最新华东师大版2018-2019学年九年级上学期期末模拟数学试题4及答案解析-精编试题

合集下载

2018-2019学年最新华东师大版九年级上学期数学期末模拟试题及答案解析-精编试题

2018-2019学年最新华东师大版九年级上学期数学期末模拟试题及答案解析-精编试题

九年级数学(上)期末模拟测试题班级 姓名 成绩一、细心填一填(每空2分[第10题1分]共32分.只要你理解概念,仔细运算,相信你一定会填对的!)1、计算:01122-⎛⎫+= ⎪⎝⎭ ;计算:5493a a ÷= . 2、一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f . 若f =6厘米,v =8厘米,则物距u = 厘米. 3、如图,正方形ABCD 内接于⊙O,点E 在弧AD 上,则∠BEC=_______°.4、在边长为3、4、5cm 的三角形铁皮上剪下一个最大的圆,此圆的半径为 ㎝.5、用一张半径为9cm 、圆心角为︒120的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是 cm .6、如图1,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.如图2,∠1=∠2,请补充一个条件: ,使△ABC ∽△ADE.7、如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是 。

8、如图,BC 是半圆O 的直径,点D 是半圆上一点,过点D 作⊙O 切线AD ,BA⊥DA 于点A ,BA 交半圆于点E. 已知BC =10,AD =4. 那么直线CE 与以点O 为圆心,52为半径的圆的位置关系是 。

9、如图,直角坐标系中一条圆弧经过网格点A ,B ,C ,其中B 点坐标为(4,4)则该圆弧所在圆的圆心坐标为 。

10、抛物线332+-=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时,函数值y 随x 的增大而减小;它可以看作是由抛物线y=-3x2向 平移 个单位得到的.11、如图是与杨辉三角有类似性质的三角形数垒,a b c d 、、、是相邻两行的前四个数(如图所示).那么当8a =时,c = .d = .二、精心选一选(每小题2分,共12分.只要你掌握概念,认真思考,相信你一定会选对!)12、下我各式计算正确的是 ( )A 、(a 5)2=a 7B 、22212x x =-C 、3a 2•2a 3=6a 6D 、a 8÷a 2=a 613、下列命题中,正确的是 ( )A 、垂直于半径的直线是圆的切线B 、过三点一定可以作一个圆C 、任意三角形一定有外接圆D 、圆中弦的长度小于直径14、如图,将两根钢条AA ’、BB ’的中点O 连在一起,使AA ’、BB ’可以绕着点O 自由转动,就做成了一个测量工件,则A ’B ’的长等于内槽宽AB ,那么判定△OAB ≌△OAB 的理由是( )A 、边角边B 、角边角C 、边边边D 、角角边。

2018-2019学年九年级数学上册(华东师大版)期末试题含答案

2018-2019学年九年级数学上册(华东师大版)期末试题含答案

2018-2019学年第一学期九年级期末质量检测数 学 试 卷(全卷共三个大题,满分120分,时间120分钟)以下各小题,每小题都给出A 、B 、C 、D 四个选项,但其中只有一个选项符合题目的要求,请把它选出来,并把它的代号填在相应的题目后的括号内.若选错、多选、不选均计0分.) 1.下列二次根式中与是同类二次根式的是( ). A B C D 2.如图,在△ABC 中,∠C=90°,AB =3,BC=2,则cosB 的值是( ). A .53 ;B.32; C . 52; D .23. 3.如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( ).A .B .C .D .4. 判断一元二次方程0122=+-x x 的根的情况是( ).A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根5.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( ). A .∠ABD =∠CB .∠ADB =∠ABC第2题图第8题图C .AB CBBD CA= D .AB ACAD AB= 6. 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是1:,则AC 的长是( ). A .5米B .10米C .15米D .10米7用配方法解方程0342=--x x ,下列配方结果正确的是( ). A .19)4(2=-x B .7)2(2=-x C .7)2(2=+x D .19)4(2=+x8如图,在平行四边形ABCD 中,点E 在CD 上,若DE ︰CE =1︰2, 则△CEF 与△ABF 的周长比为( ). A .1︰2 B .1︰3 C .2︰3 D .4︰9 9. 某商品经过两次降价,零售价降为原来的12,已知两次降价的百分率均为x ,则列出方程正确的是( ).A .21)1(2=+x B.2)1(2=+x C. 2)1(2=-x D.21)1(2=-x 10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD 、DP ,BD 与CF 相交于点H . 给出下列结论:①△BDE ∽△DPE ;②FP PH = 35;③DP 2=PH ·PB ; ④tan 2DBE ∠=其中正确的是( ).A. ①②③④B. ①②④C. ②③④D. ①③④二.选择题:(本大题共6个小题,每小题3分,共18分)11. 当x _______12. 已知12a b =,则b a a +的值为 。

