2017-2018学年高中数学人教A版选修4-5创新应用教学案:第二讲 第3节 反证法与放缩法
2017-2018学年高中数学选修4-5全册学案含解析人教A版115P

2017~2018学人教A版高中数学选修4-5全册学案解析版目录第一讲不等式和绝对值不等式一不等式1不等式的基本性质第一讲不等式和绝对值不等式一不等式2基本不等式第一讲不等式和绝对值不等式一不等式3三个正数的算术_几何平均不等式第一讲不等式和绝对值不等式二绝对值不等式1绝对值三角不等式第一讲不等式和绝对值不等式二绝对值不等式2绝对值不等式的解法第二讲证明不等式的基本方法一比较法第二讲证明不等式的基本方法三反证法与放缩法第二讲证明不等式的基本方法二综合法与分析法第三讲柯西不等式与排序不等式一二维形式的柯西不等式第三讲柯西不等式与排序不等式三排序不等式第三讲柯西不等式与排序不等式二一般形式的柯西不等式第四讲用数学归纳法证明不等式一数学归纳法第四讲用数学归纳法证明不等式二用数学归纳法证明不等式举例1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差与0的大小;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差与0的大小.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘一个数仍为等式,但不等式两边同乘同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N*).已知x ,y 均为正数,设m =x +y ,n =x +y ,试比较m 和n 的大小.两式作差――→变形 转化为因式乘积形式――→与0比较判断正负,得出大小 m -n =1x +1y -4x +y =x +y xy -4x +y =x +y 2-4xy xy x +y =x -y 2xy x +y ,∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2)=(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b 2≥0. 当且仅当a =b 时,等号成立, 所以a 4+b 4≥a 3b +ab 3.2.在数轴的正半轴上,A 点对应的实数为6a29+a 4,B 点对应的实数为1,试判断A 点在B 点的左边,还是在B 点的右边?解:因为6a 29+a 4-1=-a 2-29+a 4≤0,所以6a29+a4≤1.当且仅当a =±3时,等号成立,所以当a ≠±3时,A 点在B 点左边,当a =±3时,A 点与B 点重合.已知a >b >0,c <d <0,e <0.求证:ea -c >eb -d.可以作差比较,也可用不等式的性质直接证明. 法一:ea -c -eb -d=e b -d -a +c a -c b -d =e b -a +c -da -cb -d,∵a >b >0,c <d <0,∴b -a <0,c -d <0. ∴b -a +c -d <0.又∵a >0,c <0,∴a -c >0.同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴e b -a +c -d a -c b -d >0,即e a -c >e b -d.法二:⎭⎪⎬⎪⎫c <d <0⇒-c >-d >0a >b >0⇒⎭⎪⎬⎪⎫a -c >b -d >0⇒1a -c <1b -d e <0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y . 证明:左边-右边=(y -y 2)x 2+(y 2-1)x -y +1 =(1-y )=(1-y )(xy -1)(x -1).因为x ≥1,y ≥1,所以1-y ≤0,xy -1≥0,x -1≥0. 所以x 2y +xy 2+1≤x 2y 2+x +y .4.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b .证明:因为a ,b ,x ,y 都是正数,且1a >1b ,x >y ,所以x a >y b ,所以a x <by.故a x +1<b y +1,即x +a x <y +b y .所以x x +a >yy +b.(1)已知-2≤α≤β≤2,求α-β的取值范围.(2)已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.求代数式的范围应充分利用不等式的基本性质. (1)∵-π2≤α≤β≤π2,∴-π2≤α≤π2,-π2≤-β≤π2,且α≤β.∴-π≤α-β≤π且α-β≤0.∴-π≤α-β≤0.即α-β的取值范围为.(2)设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b . 解得λ1=53,λ2=-23.∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23.∴-113≤a +3b ≤1.即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1⇒⎩⎪⎨⎪⎧m =12,n =32.又∵1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12α+β,-3≤32α-β-32⇒-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.6.三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,求b a的取值范围.解:两个不等式同时除以a ,得⎩⎪⎨⎪⎧1≤b a +ca≤2,①b a ≤1+c a ≤2·ba ,②将②×(-1),得⎩⎪⎨⎪⎧1≤b a +ca≤2,-2·b a ≤-1-c a ≤-ba,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.即b a 的取值范围是⎣⎢⎡⎦⎥⎤23,32.课时跟踪检测(一)1.下列命题中不.正确的是( ) A .若3a >3b ,则a >b B .若a >b ,c >d ,则a -d >b -c C .若a >b >0,c >d >0,则a d >b cD .若a >b >0,ac >bd ,则c >d解析:选D 当a >b >0,ac >ad 时,c ,d 的大小关系不确定. 