专题复习:功能关系能量守恒
功能关系 能量守恒定律

④压缩弹簧过程,弹力对物体做_负__功__,弹簧的弹性势能 增加,增加量_等__于__克服弹力做功的多少。 ⑤全过程中,物体与弹簧组成的系统,除重力和弹簧弹 力做功以外,只有_滑__动__摩__擦__力__做负功,系统的机械能 减少,减少量为__m_g_c_o_s__s_ihn__。
专题六 功能关系 能量守恒定律
【知识梳理】 知识点1 功能关系 1.功是_能__量__转__化__的量度,即做了多少功就有多少_能__量__ _发__生__了__转__化__。 2.做功的过程一定伴随着_能__量__的__转__化__,而且_能__量__的__转__ _化__必须通过做功来实现。
【解析】选B。夯杆被提上来的过程中,先受到滑动摩 擦力,然后受静摩擦力,故A错误;增加滚轮匀速转动的 角速度时夯杆获得的最大速度增大,可减小提杆的时间, 增加滚轮对杆的正压力,夯杆受到的滑动摩擦力增大, 匀加速运动的加速度增大,可减小提杆的时间,故B正确; 根据功能关系可知,滚轮对夯杆做的功等于夯杆动能、
A.夯杆被提上来的过程中滚轮先对它施加向上的滑动 摩擦力,后不对它施力 B.增加滚轮匀速转动的角速度或增加滚轮对杆的正压 力可减小提杆的时间 C.滚轮对夯杆做的功等于夯杆动能的增量 D.一次提杆过程系统共产生热量 1 mv2
2
【思考探究】 (1)夯杆被提升经历匀加速和匀速运动过程,分析这两 个过程的受力情况如何? 提示:匀加速运动过程受重力和向上的滑动摩擦力作用, 匀速运动过程受重力和向上的静摩擦力作用。
2a 2
2
故D错误。
第4讲 功能关系 能量守恒定律-2025版物理大一轮复习

功能关系能量守恒定律目标要求 1.熟练掌握几种常见的功能关系;理解能量守恒定律。
2.掌握应用功能关系或能量守恒定律解决问题的方法。
3.应用能量观点解决生活生产中的实际问题。
考点一功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能量转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.常见的功能关系能量功能关系表达式势能重力做的功等于重力势能减少量W =E p1-E p2=-ΔE p 弹力做的功等于弹性势能减少量静电力做的功等于电势能减少量分子力做的功等于分子势能减少量动能合外力做的功等于物体动能变化量W =E k2-E k1=12m v 2-12m v 02机械能除重力和弹力之外的其他力做的功等于机械能变化量W 其他=E 2-E 1=ΔE摩擦产生的内能一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q =F f ·x 相对(多选)如图所示,载有防疫物资的无人驾驶小车,在水平MN 段以恒定功率200W 、速度5m/s 匀速行驶,在斜坡PQ 段以恒定功率570W 、速度2m/s 匀速行驶。
已知小车总质量为50kg ,MN =PQ =20m ,PQ 段的倾角为30°,重力加速度g 取10m/s 2,不计空气阻力。
下列说法正确的有()A.从M到N,小车牵引力大小为40NB.从M到N,小车克服摩擦力做功800JC.从P到Q,小车重力势能增加1×104JD.从P到Q,小车克服摩擦力做功700J解析:ABD从M到N,由P1=F1v1可得小车牵引力F1=P1v1=2005N=40N,A正确;从M到N,小车匀速行驶,牵引力等于摩擦力,可得摩擦力F f1=F1=40N,小车克服摩擦力做的功W f1=F f1·MN=40×20J=800J,B正确;从P到Q,由P2=F2v2可得小车牵引力F2=P2v2=5702N=285N,从P到Q,小车匀速行驶,小车牵引力F2=F f2+mg sin30°,解得F f2=F2-mg sin30°=285N-50×10×12N=35N;从P到Q,小车克服摩擦力做的功W f2=F f2·PQ=35×20J =700J,D正确;从P到Q,小车上升的高度h=PQ sin30°=20×0.5m=10m,小车重力势能的增加量ΔE p=mgh=50×10×10J=5000J,C错误。
高考物理总复习功能关系 能量守恒定律

2023:山东T4;
题是高考的热点.预计2025年高考题
2022:江苏T10;
出题可能性较大,有可能会结合体
2019:全国ⅡT18
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
返回目录