华东师大版九年级2018--2019学年度第一学期期末考试数学试卷

华东师大版九年级2018--2019学年度第一学期期末考试数学试卷

绝密★启用前华东师大版九年级2018--2019学年度第一学期期末考试数学试卷分温馨提示:亲爱的同学们,考试只是检查我们对所学的知识的掌握情况,希望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计40分)1.(本题4分)若二次函数y =-2x +6x +c 的图象过点A (-1,1y ),B (1,2y ),C (4,3y )三点,则1y ,2y ,3y 的大小关系是( ) A .1y >2y >3y B .2y >1y >3y C .3y >2y >1y D .3y >1y >2y2.(本题4分)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )A . CM=DMB .C . ∠ACD=∠ADCD . OM=MD3.(本题4分)阳光通过窗口照到室内,在地上留下宽的亮区(如图),已知亮区一边到窗下的墙角的距离,窗口高,那么窗口底边离地面的高等于( )A . 2mB . 4mC . 6mD . 1m4.(本题4分)若,,那么和的关系是( )A . a=bB . a+b=0C . ab=1D . ab=-1 5.(本题4分)关于x 的方程有一个根是为 -1,则另一根为 ( ).A . 2B . -2C .D . -36.(本题4分)如图,点F 是▱ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A . 18B . 22C . 24D . 467.(本题4分)如图,在距离铁轨200米处的处,观察由南宁开往百色的“和谐号”动车,当动车车头在处时,恰好位于处的北偏东方向上,10秒钟后,动车车头到达处,恰好位于处西北方向上,则这时段动车的平均速度是( )米/秒.A .B .C . 200D . 3008.(本题4分)现有四张质地均匀,大小完全相同的卡片,在其正面分别标有数字﹣1,﹣2,2,3,把卡片背面朝上洗匀,从中随机抽出一张后,不放回,再从中随机抽出一张,则两次抽出的卡片所标数字之和为正数的概率为( )A .B .C .D .9.(本题4分)为了估计湖中有多少条鱼.先从湖中捕捞n 条鱼作记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后再捕捞,第二次捕鱼共m 条,有k 条带记号,则估计湖里有鱼( )A . 条B . 条C . 条D . 条10.(本题4分)已知二次函数的图象如图,其对称轴为直线,给出下列结论:①;②;③;④,则正确的结论个数为( )A . 1B . 2C . 3D . 4 二、填空题(计20分)11.(本题5分)已知:A (0,4),点C 在y 轴上,AC=5,则点C 的坐标为 . 12.(本题5分)三角形的每条边的长都是方程x 2﹣7x +10=0的根,则三角形的周长是_____.13.(本题5分)如图,在长方形ABCD 中,DC=6cm ,在DC 上存在一点E ,沿直线AE 把三角形AE 折叠,使点D 恰好落在BC 边上,设此点为F ,若三角形ABF 的面积为24,那么CE 长度为__________cm 2.14.(本题5分)如图,边长为1的正方形ABCD 的对角线AC ,BD 相交于点O ,直角∠MPN 的顶点P 与点O 重合,直角边PM ,PN 分别与OA ,OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是_____.△COF 的面积之和最大时,AE=41;(4)OG•BD=AE 2+CF 2.三、解答题(计90分)15.(本题8分)用适当的方法解下列方程:(1)(3)x x x -=; (2)2(3)3(3)40x x +++-=.16.(本题8分)已知a 、b 、c 在数轴上的对应点如图所示,化简17.(本题8分)已知,且 2x +3y −z =18,求 x 、y 、z 的值。