2.已知a >b >c ,则下列不等式正确的是( ) A .ac >bc B .ac 2>bc 2C .b (a -b )>c (a -b )D .|ac |>|bc |解析:选C a >b >c ⇒a -b >0⇒(a -b )b >(a -b )c . 3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确.4.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a -c >b -d ;④a (d -c )>b (d -c )中,成立的个数是( )A .1B .2C .3D .4解析:选C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.5.给出四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 能得出1a <1b成立的有________(填序号).解析:由1a <1b ,得1a -1b <0,b -a ab <0,故①②④可推得1a <1b成立.答案:①②④6.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是________.解析:由a >b >1,c <0,得1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a-c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:①②③7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________. 解析:设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y .∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ).∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152.由不等式同向可加性,得3<-12(x +y )+52(x -y )<8,即3<z <8.答案:(3,8)8.若a >0,b >0,求证:b 2a +a 2b≥a +b .证明:∵b 2a +a 2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =a -b 2a +b ab ,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴a -b2a +bab≥0.∴b 2a +a 2b≥a +b .9.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,a b的取值范围. 解:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19. ∵2<b <3,∴-3<-b <-2. 又∵-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤a b<4; ②当-6<a <0时,-3<a b<0. 综合①②得-3<a b<4.∴2a +b ,a -b ,a b的取值范围分别为(-10,19),(-9,6),(-3,4).10.已知a >0,a ≠1. (1)比较下列各式大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解:(1)由题意,知a >0,a ≠1,①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a .②a 3+1-(a 2+a )=a 2(a -1)-(a -1) =(a +1)(a -1)2>0,∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2)=a 3(a 2-1)-(a 2-1)=(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1,∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1,∴(a2-1)(a3-1)>0,即a5+1>a3+a2.(2)根据(1)可得a m+n+1>a m+a n.证明如下:a m+n+1-(a m+a n)=a m(a n-1)+(1-a n)=(a m-1)(a n-1).当a>1时,a m>1,a n>1,∴(a m-1)(a n-1)>0.当0<a<1时,0<a m<1,0<a n<1,∴(a m-1)(a n-1)>0.综上可知(a m-1)(a n-1)>0,即a m+n+1>a m+a n.2.基本不等式1.基本不等式的理解重要不等式a 2+b 2≥2ab 和基本不等式a +b2≥ab ,成立的条件是不同的.前者成立的条件是 a 与b 都为实数,并且a 与b 都为实数是不等式成立的充要条件;而后者成立的条件是a 与b 都为正实数,并且a 与b 都为正实数是不等式成立的充分不必要条件,如a =0,b ≥0仍然能使a +b2≥ab 成立.两个不等式中等号成立的充要条件都是a =b . 2.由基本不等式可推出以下几种常见的变形形式 (1)a 2+b 2≥a +b22;(2)ab ≤a 2+b 22;(3)ab ≤⎝⎛⎭⎪⎫a +b 22;(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22; (5)(a +b )2≥4ab .已知a ,+求证:1a +1b +1c≥9.解答本题可先利用1进行代换,再用基本不等式来证明. 法一:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +bc=3+⎝⎛⎭⎪⎫b a +ab +⎝⎛⎭⎪⎫c a +ac +⎝⎛⎭⎪⎫c b +bc≥3+2+2+2=9,当且仅当a =b =c 时,等号成立. 即1a +1b +1c≥9.法二:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c=(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=1+b a +c a +a b +1+c b +a c +b c+1=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c 时,等号成立. ∴1a +1b +1c≥9.