△ACE;(2)OB=OC.【解答】证明:(1)∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,即∠OBC=∠OCB,∴OB=OC.22.(5分)如图,已知△ABC中,AB=BC,点E是AC边上的中点,过点E作DE ∥BC,求证:△BDE是等腰三角形.【解答】证明:∵△ABC中,AB=BC,点E是AC边上的中点,∴∠ABE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠DEB=∠ABE,∴△BDE是等腰三角形.23.(8分)如图,已知△ABC中,AD⊥BC于点D,BF=AC,DF=DC.(1)求证:BE⊥AC;(2)如果∠C=60°,CD=2,求AB的长.【解答】证明:(1)∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF与Rt△ACD中,,∴Rt△BDF≌Rt△ACD,∴∠1=∠3,∠2=∠4(对顶角相等)又∵在Rt△BDF中,∠1+∠3=90°,∴∠2+∠4=90°,即BE⊥AC;(2)∵∠C=60°,CD=2,∴AD=2,∵Rt△BDF≌Rt△ACD,∴BD=AD,∴AB=AD=2.24.(12分)(1)问题发现与探究:如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM⊥AE于点M,连接BE,则:①线段AE、BD之间的大小关系是AE=BD,∠ADB=90°,并说明理由.②求证:AD=2CM+BD.(2)问题拓展与应用:如图2、图3,等腰Rt△ABC中,∠ACB=90°,过点A作直线,在直线上取点D,∠ADC=45°,连结BD,BD=1,AC=,则点C到直线的距离是或,写出计算过程.【解答】解:(1)①∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠DCE=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACD≌△BCE,∴AE=BD,∠AEC=∠BDC,∵∠CED=∠CDE=45°,∴∠AEC=135°,∴∠BDC=135°,∴∠ADB=90°;故答案为:AE=BD,90°;②在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE;(2)如图2,过C作CH⊥AD于H,CE⊥CD交AD于E,则△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,∵AB=AC=2,∴AD==,∴DE=AD﹣AE=﹣1,∵△CDE是等腰直角三角形,∴CH=DE=,如图3所示,过C作CH⊥AD于H,CE⊥CD交AD于E,则△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,∵AB=AC=2,∴AD==,∴DE=AE+AD=1+,∵△CDE是等腰直角三角形,∴CH=DE=,∴点C到直线的距离是或,故答案为:或.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。