2018-2019学年最新华师大版初中九年级数学上学期期末模拟试题及答案解析-精编试题

2018-2019学年最新华师大版初中九年级数学上学期期末模拟试题及答案解析-精编试题

九年级第一学期期末模拟测试卷时间:120分钟 满分:100分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共24分)1.以下关于x 的方程一定是一元二次方程的是( ) A .ax 2+bx +c =0 B .2(x -1)2=2x 2+2 C .(k +1)x 2+3x =2 D .(k 2+1)x 2-2x +1=0 2.若a<1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a3.如图,在△ABC 中两条中线BE 、CD 相交于点O ,记△DOE 的面积为S 1,△COB 的面积为S 2,则S 1∶S 2=( )A .1∶4B .2∶3C .1∶3D .1∶24.用配方法解方程x 2-4x +1=0时,配方后所得的方程是( ) A .(x -2)2=1 B .(x -2)2=-1 C .(x -2)2=3 D .(x +2)2=35.“服务他人,提升自我”,桃园学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队.若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A.16B.15C.25D.356.如图,关于∠α与∠β的同一种三角函数值有三个结论:①tanα<tanβ;②sinα<sinβ;③cosα<cosβ.正确的结论是()A.①② B.②③ C.①③ D.①②③第6题图7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上.轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则B处与灯塔A的距离是()A.253海里B.252海里C.50海里D.25海里第7题图8.如图,在Rt△ABC中,∠C=90°,放置边长分别为3,4,x的三个正方形,则x 的值为()A.5 B.6 C.7 D.8第8题图二、填空题(每小题3分,共21分)9.如果关于x的方程3x2-mx+3=0有两个相等的实数根,那么m的值为 .10.已知x=3+2,y=3-2,则x3y+xy3= .11.如图所示,在顶角为30°的等腰△ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°,根据图形计算tan15°= .第11题图12.已知:y=x-4+12-3x+3,则xy= .13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰好为2cm.若按相同的方式,将37°的∠AOC放置在刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm(结果精确到0.1cm,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).第13题图14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明经过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是 .15.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=3,连接AB,过AB的中点C1分别作x轴和y轴上的垂线,垂足分别是A1、B1,连接A1B1,再过A1B1的中点C2作x轴和y轴的垂线,照此规律依次作下去,则C n的坐标为 .第15题图三、解答题(共55分)16.(5分)计算:6tan230°-23sin60°-2cos45°.17.(6分)关于x的一元二次方程(x-2)(x-3)=m有两个不相等的实数根x1,x2,求m的取值范围;若x1,x2满足等式x1x2-x1-x2+1=0,求m的值.18.(6分)在Rt△ABC中,∠C=90°,∠A=60°,∠A,∠B,∠C的对边分别为a,b,c,a+b=3+3,请你根据此条件,求斜边c的长.19.(6分)小明为班上联欢会设计一个摸扑克牌获奖游戏,先将梅花2、3、4、5和红心2、3、4、5分别洗匀,并分别将正面朝下放在桌子上,游戏者在4张梅花中随机抽一张,再在4张红心中随机抽一张,规定:当两次所抽出的牌面上数字之积为奇数时,他就获奖.(1)利用树状图或列表法表示游戏所有可能出现的结果;(2)游戏者获奖的概率是多少?20.(7分)如图,在△ABC中,∠BAC=90°,BC的垂直平分线交BC于点E,交CA 的延长线于点D,交AB于点F.求证:AE2=EF·ED.21.(7分)如图,一楼房AB后有一假山,其坡面CD的坡度为i=1∶3,山坡坡面CD上E点处有一休息亭,测得假山坡角C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.22.