用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式进行证明.1.已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.证明:因为x 1,x 2,x 3为正实数,所以x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2,当且仅当x 1=x 2=x 3时,等号成立.所以x 22x 1+x 23x 2+x 21x 3≥1.2.已知a ,b ,c >0,求证:a 2b +b 2c +c 2a ≥a +b +c .证明:∵a ,b ,c ,a 2b ,b 2c ,c 2a 均大于0,又a 2b+b ≥2 a 2b ·b =2a ,b 2c+c ≥2 b 2c ·c =2b ,c 2a +a ≥2 c 2a·a =2c , ∴⎝ ⎛⎭⎪⎫a 2b +b +⎝ ⎛⎭⎪⎫b 2c +c +⎝ ⎛⎭⎪⎫c 2a +a ≥2(a +b +c ). 即a 2b +b 2c +c 2a≥a +b +c .当且仅当a 2b =b ,b 2c =c ,c 2a=a ,即a =b =c 时,等号成立.(1)求当x >0时,f (x )=x 2+1的值域; (2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.根据题设条件,合理变形,创造能用基本不等式的条件,求最值. (1)∵x >0,∴f (x )=2x x 2+1=2x +1x. ∵x +1x ≥2,∴0<1x +1x≤12.∴0<f (x )≤1,当且仅当x =1时,等号成立.即f (x )=2xx 2+1的值域为(0,1]. (2)∵0<x <32,∴3-2x >0.∴y =4x (3-2x )=2≤2⎣⎢⎡⎦⎥⎤2x +-2x 22=92.当且仅当2x =3-2x ,即x =34时,等号成立.∴y =4x (3-2x )的最大值为92.(3)∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y+10≥6+10=16.当且仅当y x =9x y ,又1x +9y=1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,x +y 的最小值为16.在应用基本不等式求最值时, 分以下三步进行:(1)首先看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值; (2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正;(3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决.3.已知x >0,y >0且5x +7y =20,求xy 的最大值. 解:xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135×⎝ ⎛⎭⎪⎫2022=207.当且仅当5x =7y =10,即x =2,y =107时,等号成立,所以xy 的最大值为207.4.若正数a ,b 满足ab =a +b +3,(1)求ab 的取值范围;(2)求a +b 的取值范围. 解:(1)∵a ,b ∈R +,∴ab =a +b +3≥2ab +3. 令y =ab ,得y 2-2y -3≥0,∴y ≥3或y ≤-1(舍去). ∴ab =y 2≥9.∴ab 的取值范围是 =17·1+3b +23a +2+a +3b +2+4≥17·⎣⎢⎡⎦⎥⎤5+2 3b +23a +2·a +3b +2=97, 当且仅当3b +23a +2=a +3b +2,即a =19,b =89时取等号.所以13a +2+43b +2的最小值为97.促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件,已知2017年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完.(1)将2017年的利润y (万元)表示为促销费t (万元)的函数; (2)该企业2017年的促销费投入多少万元时,企业的年利润最大?(1)两个基本关系式是解答关键,即利润=销售收入-生产成本-促销费;生产成本=固定费用+生产费用;(2)表示出题中的所有已知量和未知量,利用它们之间的关系式列出函数表达式. (1)由题意可设3-x =kt +1,将t =0,x =1代入,得k =2.∴x =3-2t +1. 当年生产x 万件时,∵年生产成本=年生产费用+固定费用, ∴年生产成本为32x +3=32⎝⎛⎭⎪⎫3-2t +1+3. 当销售x 万件时,年销售收入为150%⎣⎢⎡⎦⎥⎤32⎝⎛⎭⎪⎫3-2t +1+3+12t . 由题意,生产x 万件化妆品正好销完,由年利润=年销售收入-年生产成本-促销费,得年利润y =-t 2+98t +35t +(t ≥0).(2)y =-t 2+98t +35t +=50-⎝ ⎛⎭⎪⎫t +12+32t +1 ≤50-2 t +12×32t +1=50-216=42, 当且仅当t +12=32t +1,即t =7时,等号成立,y max =42, ∴该企业2015年的促销费投入7万元时,企业的年利润最大.利用不等式解决实际应用问题时,首先要仔细阅读题目,弄清要解决的实际问题,确定是求什么量的最值;其次,分析题目中给出的条件,建立y 的函数表达式y =f (x )(x 一般为题目中最后所要求的量);最后,利用不等式的有关知识解题.求解过程中要注意实际问题对变量x 的范围制约.6.一商店经销某种货物,根据销售情况,年进货量为5万件,分若干次等量进货(设每次进货x 件),每进一次货运费为50元,且在销售完该次所进货物时,立即进货,现以年平均x2件货储存在仓库里,库存费以每件20元计算,要使一年的运费和库存费最省,每次进货量x 应是多少?解:设一年的运费和库存费共y 元,由题意,知y =50 000x ×50+x 2×20=25×105x +10x ≥2 25×106=104,当且仅当25×105x=10x 即x =500时,等号成立,y min =10 000,即每次进货500件时,一年的运费和库存费最省.7.