第4讲
功能关系
能量守恒定律
核心考点
五年考情
命题分析预测
功能关系在选择题中考查的频率比
2 570
车牵引力大小F2= =
2
2
N=285 N,从P到Q,小车匀速行驶,小车牵引力F2=f2+
mg sin 30°,解得f2=F2-mg sin 30°=285
1
N-50×10×
2
N=35 N;从P到Q,小车克服
摩擦力做的功Wf2=f2·PQ=35×20 J=700 J,故D正确.从P到Q,小车上升的高度h=
动能定理得mgh-μmgs cos θ=Ek-0,h=xtan
θ,s=
,解得Ek=mgx(tan
cos
θ-μ),木块
在水平面上运动时,设初动能为Ek0,根据动能定理得-μmg(x-x1)=Ek-Ek0,解得Ek=
Ek0-μmg(x-x1),B正确.木块克服摩擦力做功转化为内能,木块在斜面上时,Q=μmgs
2023:浙江6月T18;
能量守恒定律的应用
2022:河北T9;
2021:山东T18;
2019:江苏T8
较高,特别是功能关系中的图像问
题是高考的热点.预计2025年高考题
出题可能性较大,有可能会结合体
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
高中物理二轮复习专题六 功能关系 能量守恒

专题六功能关系能量守恒1.(2017·全国卷Ⅱ)如图所示,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)A.v216gB.v28gC.v24gD.v22g2.(2016·全国卷Ⅱ)如图所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连。
现将小球从M点由静止释放,它在下降的过程中经过了N点。
已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<π2。
在小球从M点运动到N点的过程中A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差一、机械能守恒定律1.(2018·湖南石门第一中学高三检测)如图2-2-20所示,光滑的水平面AB与半径R=0.4 m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A右侧连接一粗糙水平面。
用细线连接甲、乙两物体,中间夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲质量为m1=4 kg,乙质量m2=5 kg,甲、乙均静止。
若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道压力恰好为零。
取g=10 m/s2,甲、乙两物体均可看作质点,求:(1)甲离开弹簧后经过B时速度大小v B;(2)弹簧压缩量相同情况下,若固定甲,烧断细线,乙物体离开弹簧后从A进入动摩擦因数μ=0.4的粗糙水平面,则乙物体在粗糙水平面上运动位移s。
2.(2016·全国卷Ⅲ)在竖直平面内有由14圆弧AB和12圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接。
AB弧的半径为R,BC弧的半径为R2。
一小球在A点正上方与A相距R4处由静止开始自由下落,经A点沿圆弧轨道运动。
重难点07 功能关系 能量守恒(原卷版)-高考物理重点难点热点专题汇总

1.命题情境源自生产生活中的与功能变化的相关的情境或科学探究情境,解题时能从具体情境中抽象出物理模型,正确各力做功情况和能量的转化。
2.命题既有重力场中的直线运动,也有电场或磁场中的直线运动、曲线运动,或更加复杂的复合场中的曲线运动的能量转化。
3.命题中经常注重物理建模思想的应用,具体问题情境中,抽象出物体模型,利用功能转化的思想知识分析问题和解决问题。
一.力做功及功能关系定洛伦兹力不做功,只改变速度的方向安培力可以做功,也可以不做功感应电流在磁场中受到的安培力做负功,阻碍导体棒与导轨的相对运动|W 安|=|ΔE 机械能|=Q 分子力可以做正功,也可以做负功W 分子力=-ΔE p核力核力破坏时将释放巨大的能量ΔE =Δmc 2其中c 为光速二、机械能守恒定律1.机械能守恒的判断(1)利用机械能守恒的定义判断;(2)利用做功判断;(3)利用能量转化判断;(4)对于绳突然绷紧和物体间非弹性碰撞问题,机械能往往不守恒.2.解题步骤(1)选取研究对象,分析物理过程及状态;(2)分析受力及做功情况,判断机械能是否守恒;(3)选取参考面,根据机械能守恒列式.3.应用技巧对于连接体的机械能守恒问题,常常应用重力势能的减少量等于动能的增加量来分析和求解.三、能量守恒定律分析物体做功的过程中有哪些能量之间发生转化,哪些能量增加,哪些能量减少,总的能量保持不变。