(9分)如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 上一动点(点P 异于A 、D 两点),Q 是BC 上任意一点,连接AQ 、DQ ,过P 作PE∥DQ 交AQ 于E ,作PF∥AQ 交DQ 于F.(1)填空:△APE∽△ ,△DPF∽△ ;(2)设AP 的长为x ,△APE 的面积为y 1,△DPF 的面积为y 2,分别求出y 2和y 1关于x 的函数关系式;(3)在边AD 上是否存在这样的点P ,使△PEF 的面积为34,若存在求出x 的值;若不存在请说明理由.23.(9分)阅读下面材料,小明遇到下面一个问题:如图①所示,AD 是△ABC 的角平分线,AB =m ,AC =n ,求BDDC的值.小明发现,分别过B ,C 作直线AD 的垂线,垂足分别为E ,F ,通过推理计算.可以解决问题(如图②)BDDC= .参考小明思考问题的方法,解决问题:如图③,在四边形ABCD 中AB =2,BC =6,∠ABC=60°,BD 平分∠ABC,CD⊥BD,AC 与BD 相交于点O.(1)AOOC = ; (2)求tan∠DCO 的值.期末检测卷1.D 2.D 3.A 4.C 5.D 6.A 7.B 8.C 解析:∵在Rt△ABC 中(∠C =90°),放置边长分别3,4,x 的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN =OM :PF.∵EF=x ,MO =3,PN =4,∴OE =x -3,PF =x -4,∴(x-3):4=3:(x -4),∴(x-3)(x -4)=12,即x 2-4x -3x +12=12,∴x 1=0(不符合题意,舍去),x 2=7.故选C.9.±6 10.10 11.2- 3 12.2 3 13.2.7 14.1615.⎝ ⎛⎭⎪⎫12n ,32n 解析:∵过AB 中点C 1分别作x 轴和y 轴的垂线,垂足分别是点A 1、B 1,∴B 1C 1和C 1A 1是△OAB 的中位线,∴B 1C 1=12OA =12,C 1A 1=12OB =32,∴C 1的坐标为⎝ ⎛⎭⎪⎫12,32,同理可求出B 2C 2=14=122,C 2A 2=34=322,∴C 2的坐标为⎝ ⎛⎭⎪⎫14,34,…以此类推,可求出B n C n =12n ,C n A n =32n ,∴点C n 的坐标为⎝ ⎛⎭⎪⎫12n ,32n .故答案为⎝ ⎛⎭⎪⎫12n ,32n .16.解:原式=6×⎝ ⎛⎭⎪⎫332-23×32-2×22=2-3-2=-1- 2.(5分)17.解:原方程可化为x 2-5x +6-m =0,Δ=b 2-4ac =25-24+4m =1+4m.(2分)∵方程(x -2)(x -3)=m 有两个不相等的实数根,∴Δ>0,∴1+4m>0,∴m>-14.(4分)由根与系数的关系有:x 1+x 2=5,x 1x 2=6-m ,(5分)∴6-m -5+1=0,∴m=2.(6分)18.解:∵∠C=90°,∠A=60°,∴∠B=30°,∴a=csin60°,b =csin30°.(3分)∴csin60°+csin30°=3+3,∴c=2 3.(6分)19.解:(1)画树状图如下:(4分)(2)由(1)知共有16种等可能的结果,其中积为奇数的有4种,∴P(获奖)=416=14.(6分)20.证明:∵∠BAC=90°,∴∠B+∠C=90°.∵BC 的垂直平分线交BC 于点E ,∴∠DEC=90°,∴∠C+∠D=90°,∴∠B=∠D.(2分)在Rt△BAC 中,E 为斜边BC 的中点,∴BE =EA ,∴∠B =∠BAE ,∴∠D =∠BAE.(4分)∵∠FEA =∠AED ,∴△FEA∽△AED,∴AE EF =EDAE.(6分)∴AE 2=EF·ED.(7分)21.解:过点E 分别作EG⊥AB 于点G ,EF⊥BC 的延长线于点F.在Rt△CFE 中,∵CD 的坡度为i =1∶3,∴tan∠ECF=1∶3,∴∠ECF=30°.∵CE=20米,∴EF=10米,CF =103米.∴BF=BC +CF =(25+103)米.(3分)在Rt△EGA 中,由题意得∠AEG=45°,∴△EGA 是等腰直角三角形,∴AG=EG =BF =(25+103)米,∴AB=(35+103)米,∴楼房AB 的高为(35+103)米.(7分)22.解:(1)ADQ DAQ(2分)(2)设△ADQ 的面积为y ,∴y=12×AD×AB=3,由△APE∽△ADQ 得y 1∶y =⎝ ⎛⎭⎪⎫AP AD 2=x 29,∴y 1=13x 2,同理可得y 2=13(3-x)2;(5分) (3)∵PE∥DQ,PF∥AQ,∴四边形PEQF 是平行四边形,∴△PEF 的面积等于12(y-y 1-y 2)=-13x 2+x.由题意得-13x 2+x =34,解这个方程得x =32,即存在这样的点P.当x=32,即P 位于AD 中点时,△PEF 的面积为34.(9分) 23.mn(2分)解:(1)13(4分)(2)过点A 作AE⊥BD 交BD 于点E ,∴△AEO∽△CDO,∴AO ∶OC =EO ∶DO =1∶3.∴DO=34DE.在Rt△AEB 中,∵AB=2,∠ABE=30°,∴AE=1,BE = 3.在Rt△BDC中,∵BC=6,∠DBC=30°,∴DC=3,BD =33,∴DE=23,∴DO=34DE =323,∴在Rt△CDO 中,tan∠DCO=DO DC =32.(9分)。