某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,为676 m 2.课时跟踪检测(二)1.下列不等式中,正确的个数是( ) ①若a ,b ∈R ,则a +b2≥ab ; ②若x ∈R ,则x 2+2+1x 2+2≥2; ③若x ∈R ,则x 2+1+1x 2+1≥2; ④若a ,b 为正实数,则a +b2≥ab .A .0B .1C .2D .3解析:选C 显然①不正确,③正确;虽然x 2+2=1x 2+2无解,但x 2+2+1x 2+2>2成立,故②正确;④不正确,如a =1,b =4.2.已知a >0,b >0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值是( )A .3B .4C .5D .6解析:选C ∵a +b =2×12=1,a >0,b >0,∴α+β=a +1a +b +1b =1+1ab≥1+1⎝ ⎛⎭⎪⎫a +b 22=5,当且仅当a =b =12时,等号成立.3.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8解析:选B (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9恒成立,所以a ≥4,故选B.4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设底面矩形的长和宽分别为a m ,b m ,则ab =4.容器的总造价为20ab +2(a +b )×10=80+20(a +b )≥80+40ab =160(元)(当且仅当a =b =2时,等号成立).5.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 解析:∵x >0,a >0, ∴f (x )=4x +a x≥24x ·a x =4a ,当且仅当4x =a x时等号成立,此时a =4x 2,由已知x =3时函数取得最小值,∴a =4×9=36. 答案:366.若log 2x +log 2y =4,则x +y 的最小值是________. 解析:由题意知x >0,y >0,log 2xy =4,得xy =4, ∴x +y ≥2xy =4(当且仅当x =y 时,等号成立).答案:47.y =3+x +x 2x +1(x >0)的最小值是________.解析:∵x >0,∴y =3+x +x 2x +1=3x +1+x +1-1≥23-1.当且仅当x +1=3时,等号成立. 答案:23-18.已知a ,b 是正数,求证: (1)a 2+b 22≥a +b2; (2)ab ≥21a +1b. 证明:(1)左边= a 2+b 2+a 2+b 24≥a 2+b 2+2ab4=a +b24=a +b2=右边,原不等式成立.(2)右边=21a +1b≤221ab=ab =左边,原不等式成立.9.设x >0,y >0且x +y =4,要使不等式1x +4y≥m 恒成立,求实数m 的取值范围.解:由x >0,y >0且x +y =4,得x +y4=1,∴1x +4y =x +y 4·⎝ ⎛⎭⎪⎫1x +4y =14⎝ ⎛⎭⎪⎫1+y x +4x y +4=14⎝ ⎛⎭⎪⎫5+y x +4x y≥14⎝⎛⎭⎪⎫5+2y x ·4x y =94. 当且仅当y x =4xy时,等号成立. 即y =2x (∵x >0,y >0,∴y =-2x 舍去). 此时,结合x +y =4,解得x =43,y =83.∴1x +4y 的最小值为94,∴m ≤94, ∴m 的取值范围为⎝⎛⎦⎥⎤-∞,94.10.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程.(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中飞行物, 即存在k >0,使3.2=ka -120(1+k 2)a 2成立, 即关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇒Δ=(-20a )2-4a 2(a 2+64)≥0⇒a ≤6.所以当a 不超过6(千米)时,可击中飞行物.3.三个正数的算术—几何平均不等式1.定理3如果a ,b ,c ∈R +,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立,用文字语言可叙述为:三个正数的算术平均不小于它们的几何平均.(1)不等式a +b +c3≥3abc 成立的条件是:a ,b ,c 均为正数,而等号成立的条件是:当且仅当a =b =c .(2)定理3可变形为:①abc ≤⎝⎛⎭⎪⎫a +b +c 33;②a 3+b 3+c 3≥3abc .(3)三个及三个以上正数的算术-几何平均不等式的应用条件与前面基本不等式的应用条件是一样的,即“一正、二定、三相等”.2.定理3的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.已知a ,b +b +c -a a +c +a -b b +a +b -cc≥3. 欲证不等式的右边为常数3,联想到不等式a +b +c ≥33abc (a ,b ,c ∈R +),故将所证不等式的左边进行恰当的变形.b +c -a a +c +a -b b +a +b -cc =⎝⎛⎭⎪⎫b a +c b +ac +⎝⎛⎭⎪⎫c a +a b +bc -3 ≥33b a ·c b ·a c +33c a ·a b ·b c-3=6-3=3.当且仅当a =b =c 时,等号成立.(1)不等式的证明方法较多,关键是从式子的结构入手进行分析.(2)运用三个正数的平均不等式证明不等式时,仍要注意“一正、二定、三相等”,在解题中,若两次用平均值不等式,则只有在“相等”条件相同时,才能取到等号.1.已知x >0,y >0,求证:(1+x +y 2)(1+x 2+y )≥9xy . 证明:因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .2.已知a 1,a 2,…,a n 都是正数,且a 1a 2…a n =1,求证:(2+a 1)(2+a 2)…(2+a n )≥3n. 证明:∵a 1是正数,根据三个正数的平均不等式,有2+a 1=1+1+a 1≥33a 1. 同理2+a j ≥3 3a j (j =2,3,…,n ).