(建议用时:30分钟)一、单选题1.北京冬奥会后,冰雪运动越来越受人们关注,滑雪机也逐渐走进大众生活。
滑雪机是利用电机带动雪毯向上运动,雪毯的质感完全仿真滑雪场的平坦硬雪,滑雪者相对雪毯向下滑行,以达到学习和锻炼的目的,并且通过调整雪毯的速度或坡度,还可以模拟在滑雪场以各种速度在各种坡度的雪道滑行,如图为一小型滑雪机展品。
已知某滑雪机坡道长6m =L ,倾角37θ= ,在某次训练中,一开始雪毯静止未开启,一质量50kg m =(含装备)的滑雪者没有做任何助力动作,恰能够沿雪毯匀速下滑。
高考物理专题复习:功能关系能量守恒定律

专题5.4 功能关系能量守恒定律【高频考点解读】1.掌握功和能的对应关系,特别是合力功、重力功、弹力功分别对应的能量转化关系2.理解能量守恒定律,并能分析解决有关问题.【热点题型】题型一功能关系的理解与应用例1、自然现象中蕴藏着许多物理知识,如图541所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()图541A.增大B.变小C.不变D.不能确定解析:选A 人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A 正确。
【提分秘籍】1.对功能关系的理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.几种常见的功能关系及其表达式各种力做功对应能的变化定量的关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性势能增加,且W弹=-ΔE p=E p1-E p2只有重力、弹簧弹力的功不引起机械能变化机械能守恒ΔE=0非重力和机械能除重力和弹力之外的其他力做正功,物体的机械能弹力的功变化增加,做负功,机械能减少,且W其他=ΔE电场力的功电势能变化电场力做正功,电势能减少,电场力做负功,电势能增加,且W电=-ΔE p【举一反三】轻质弹簧右端固定在墙上,左端与一质量m=0.5 kg的物块相连,如图542甲所示。
弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2。
以物块所在处为原点,水平向右为正方向建立x轴。
现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示。
功能关系能量守恒定律(含答案)

功能关系能量守恒定律(含答案)专题功能关系能量守恒定律【考情分析】1.知道功是能量转化的量度,掌握重⼒的功、弹⼒的功、合⼒的功与对应的能量转化关系。
2.知道⾃然界中的能量转化,理解能量守恒定律,并能⽤来分析有关问题。
【重点知识梳理】知识点⼀对功能关系的理解及其应⽤1.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发⽣了转化。
(2)做功的过程⼀定伴随着能量的转化,⽽且能量的转化必须通过做功来实现。
2.做功对应变化的能量形式(1)合外⼒对物体做的功等于物体的动能的变化。
(2)重⼒做功引起物体重⼒势能的变化。
(3)弹簧弹⼒做功引起弹性势能的变化。
(4)除重⼒和系统内弹⼒以外的⼒做的功等于物体机械能的变化。
知识点⼆能量守恒定律的理解及应⽤1.内容能量既不会凭空产⽣,也不会凭空消失,它只能从⼀种形式转化为另⼀种形式,或者从⼀个物体转移到另⼀个物体,在转化或转移的过程中,能量的总量保持不变。
2.适⽤范围能量守恒定律是贯穿物理学的基本规律,是各种⾃然现象中普遍适⽤的⼀条规律。
3.表达式ΔE减=ΔE增,E初=E末。
【典型题分析】⾼频考点⼀对功能关系的理解及其应⽤12【例1】(2019·全国Ⅱ卷)从地⾯竖直向上抛出⼀物体,其机械能E 总等于动能E k 与重⼒势能E p 之和。
取地⾯为重⼒势能零点,该物体的E 总和E p 随它离开地⾯的⾼度h 的变化如图所⽰。
重⼒加速度取10 m/s 2。