2018-2019学年华师大版九年级数学第一学期期末测试卷含答案

2018-2019学年华师大版九年级数学第一学期期末测试卷含答案

2018-2019学年九年级数学上册期末检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共24分) 1.在Rt △ABC 中,∠C =90°,a =4,b =3,则cos A 的值是( ) A.35 B.45 C.43 D.542.下列式子运算正确的是( ) A.3-2=1 B.8=4 2 C.13= 3 D.12+3+12-3=43.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A.16B.13C.12D.234.若x =-1是关于x 的方程x 2+mx -1=0的一个根,则m 的值是( ) A .0 B .1 C .2 D .-25.化简4x 2-4x +1-(2x -3)2得( ) A .2 B .-4x +4 C .-2 D .4x -4 6.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M 、N 在边OB 上,PM =PN ,若MN =2,则OM =( )A .3B .4C .5D .6第6题图7.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半,若AB =2,则此三角形移动的距离AA ′是( )A.2-1B.22 C .1 D.12第7题图8.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D ,若CD =CF ,则AEAD 的值是( )A.23 B.3-52 C.5-12 D.5+12第8题图二、填空题(每小题3分,共30分)9.若使二次根式2x -4有意义,则x 的取值范围是 .10.在Rt △ABC 中,∠C =90°,如果AC =4,sin B =23,那么AB = .11.如图所示,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中心,若OA =12AA ′,S △ABC=8,则S △A ′B ′C ′= .第11题图12.如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是 .13.在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 个.14.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF =12BC .若AB =10,则EF 的长是 .第14题图第15题图15.如图,平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (4,5),B (0,5),C (0,1),将△ABC 沿y 轴翻折后再向下平移1个单位,此时A 点坐标变为 . 16.关于m 的一元二次方程7nm 2-n 2m -2=0的一个根为2,则n 2+n -2= . 17.如图,轮船在A 处观测灯塔C 位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B 处,此时,观测灯塔C 位于北偏西25°方向上,则灯塔C 与码头B 的距离是 海里(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).第17题图18.如图,在△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的C ′处,并且C ′D ∥BC ,则CD 的长是 .第18题图三、解答题(共66分) 19.(6分)计算: (1)(24+0.5)-⎝⎛⎭⎫18-6;(2)(2-3)2014·(2+3)2015-2×⎪⎪⎪⎪-32-(-2)0.20.(6分)解方程:(1)2x 2+3x +1=0; (2)(3x +1)2=9x +3.21.(8分)已知关于x 的方程x 2-2kx +k 2+2=2(1-x )有两个实数根. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.22.(8分)小莉为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买超过10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小莉一次性购买这种服装付了1200元,请问她购买了多少件这种服装?23.(8分)为了弘扬“社会主义核心价值观”,市政府在广场竖立公益广告牌,如图所示.为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长(注意:本题中的计算过程和结果均保留根号).24.(8分)如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且∠BAC =∠BDC=∠DAE;(1)求证:△ABE∽△ACD;(2)若BC=2,AD=6,DE=3,求AC的长.25.(10分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?26.(12分)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系(用含α的三角函数表示).期末检测卷(二)1.A 2.D 3.B 4.A 5.A 6.C7.A8.C解析:设CF=m,AF=n,∵AB⊥BC,BF⊥AC,∴∠ABF+∠CBF=90°,∠ABF+∠BAF=90°,∴∠CBF=∠BAF.又∠ABC=∠BFA=90°,∴Rt△AFB∽Rt△ABC,∴AB2=AF·AC,又FC=CD=AB=m,∴m2=n(n+m),即(nm)2+n m -1=0,∴n m =5-12或n m =-5-12(舍去).又Rt △AFE ∽Rt △CFB ,AE AD =AE BC =AFFC =n m =5-12.故选C. 9.x ≥2 10.6 11.72 12.m <-413.8 14.5 15.(-4,4) 16.26 17.2418.409 解析:设CD =x ,根据C ′D ∥BC ,且有C ′D =EC ,可得四边形C ′DCE 是菱形.在Rt △ABC 中,AC =62+82=10,易知△BEC ′∽△BCA ,∴BE BC =C ′E AC ,∴BE 8=C ′E 10=CD 10=x 10,∴EB =45x .故可得BC =x +45x =8,解得x =409.故答案为409. 19.解:(1)原式=26+122-142+6=36+142;(3分) (2)原式=[(2-3)(2+3)]2014(2+3)-2×32-1=2+3-3-1=1.(6分) 20.解:(1)x 1=-12,x 2=-1;(3分)(2)x 1=-13,x 2=23.(6分)21.解:(1)原方程可化为x 2-2(k -1)x +k 2=0.(1分)依题意,得b 2-4ac ≥0,即[-2(k -1)]2-4k 2≥0,-8k +4≥0,解得k ≤12;(3分)(2)依题意可知x 1+x 2=2(k -1),x 1x 2=k 2.(4分)由(1)可知k ≤12,∴2(k -1)<0,即x 1+x 2<0.∵|x 1+x 2|=x 1x 2-1,∴-2(k -1)=k 2-1,(6分)解得k 1=1,k 2=-3.(7分)∵k ≤12,∴k =-3.(8分)22.解:设她购买了x 件这种服装,依题意得x [80-2(x -10)]=1200,(3分)解得x 1=20,x 2=30.(5分)又因为80-2(x -10)≥50,即x ≤25,所以x =20.(7分)答:她购买了20件这种服装.(8分)23.解:(1)在Rt △ADC 中,∵∠ADC =60°,CD =3米,tan ∠ADC =ACDC,∴AC =3·tan60°=33米.在Rt △BDC 中,∵∠BDC =45°,∴BC =CD =3米,∴AB =AC -BC =(33-3)米.(4分)(2)在Rt △ADC 中,∵cos ∠ADC =CD AD ,∴AD =3cos60°=312=6(米);在Rt △BDC 中,∵cos ∠BDC =CD BD ,∴BD =3cos45°=322=32(米).(8分)24.(1)证明:证法一:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵∠BAC =∠BDC ,∠BFA =∠CFD ,∴180°-∠BAC -∠BFA =180°-∠BDC -∠CFD ,即∠ABE =∠ACD .∴△ABE ∽△ACD .证法二:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵∠BEA =∠DAE +∠ADE ,∠ADC =∠BDC +∠ADE ,∠DAE =∠BDC ,∴∠AEB =∠ADC .∴△ABE ∽△ACD .(4分)(2)解:∵△ABE ∽△ACD ,∴AB AC =AE AD .又∵∠BAC =∠DAE ,∴△ABC ∽△AED ,∴BCDE=AC AD ,∴AC =BC DE ·AD =23×6=4.(8分) 25.解:(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(4分)(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;(7分)(3)由(1)可知球回到甲脚下的概率=14,传到乙脚下的概率=38,所以球传到乙脚下的概率大.(10分)26.(1)证明:如图①,过点D 作DF ⊥BC ,交AB 于点F ,则∠BDE +∠FDE =90°,∵DE ⊥AD ,∴∠FDE +∠ADF =90°,∴∠BDE =∠ADF .∵∠BAC =90°,∠ABC =45°,∴∠C =45°.∵MN ∥AC ,∴∠EBD =180°-∠C =135°.∵∠ABD =45°,DF ⊥BC ,∴∠BFD =45°,BD =DF ,∴∠AFD =135°,∴∠EBD =∠AFD .在△BDE 和△FDA 中,⎩⎪⎨⎪⎧∠EBD =∠AFD ,BD =DF ,∠BDE =∠ADF ,∴△BDE ≌△FDA (ASA),∴AD =DE ;(4分)(2)解:DE =3AD ,理由如下:过点D 作DG ⊥BC ,交AB 于G ,则∠BDE +∠GDE =90°.∵DE ⊥AD ,∴∠GDE +∠ADG =90°,∴∠BDE =∠ADG .∵∠BAC =90°,∠ABC =30°,∴∠C =60°.∵MN ∥AC ,∴∠EBD =180°-∠C =120°.∵∠ABC =30°,DG ⊥BC ,∴∠BGD =60°,∴∠AGD =120°,∴∠EBD =∠AGD ,∴△BDE ∽△GDA ,∴AD DE =DGBD.在Rt △BDG 中,DG BD =tan30°=33,∴DE =3AD ;(8分)(3)解:AD =DE ·tan α.理由如下:如图②,∠BDE +∠GDE =90°.∵DE ⊥AD ,∴∠GDE+∠ADG =90°,∴∠BDE =∠ADG .∵∠EBD =90°+α,∠AGD =90°+α,∴∠EBD =∠AGD ,∴AD DE =DG BD .在Rt △BDG 中,DG BD =tan α,则ADDE =tan α,∴AD =DE ·tan α.(12分)。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