将上述各不等式的两边分别相乘即得(2+a 1)(2+a 2) (2)a n )≥(33a 1)(33a 2)…(33a n )=3n ·3a 1a 2…a n .∵a 1a 2…a n =1,∴(2+a 1)(2+a 2)…(2+a n )≥3n. 当且仅当a 1=a 2=…=a n =1时,等号成立.(1)求函数y =(x -1)2(3-2x )⎝ ⎛⎭⎪⎫1<x <2的最大值.(2)求函数y =x +4x -2(x >1)的最小值.对于积的形式求最大值,应构造和为定值. (2)对于和的形式求最小值,应构造积为定值. (1)∵1<x <32,∴3-2x >0,x -1>0.y =(x -1)2(3-2x )=(x -1)(x -1)(3-2x )≤⎝⎛⎭⎪⎫x -1+x -1+3-2x 33=⎝ ⎛⎭⎪⎫133=127,当且仅当x -1=x -1=3-2x ,即x =43∈⎝ ⎛⎭⎪⎫1,32时,y max =127.(2)∵x >1,∴x -1>0,y =x +4x -2=12(x -1)+12(x -1)+4x -2+1≥3312x -12x -4x -2+1=4,当且仅当12(x -1)=12(x -1)=4x -2,即x =3时,等号成立.即y min =4.(1)利用三个正数的算术-几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用平均不等式定理,要注意三个条件即“一正、二定、三相等”同时具备时,方可取得最值,其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如配系数、拆项、分离常数、平方变形等.3.设x >0,则f (x )=4-x -12x2的最大值为( ) A .4-22B .4- 2C .不存在 D.52解析:选D ∵x >0,∴f (x )=4-x -12x 2=4-⎝ ⎛⎭⎪⎫x 2+x 2+12x 2≤4-33x 2·x 2·12x 2=4-32=52. 4.已知x ,y ∈R +且x 2y =4,试求x +y 的最小值及达到最小值时x ,y 的值. 解:∵x ,y ∈R +且x 2y =4,∴x +y =12x +12x +y ≥3314x 2y =3314×4=3.当且仅当x 2=x2=y 时,等号成立. 又∵x 2y =4,∴当x =2,y =1时,x +y 取最小值3.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比,即E =k sin θr2.这里k 是一个和灯光强度有关的常数,那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?根据题设条件建立r 与θ的关系式→将它代入E =k sin θr2→得到以θ为自变量,E 为因变量的函数关系式 →用平均不等式求函数的最值→获得问题的解 ∵r =2cos θ,∴E =k ·sin θcos 2θ4⎝⎛⎭⎪⎫0<θ<π2.∴E2=k 216·sin 2θ·cos 4θ=k 232·(2sin 2θ)·cos 2θ·cos 2θ≤k 232·⎝ ⎛⎭⎪⎫2sin 2θ+cos 2θ+cos 2θ33=k 2108. 当且仅当2sin 2θ=cos 2θ时取等号, 即tan 2θ=12,tan θ=22.∴h =2tan θ= 2.即h =2时,E 最大.本题获解的关键是在获得了E =k ·sin θcos 2θ4后,对E 的表达式进行变形求得E 的最大值.解应用题时必须先读懂题意,建立适当的函数关系式,若把问题转化为求函数的最值问题,常配凑成可以用平均不等式的形式,若符合条件“一正、二定、三相等”即可求解.5.已知长方体的表面积为定值S ,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.解:设长方体的体积为V ,长、宽、高分别是a ,b ,c , 则V =abc ,S =2ab +2bc +2ac .V 2=(abc )2=(ab )(bc )(ac )≤⎝ ⎛⎭⎪⎫ab +bc +ac 33=⎝ ⎛⎭⎪⎫S 63=S 3216.当且仅当ab =bc =ac ,即a =b =c 时,上式取等号,V 2取最小值S 3216.由⎩⎪⎨⎪⎧a =b =c ,2ab +2bc +2ac =S ,解得a =b =c =6S6.即当这个长方体的长、宽、高都等于6S 6时,体积最大,最大值为S 6S 36. 课时跟踪检测(三)1.已知x 为正数,下列各题求得的最值正确的是( ) A .y =x 2+2x +4x3≥33x 2·2x ·4x3=6,∴y min =6.B .y =2+x +1x ≥332·x ·1x=332,∴y min =332.C .y =2+x +1x≥4,∴y min =4. D .y =x (1-x )(1-2x ) ≤13⎣⎢⎡⎦⎥⎤3x +-x +-2x 33=881, ∴y max =881.解析:选C A 、B 、D 在使用不等式a +b +c ≥33abc (a ,b ,c ∈R +)和abc ≤⎝ ⎛⎭⎪⎫a +b +c 33(a ,b ,c ∈R +)都不能保证等号成立,最值取不到.C 中,∵x >0,∴y =2+x +1x=2+⎝ ⎛⎭⎪⎫x +1x ≥2+2=4,当且仅当x =1x,即x =1时,等号成立.2.已知a ,b ,c 为正数,则a b +b c +c a有( ) A .最小值3B .最大值3C .最小值2D .最大值2解析:选A a b +b c +ca ≥33ab ×bc ×c a =3,当且仅当a b =b c =c a,即a =b =c 时,等号成立. 3.若log x y =-2,则x +y 的最小值是( )A.3322B.833C.332D.223解析:选A 由log x y =-2,得y =1x 2.而x +y =x +1x2=x 2+x 2+1x 2≥33x 2·x 2·1x 2=3314=3322,当且仅当x 2=1x2,即x =32时,等号成立. 4.已知圆柱的轴截面周长为6,体积为V ,则下列不等式总成立的是( ) A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π解析:选B 设圆柱底面半径为r ,则圆柱的高h =6-4r 2,所以圆柱的体积为V =πr 2·h=πr 2·6-4r 2=πr 2(3-2r )≤π⎝ ⎛⎭⎪⎫r +r +3-2r 33=π. 