由图中数据可得A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地⾯⾄h =4 m ,物体的动能减少100 J 【答案】AD【解析】A .E p –h 图像知其斜率为G ,故G =80J4m=20 N ,解得m =2 kg ,故A 正确B .h =0时,E p =0,E k =E 机–E p =100 J–0=100 J ,故212mv =100 J ,解得:v =10 m/s ,故B 错误;C .h =2 m 时,E p =40 J ,E k =E 机–E p =85 J–40 J=45 J ,故C 错误;D .h =0时,E k =E 机–E p =100 J–0=100 J ,h =4 m 时,E k ′=E 机–E p =80 J–80J=0 J ,故E k –E k ′=100 J ,故D 正确。
功能关系能量守恒重点

功能关系能量守恒 重点来自导一、功能关系 (1)功是能量转化的量度,即做了多少功,就有多少能量 发生了转化.做功的过程一定伴随有能量的转化,而且能量 的转化必须通过做功来实现. 2.做功对应变化的能量形式 (1)合外力的功影响物体的动能的变化. (2)重力的功影响物体重力势能的变化. (3)弹簧弹力的功影响弹性势能变化. (4)除重力或系统内弹力以外的力做功影响物体机械能的 变化. (5)滑动摩擦力的功影响焦耳热的变化. (6)电场力的功影响电势能的变化. (7)分子力的功影响分子势能的变化.
能的增量 动到N点的过程中( )
D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 B.0~x1过程中物体的动能一定先增加后减小,最后为零 滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动 。
D.x1~x2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动 D.x1~x2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动 滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动 。
面则: B.0~x1过程中物体的动能一定先增加后减小,最后为零
C.力F做的功和阻力做的功之和等于物体机械能的增量 如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)从O点到弹簧压缩至最短的过程中: (3)从弹簧压缩到物块被弹回的过程中:
练习:
1、如图所示,一质量为m=1 kg的可视为质点的滑块,放在光 滑的水平平台上,平台的左端与水平传送带相接,传送带以v=2 m/s的速度沿顺时针方向匀速转动(传送带不打滑),现将滑块缓慢向 右压缩轻弹簧,轻弹簧的原长小于平台的长度,滑块静止时弹簧的 弹性势能为Ep=4.5 J,若突然释放滑块,滑块向左滑上传送带.已 知滑块与传送带间的动摩擦因数为μ=0.2, 传送带足够长,g=10 m/s2.求: (1)滑块第一次滑上传送带到离开传送带所经历的时间; (2)滑块第一次滑上传送带到离开传送带由于摩擦产生的热量.
连一轻弹簧,原长为L,劲度系数为k.现将弹簧上端B缓慢地竖直向
上提起,使B点上移距离为L,此时物体A也已经离开地面,则下列
说法中正确的是( C ) A.提弹簧的力对系统做功为mgL
L
B.物体A的重力势能增加mgL
弹簧被拉伸
C.系统增加的机械能小于mgL
D.以上说法都不正确
物体始终处于平衡状态,离地之前F弹<mg, 离地之后F弹=mg,
和弹簧的拉力对其做功的代数和
=WG+WFN+W弹
C.物块A的机械能增加量等于斜面的支持力和弹簧
FN F弹
的拉力对其做功的代数和
mg
D.物块A和弹簧组成的系统的机械能增加量等于
斜面对物块的支持力和B对弹簧的拉力做功的代数和
其他力(除重力、弹力外)做功等于物体或系统机械能的变化
巩固训练
1、如图所示,物体A的质量为m,置于水平地面上,A的上端
(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两 种可能效果:
①机械能全部转化为内能; ②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为
内能. (3)摩擦生热的计算:Q=Ffx相对.其中x相对为相互摩擦的两个物体间
的_相__对__位__移__.
[深化拓展]从功的角度看,一对滑动摩擦力对系统做的功等于系统 内能的增加量;从能量的角度看,其他形式能量的减少量等于系统 内能的增加量.