最新华师大版2018-2019学年九年级(上)期末数学模拟试卷附答案

最新华师大版2018-2019学年九年级(上)期末数学模拟试卷附答案

2018-2019学年九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.2.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42313.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.tan30°的值为()A.B.C.D.5.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣36.下列命题中,逆命题为真命题的是()A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b7.根据下列表格中的对应值,判断一元二次方程x2﹣4x+2=0的解的取值范围是()A.0<x<0.5,或3.5<x<4B.0.5<x<1,或3<x<3.5C.0.5<x<1,或2<x<2.5D.0<x<0.5,或3<x<3.58.在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.若二次函数y1=ax2+bx与一次函数y2=ax+b的图象经过相同的象限,给出下列结论:①a,b同号;②若b<0,则x>1时,y1<y2.则下列判断正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.411.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为()A.B.2C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.14.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是.15.计算:﹣|2﹣|=16.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.三.解答题(共7小题,满分42分,每小题6分)17.(6分)x2﹣8x+12=0.18.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.(7分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.20.(7分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.21.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).22.(8分)如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PE=PA,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.23.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF 成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案1.D.2.B.3.A.4.B.5.B.6.C.7.B.8.B.9 A 10 D 11 B 12 C10.解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.11.解:∵∠AOB=90°,∴∠AOC+∠BOD=∠AOC+∠CAO=90°,∠CAO=∠BOD,∴△ACO∽△BDO,∴=()2,∵S△AOC=×2=1,S△BOD=×1=,∴()2==2,∴OA2=2OB2,∵OA2+OB2=AB2,∴OA2+OA2=6,∴OA=2,12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,13..14.解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是615.16.解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,17.解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.18.解:不公平,列表如下:10由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).20.解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.21.解:过A作AD⊥BC,在Rt△ACD中,tan∠ACD=,即CD==AD,在Rt△ABD中,tan∠ABD=,即BD==AD,由题意得:AD﹣AD=75,解得:AD=300m,则热气球离底面的高度是300m.22.解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DPA≌△DPC,∴∠DAP=∠DCP,PA=PC,∵PA=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.23.解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△AOE+S△POE,∴S四边形AOPE=×3×3+PG•AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=或,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新华东师大版九年级上学期期末模拟试题一、选择题1.下列方程中,是一元二次方程的是(A )221x y += (B )21121x x =+ (C )24535x x --= (D )2340x x -+= 2.下列各组二次根式中,化简后是同类二次根式的是(A )320和50 (B )28和273 (C )2mn 和2m n (D )2234y x 和2725x y3.下列说法正确的是(A )做抛掷硬币的实验,如果没有硬币用图钉代替硬币,做出的实验结果是一致的 (B )抛掷一枚质地均匀的硬币,已连续掷出5次正面,则第6次一定掷出背面 (C )某种彩票中奖的概率是1%,因此买100张该彩票一定会中奖(D )天气预报说明天下雨的概率是50%,也就是说明天下雨和不下雨的机会是均等的 4.