当且仅当r =3-2r ,即r =1时,等号成立. 5.若a >2,b >3,则a +b +1a -b -的最小值为________.解析:∵a >2,b >3,∴a -2>0,b -3>0, 则a +b +1a -b -=(a -2)+(b -3)+1a -b -+5 ≥33a -b -1a -b -+5=8.当且仅当a -2=b -3=1a -b -,即a =3,b =4时,等号成立.答案:86.设0<x <1,则x (1-x )2的最大值为 ________. 解析:∵0<x <1,∴1-x >0.故x (1-x )2=12×2x (1-x )(1-x )≤12⎣⎢⎡⎦⎥⎤2x +-x ++x 33=12×827=427(当且仅当x =13时,等号成立). 答案:4277.已知关于x 的不等式2x +1x -a2≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:2x +1x -a=(x -a )+(x -a )+1x -a+2a .∵x -a >0, ∴2x +1x -a2≥33x -a x -a1x -a2+2a =3+2a ,当且仅当x -a =1x -a2即x =a +1时,等号成立.∴2x +1x -a2的最小值为3+2a .由题意可得3+2a ≥7,得a ≥2. 答案:28.设a ,b ,c ∈R +,求证: (a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.证明:∵a ,b ,c ∈R +,∴2(a +b +c )=(a +b )+(b +c )+(c +a )≥33a +b b +c c +a >0.1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c >0, ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.9.已知正数a ,b ,c 满足abc =1,求(a +2)(b +2)·(c +2)的最小值. 解:因为(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1) ≥3·3a ·3·3b ·3·3c =27·3abc =27, 当且仅当a =b =c =1时,等号成立. 所以(a +2)(b +2)(c +2)的最小值为27.10.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明:法一:因为a ,b ,c 均为正数,由平均值不等式,得a 2+b 2+c 2≥3(abc )23,①1a +1b +1c ≥3(abc )-13, 所以⎝ ⎛⎭⎪⎫1a +1b +1c 2≥9(abc )-23.②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥3(abc )23+9(abc )-23.又3(abc )23+9(abc )-23≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立. 当且仅当3(abc )23=9(abc )-23时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.法二:因为a ,b ,c 均为正数,由基本不等式,得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,所以a 2+b 2+c 2≥ab +bc +ac ,① 同理1a 2+1b 2+1c 2≥1ab +1bc +1ac,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥ab +bc +ac +3ab +3bc +3ac≥63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立;当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立,即当且仅当a =b =c =314时,原式等号成立.1.绝对值三角不等式绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .①当a 与b 不共线时,有|a +b|<|a |+|b |,其几何意义为:三角形的两边之和大于第三边.②若a ,b 共线,当a 与b 同向时,|a +b |=|a |+|b |,当a 与b 反向时,|a +b |<|a |+|b |.由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式. ③定理1的推广:如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |. (2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |. 当且仅当(a -b )(b -c )≥0时,等号成立.几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C , 当点B 在点A ,C 之间时,|a -c |=|a -b |+|b -c |.当点B 不在点A ,C 之间时:①点B 在点A 或点C 上时,|a -c |=|a -b |+|b -c |; ②点B 不在点A ,C 上时,|a -c |<|a -b |+|b -c |. 应用:利用该定理可以确定绝对值函数的值域和最值.已知|A -a |<3,|B -b |<3,|C -c |<3.求证:|(A +B +C )-(a +b +c )|<s .原式――→变形 重新分组――→定理 转化为|A -a |+|B -b |+|C -c |―→得出结论 |(A +B +C )-(a +b +c )| =|(A -a )+(B -b )+(C -c )| ≤|(A -a )+(B -b )|+|C -c | ≤|A -a |+|B -b |+|C -c |.因为|A -a |<s 3,|B -b |<s 3,|C -c |<s3,所以|A -a |+|B -b |+|C -c |<s 3+s 3+s3=s .所以|(A +B +C )-(a +b +c )|<s .含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用绝对值三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.1.