小试牛刀:
2.如图所示,木块A放在木块B的左端,用恒力F将A拉至B的
右端,第一次将B固定在地面上,F做功为W1,生热为Q1;第二次 让B可以在光滑地面上自由滑动,仍将A拉到B的右端,这次F做功
为W2,生热为Q2.则应有( A )
A.W1<W2,Q1=Q2 B.W1=W2,Q1=Q2
C.W1<W2,Q1<Q2 D.W1=W2,Q1<Q2
小试牛刀1、如图所示,在升降机内固定一光滑的斜面体,一轻弹
簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的
物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h
的过程中( ) 弹簧伸长量增加 上升高度小于h A.物块A的重力势能增加量一定等于mgh
B.物块A的动能增加量等于斜面的支持力
小试牛刀
3.一个盛水袋,某人从侧面缓 慢推装液体的袋壁使它变形
至如图所示位置,则此过程中
袋和液体的重心将( A )
A.逐渐升高
B.逐渐降低
C.先降低再升高
D.始终不变
巩固训练:
解得物块 A 能够上升的最大高度为:h′=h- 答案:(1) 2gh (2)mgh-μmgd (3)h-2μd
3.如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物 块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失, 为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上, 另一端恰位于坡道的底端O点,此时弹簧处于自然长度.已知在 OM段,物块A与水平面间的动摩擦因数为μ,其余各处的摩擦不计, 重力加速度为g. (1)求物块滑到O点时的速度大小; (2)求弹簧最大压缩量为d时的弹性势能 (设弹簧处于原长时弹性势能为零); (3)当弹簧的最大压缩量为d时,若物块A能够被弹回到坡道上,则 它能够上升的最大高度是多少.
变式:(3)滑块相对木板滑行的距离.
导学案3(讨论能量守恒与小试牛刀3): 能量守恒
1.内容 (1)能量既不会凭空_产__生____,也不会凭空消失,(2)它只能从 一种形式_转__化___为另一种形式,或者从一个物体_转__移___到别的物体, (3)在转化或转移的过程中,能量的总量_____保__持_.不变 2.表达式 ΔE减=_Δ__E_增__. 3.基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量 和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和 增加量一定相等.
自A点沿弧面由静止滑下,A点距离长木板上表面高度h=0.6 m.滑
块在木板上滑行t=1 s后,和木板一起以速度v=1 m/s做匀速运动,
取g=10 m/s2.求:
(1)滑块与木板间的摩擦力;
(2)滑块沿弧面下滑过程中克服摩擦力做的功;
变式:(3)滑块相对木板滑行的距离.
巩固训练:
2、如图所示,在光滑水平地面上放置质量M=2 kg的长木板,
木板上表面与固定的竖直弧形轨道相切.一质量m=1 kg的小滑块 自A点沿弧面由静止滑下,A点距离长木板上表面高度h=0.6 m.滑 块在木板上滑行t=1 s后,和木板一起以速度v=1 m/s做匀速运动, 取g=10 m/s2.求: (1)滑块与木板间的摩擦力; (2)滑块沿弧面下滑过程中克服摩擦力做的功;
欢迎各位专家、老师亲临指导
专题复习: 功能关系 能量守恒
课标:
1.知道功是能量转化的量度,掌握一些力的做功特点。 2.知道自然界中的能量转化,理解能量守恒定律,并能用 来分析和解决有关问题.
导学案1(讨论力的做功特点与小试牛刀1): 几种常见的功能关系
=动能 =重力势能 =弹性势能 =电势能 =机械能
导学案2(讨论摩擦力的做功特点与小试牛刀2):
摩擦力做功的特点:
1.静摩擦力做功的特点 (1)静摩擦力可以做_正__功,也可以做_负___功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于_零___. (3)静摩擦力做功时,只有机械能的相互转移,机械能不会转化 为内能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做_正__功,也可以做_负___功,还可以不做功.
固定:W=Flcosα,l:物体对地的位
固定
移,所以:W1<W2,
不固定
不固定:ΔE=Q=Ffl相对,l相对=LB,
所以:Q1=Q2.
巩固训练:
答案:(1)2N (2)1.5J
2、如图所示,在光滑水平地面上放置质量M=2 kg的长木板,
木板上表面与固定的竖直弧形轨道相切.一质量m=1 kg的小滑块