将Rt ABC ∆的三边分别扩大2倍,得到Rt A B C '''∆,则(A )sin sin A A '= (B )sin sin A A '> (C )sin sin A A '< (D )不能确定 5.若b a b -=14,则ab 的值为(A )5 (B )15 (C )3 (D )136.△ABC 的顶点A 的坐标为(2,4)-,先将△ABC 沿x 轴对折,再向左平移两个单位,此时A 点的坐标为(A )(2,4)- (B )(0,4)- (C )(4,4)-- (D )(0,4)xy 1 20 -1 -2 -12 3 4 y1 2 0 -1 -2 -1 2 3 4 45︒ x mx y 1 2 0 -1 -2 -1 23 4 x y 1 2 0-1 -2 -1 2 3 4 7.用配方法解方程2420x x -+=,下列配方变形正确的是(A )2(2)2x += (B )2(2)2x -= (C )2(2)4x += (D )2(2)4x -= 8.如图(1),小正方形的边长均为1,则下列图中的三角形 (阴影部分)与△ABC 相似的是9.已知二次函数223y x x k =-++的图象上有三点13(,)A y 、2(3,)B y 、32(,)C y -,则1y 、2y 、3y 的大小关系是(A )123y y y >> (B )213y y y >> (C )312y y y >> (D )321y y y >>10.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程正确的是 (A )256(1)31.5x -= (B )56(1)231.5x -÷= (C )256(1)31.5x += (D )231.5(1)56x -= 11.如图(2),灌溉渠的横截面是等腰梯形,底宽为2米, 坡角为45︒,水深为x 米,横截面有水的面积为y 平方米,y 是x 的函数,则函数图象是12.如图(3),已知边长为2 的正方形ABCD ,E 是AB 的中点,F 是BC 的中点,AF 与DE 相交于I ,BD 和AF 相交于H .则四边形BEIH 的面积为(A )45 (B )35 (C )715 (D )815二、填空题:(本大题共8个小题,每小题3分,共24分.请把答案填在题中的横线上.)13.若二次根式x -4有意义,则实数x 的取值范围是__________.14.在比例尺为1∶4000000的地图上,量得甲、乙两地距离为 2.5cm ,则甲、乙两地的实际距离为____________km.15.如图(4),在菱形ABCD 中,E 、F 分别是AC 、BC 的中点,•如果5EF =,那么菱形ABCD 的周长__________. 16.已知90A B ∠+∠=︒,若3sin 5A =,则cos B =________. 17.有30张扑克牌,牌面朝下,随机抽出一张记下花色再放回;洗牌后再这样抽,经历多次试验后,得到随机抽出一张牌是红桃的概率为20%,则红桃牌大约有张.18.关于x 的一元二次方程2(2)260m x mx m --+-=有实数根,则m 的取值范围是________. 19.如图(5),在Rt ABC ∆中,∠C 是直角,AC BC =,30AB =, 矩形DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若DG ∶GF =1∶4,则矩形DEFG 的面积是;20.二次函数2y ax bx c =++的图象如图(6)所示,则下列代数式①ab 、②ac 、③a b c ++、④a b c -+、⑤2a b +、 ⑥2a b -中,值为正的式子有______________(只填番号即可).三、(本大题共4个小题,每小题6分,共24分.)21.化简:22(3)a a +-·3a. 22.解方程:221x x +=-.23.解方程:23100x x --=. 24.已知Rt ABC ∆中,90C ∠=︒,15b =,30A ∠=︒,求a 和tan B .四、(本大题共4个小题,每小题7分,共28分.)25.一个不透明的袋子中装有三个完全相同的小球,小球上分别标有数字3,4,5,•从袋中随机取出一个小球,用小球上的数字作十位,然后放回,•搅匀后再取出一个小球,用小球上的数字作个位,这样组成一个两位数;试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为8的两位数的概率是多少?•用列表法或画树状图加以说明.26.已知抛物线的图象与x 轴交于(2,0)A -、(1,0)B 两点,且经过点(2,8). (1)求抛物线的解析式;(2)求抛物线的对称轴.27.如图(7),在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线EF 交AD 于E ,交BC 的延长线于F ,连结AF .求证:2FD FB =·FC .28.设1x ,2x 是关于x 的方程2(2)210x k x k -+++=的两个实数根,且221211x x +=.求k 的值.五、(本大题共2个小题,每题9分,共18分.)29.为适应市场需要,某灯具商店采购了一批某种型号的节能灯,共用去400元,在搬运过程中,不小心打碎了5盏,该店把余下的灯每盏加价4元全部售出;仍然获得利润90元.求每盏灯的进价.30.现有皮尺、标杆(标杆比人高)、平面镜等工具,请适当选用..给出的工具,设计一种测量旗杆AB 的高度的方案(不能攀登旗杆).利用图(8)画出图形,并写出操作步骤.六、(本大题共2个小题,每题10分,共20分.)31.已知:等边△ABC 和点P ,设点P 到△ABC 的三边AB 、AC 、BC 的距离分别为1h 、2h 、3h ,△ABC 的高为h .(1)如图(9),若点P 在边BC 上,证明:12h h h +=.(2)如图(10),当点P 在△ABC 内时,猜想1h 、2h 、3h 和h 有什么关系?并证明你的结论.(3)如图(11),当点P 在△ABC 外时,1h 、2h 、3h 和h 有什么关系?(不需要证明)32.如图(12),已知一次函数28y x =-与抛物线2y x bx c =++都经过x 轴上的A 点和y 轴 上的B 点. (1)求抛物线的解析式;(2)若抛物线的顶点为D ,试求出点D 的坐标和△ABD 的面积;(3)M 是线段OA 上的一点,过点M 作MN x ⊥轴,与抛物线交于N 点,若直线AB 把△MAN 分成的两部分面积之比为1∶3,请求出N 点的坐标.xy参考答案与评分建议一、CBDAA CBADA CC二、13.4x ≤ 14.100 15.40 16.3517.6 18.32m ≥且2m ≠ 19.100 20.②③ 三、21.解:原式2333a a a =++- ………………………………(4分)33a a =++ ………………………………(6分)22.