设a ,b 是满足ab <0的实数,则下列不等式中正确的是( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b ||D .|a -b |<|a |+|b |解析:选B ∵ab <0且|a -b |2=a 2+b 2-2ab , ∴(a +b )2=a 2+b 2+2ab <|a -b |2. ∴(|a |+|b |)2=a 2+b 2+2|ab |=|a -b |2. 故A 、D 不正确;B 正确; 又由定理1的推广知C 不正确. 2.设ε>0,|x -a |<ε4,|y -a |<ε6.求证:|2x +3y -2a -3b |<ε.证明:|2x +3y -2a -3b |=|2(x -a )+3(y -b )|≤|2(x -a )|+|3(y -b )|=2|x -a |+3|y -b |<2×ε4+3×ε6=ε.(1)(2)设a ∈R ,函数f (x )=ax 2+x -a (-1≤x ≤1).若|a |≤1,求|f (x )|的最大值. 利用绝对值三角不等式或函数思想方法可求解. (1)法一:||x -3|-|x +1||≤|(x -3)-(x +1)|=4, ∴-4≤|x -3|-|x +1|≤4. ∴y max =4,y min =-4. 法二:把函数看作分段函数.y =|x -3|-|x +1|=⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4. ∴y max =4,y min =-4. (2)∵|x |≤1,|a |≤1,∴|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x | =|a ||x 2-1|+|x |≤|x 2-1|+|x | =1-|x 2|+|x |=-|x |2+|x |+1 =-⎝⎛⎭⎪⎫|x |-122+54≤54.∴|x |=12时,|f (x )|取得最大值54.(1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.3.(江西高考)x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.解析:|x |+|x -1|≥|x -(x -1)|=1,|y |+|y -1|≥|y -(y -1)|=1, 所以|x |+|y |+|x -1|+|y -1|≥2,当且仅当x ∈,y ∈时,|x |+|y |+|x -1|+|y -1|取得最小值2, 而已知|x |+|y |+|x -1|+|y -1|≤2, 所以|x |+|y |+|x -1|+|y -1|=2, 此时x ∈,y ∈,所以x +y ∈. 答案:4.求函数f (x )=|x -1|+|x +1|的最小值.解:∵|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2,当且仅当(1-x )(1+x )≥0,即-1≤x ≤1时取等号.∴当-1≤x ≤1时,函数f (x )=|x -1|+|x +1|取得最小值2. 5.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围. 解:由题意知a <|x +1|-|x -2|对任意实数恒成立,∴a<min.∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,∴-3≤|x+1|-|x-2|≤3.∴min=-3.∴a<-3.即a的取值范围为(-∞,-3).课时跟踪检测(四)1.对于|a|-|b|≤|a+b|≤|a|+|b|,下列结论正确的是( )A.当a,b异号时,左边等号成立B.当a,b同号时,右边等号成立C.当a+b=0时,两边等号均成立D.当a+b>0时,右边等号成立;当a+b<0时,左边等号成立解析:选B 当a,b异号且|a|>|b|时左边等号才成立,A不正确,显然B正确;当a +b=0时,右边等号不成立,C不正确,D显然不正确.2.不等式|a+b||a|+|b|<1成立的充要条件是( )A.a,b都不为零B.ab<0C.ab为非负数D.a,b中至少有一个不为零解析:选B 原不等式即为|a+b|<|a|+|b|⇔a2+b2+2ab<a2+b2+2|ab|⇔ab<0. 3.已知a,b,c∈R,且a>b>c,则有( )A.|a|>|b|>|c| B.|ab|>|bc|C.|a+b|>|b+c| D.|a-c|>|a-b|解析:选D ∵a,b,c∈R,且a>b>c,令a=2,b=1,c=-6.∴|a|=2,|b|=1,|c|=6,|b|<|a|<|c|,故排除A.又|ab|=2,|bc|=6,|ab|<|bc|,故排除B.又|a+b|=3,|b+c|=5,|a+b|<|b+c|,排除C.而|a-c|=|2-(-6)|=8,|a-b|=1,∴|a-c|>|a-b|.4.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( )A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不可能比较大小解析:选B 当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2.当(a +b )(a -b )<0时,|a +b |+|a -b |=|(a +b )-(a -b )|=2|b |<2. 5.不等式|x -1|-|x -2|<a 恒成立,则a 的取值范围为________. 解析:若使不等式|x -1|-|x -2|<a 恒成立,只需a >(|x -1|-|x -2|)max . 因为|x -1|-|x -2|≤|x -1-(x -2)|=1, 故a >1.故a 的取值范围为(1,+∞). 答案:(1,+∞)6.设a ,b ∈R ,|a -b |>2,则关于实数x 的不等式|x -a |+|x -b |>2的解集是________. 解析:∵|x -a |+|x -b |=|a -x |+|x -b |≥|(a -x )+(x -b )|=|a -b |>2, ∴|x -a |+|x -b |>2对x ∈R 恒成立,故解集为(-∞,+∞). 答案:(-∞,+∞) 7.