解:2210x x ++= ………………………………(2分)2(1)0x += ………………………………(4分)1x =- ………………………………(6分)23.解:(5)(2)0x x -+= (2(3)(3)41(10)2x --±--⨯⨯-=) ……………(4分)125,2x x ==- (125,2x x ==-) ………………………………(6分)24.解:在Rt ABC ∆中,∵15,30b A =∠=︒∴tan b A a =,3tan 15tan 3015533a b A ==︒=⨯= ……………(4分) ∴903060B ∠=︒-︒=︒,∴tan tan603B =︒= ……………(6分) 四、25.解:可以组成33,34,35,43,44,45,53,54,55 ……………(2分)……………(5分)(或表格说明:十位上的数字与个位上的数字之和为8的两位数的概率是:3193=……………(7分) 26.(1)解:设抛物线为:12()()y a x x x x =--∵抛物线的图象与x 轴交于(2,0)A -、(1,0)B 两点,且经过点(2,8) ∴8(22)(21)a =+-, ∴2a =……………(4分)∴抛物线的解析式为2(2)(1)y x x =+-(也可以是2224y x x =+-)…………(5分) (2)2224y x x =+-2211192()42()4222y x x x =++--=+-∴抛物线的对称轴为12x =-(直接用公式求出也得分)……………(7分)27.证明:∵EF 是AD 的垂直平分线,∴FD AF =,ADF FAD ∠=∠…………(2分)又∵AD 平分BAC ∠,∴BAD CAD ∠=∠ ……………(3分) ∵,ADF B BAD DAF CAD CAF ∠=∠+∠∠=∠+∠ ∴B CAF ∠=∠ ……………(4分) ∴BAF AFC ∆∆ ……………(5分) ∴AF FB FC AF=,即2AF FB FC =⋅……………(6分) 3 4 5 3 33 34 35 4 43 44 45 5535455∴2FD FB FC =⋅ ……………(7分)28.解:根据题意得:12122,21x x k x x k +=+⋅=+ ……………(1分) ∴222121212()2x x x x x x +=+- ……………(2分)2(2)(21)11k k =+-+= ……………(3分)解得124,2k k =-= ……………(4分)当14k =-时,[]2(2)4(21)0k k ∆=-+-+> ……………(5分) 当22k =时,[]2(2)4(21)0k k ∆=-+-+<,不合题意,舍去……………(6分)∴4k =- ……………(7分)五、解:设每盏灯的进价为x 元, ……………(1分) 根据题意列方程得:4004(5)590x x--=……………(4分) 解方程得:1232,10x x =-=……………(7分)经检验1232,10x x =-=都是原方程的根,但132x =-不合题意,舍去 ∴10x = ……………(8分) 答:每盏灯的进价为10元. ……………(9分) 30.解:正确画出图形得5分方法一:如图(8.1)(没有考虑人的高度不扣分)①将标杆EF 立在一个适当的位置; ……………(6分)②人CD 站在一个适当的位置:通过标杆的顶部E ,刚好看到旗杆的顶部A ……(7分) ③测出人的身高CD ,标杆的高度EF ,人到标杆DF 的距离和人到旗杆DB 的距离 …(8分) ④计算旗杆的高度:∵CEG CAH ∆∆ , ∴CG EG CH AH =,所以旗杆的高度()DB EF CD AB AH CD CD DF⨯-=+=+…………(9分) (方法二:如图(8.2)①将平面镜放在E 处, ……………(6分)②人CD 走到适当的地方:刚好能从平面镜E 中看到旗杆的顶部A …………(7分) ③测出人的高度CD ,人到平面镜的距离DE ,平面镜到旗杆底部的距离EB …(8分) ④计算出旗杆的高度:∵CDE ABE ∆∆ , ∴CD DE AB BE =,所以旗杆的高度CD BE AB DE⨯=…………(9分) ) 六、31.(1)证明:∵,PD AB AM BC ⊥⊥,∴BDP BMA ∠=∠∴BPD BMA ∆∆ …………(1分) ∴,DP BP BP PD AM AM AB AB==…………(2分) 同理:CP PE AM AC =…………(3分) 又∵ABC ∆是等边三角形,∴AB BC AC == ∴12()BP CP BP CP h h AM AM h h AB AC BC BC+=+=+=…………(4分) (也可以用面积相等、三角函数来证明)(2)123h h h h ++=…………(5分)过P 作GH ∥BC ,交AB 于G ,交AM 于N ,交AC 于H又∵,AM BC PF BC ⊥⊥,∴3h PF MN ==…………(6分)由(1)可得:12h h AN +=…………(7分)∴123h h h AN MN h ++=+=…………(8分)(3)123h h h h ++= …………(10分)xy 32.解:(1)∵直线28y x =-经过x 轴上的点A 和y 轴上的点B∴028,4x x =-=,∴(4,0)A 2088y =⨯-=-,∴(0,8)B -…………(1分)又∵抛物线2y x bx c =++经过A 、B 两点 ∴2204488b b c c c =-⎧=++⎧⇒⎨⎨=--=⎩⎩…………(2分) ∴抛物线为822--=x x y …………(3分)(2)由(1)可得(1,9)D -(注意:可以由公式求出,也可由配方得出)…………(4分)过D 作x 轴的垂线,交x 轴于G∴1OG = ABD AOB AGD AOB AOBD OBDG S S S S S S ∆∆∆∆=-=+-四边形梯形111(89)1(41)9486222=⨯+⨯+⨯-⨯-⨯⨯=…………(6分) (3)过M 作MN x ⊥轴,交AB 于H ,交抛物线于N ,设(,0)M t则2(,28);(,28)H t t N t t t ---由图可知:222828428(28)AMH AHN t S MH t S HN t t t t t ∆∆--===-----…………(7分) ①当228143AMH AHN S t S t t ∆∆-==-时,解得:124,6t t ==都不合题意,舍去…………(8分) ②当228341AMH AHN S t S t t ∆∆-==-时,解得:122,43t t ==(不合题意,舍去)…………(9分) 由①和②可得:23t =∴22228028()28339t t --=-⨯-=- ∴280(,)39N - ……………………(10分)。

相关文档
最新文档