下列四个不等式: ①log x 10+lg x ≥2(x >1); ②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0); ④|x -1|+|x -2|≥1.其中恒成立的是______(把你认为正确的序号都填上). 解析:log x 10+lg x =1lg x +lg x ≥2,①正确;ab ≤0时,|a -b |=|a |+|b |,②不正确;∵ab ≠0时,b a 与a b同号,∴⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知|x -1|+|x -2|≥1恒成立,④正确. 综上可知①③④正确. 答案:①③④8.已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:|x +5y |=|3(x +y )-2(x -y )|. 由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1,即|x +5y |≤1.9.设f (x )=x 2-x +b ,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1). 证明:∵f (x )-f (a )=x 2-x -a 2+a =(x -a )(x +a -1), |f (x )-f (a )|=|(x -a )(x +a -1)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|≤|x-a|+|2a-1|≤|x-a|+2|a|+1<2|a|+2=2(|a|+1),∴|f(x)-f(a)|<2(|a|+1).10.设函数y=|x-4|+|x-3|.求:(1)y的最小值;(2)使y<a有解的a的取值范围;(3)使y≥a恒成立的a的最大值.解:(1)y=|x-4|+|x-3|=|x-4|+|3-x|≥|(x-4)+(3-x)|=1,∴y min=1.(2)由(1)知y≥1,要使y<a有解,∴a>1,即a的取值范围为(1,+∞).(3)要使y≥a恒成立,只要y的最小值1≥a即可,∴a max=1.。
高中数学人教A版选修4-5创新应用教学案:第二讲章末小结与测评

比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.若x ,y ,z ∈R ,a >0,b >0,c >0,求证: b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx ). [证明] ∵b +c a x 2+c +a b y 2+a +b c z 2-2(xy +yz +zx )=⎝⎛⎭⎫b a x 2+a b y 2-2xy +⎝⎛⎭⎫c b y 2+b c z 2-2yz +(a c z 2+ca x 2-2zx )=⎝⎛⎭⎫ b ax -a b y 2+(c by - b c z )2+⎝⎛⎭⎫ acz -c a x 2≥0.∴b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx )成立.综合法证明不等式的思维方向是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设f (x )=3ax 2+2bx +c ,若a +b +c =0,f (0)f (1)>0,求证: (1)方程f (x )=0有实根; (2)-2<ba<-1;(3)设x 1,x 2是方程f (x )=0的两个实根, 则33≤|x 1-x 2|<23. [证明] (1)当a =0时,b =-c ,f (0)·f (1)=c (3a +2b +c )=-c 2≤0,与已知矛盾, 所以a ≠0.方程3ax 2+2bx +c =0的判别式Δ=4(b 2-3ac ), 由a +b +c =0,消去b ,得Δ=4(a 2+c 2-ac ) =4[⎝⎛⎭⎫a -12c 2+34c 2]>0. 故方程f (x )=0有实根.(2)由f (0)·f (1)>0,得c (3a +2b +c )>0. 由a +b +c =0,消去c 得(a +b )(2a +b )<0. 因为a 2>0,所以⎝⎛⎭⎫1+b a ⎝⎛⎭⎫2+ba <0. 故-2<ba<-1.(3)由已知得,x 1+x 2=-2b 3a ,x 1x 2=c3a =-a +b 3a ,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=49⎝⎛⎭⎫b a +322+13.因为-2<b a <-1,所以13≤(x 1-x 2)2<49.故33≤|x 1-x 2|<23.分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >0,b >0,且a +b =1,求证: a +12+b +12≤2. [证明] 要证 a +12+ b +12≤2,只要证⎝⎛⎭⎫a +12+b +122≤4, 即证a +b +1+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4. 只要证:⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤1. 也就是要证:ab +12(a +b )+14≤1,即证ab ≤14.∵a >0,b >0,a +b =1.∴1=a +b ≥2ab , ∴ab ≤14,即上式成立.故a +12+ b +12≤2.(1)反证法:先假设要证明的结论是不正确的,然后利用公理、已有的定义、定理、命题的条件逐步分析,得到和命题的条件(已有的定义、定理、公理等)矛盾的结论,以此说明假设的结论不成立,从而原来的命题结论正确.(2)放缩法:将需要证明的不等式的值适当地放大(或缩小),使不等式由繁化简,达到证明的目的.若a ,b ,c 为直角三角形三边,c 为斜边.求证:a 3+b 3<c 3. [证明] 假设a 3+b 3≥c 3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3≥1.①∵a ,b ,c 为直角三角形的三边且c 为斜边,∴a 2+b 2=c 2,a c ∈(0,1),b c∈(0,1),∴⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2=1,∴⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<1.②①与②矛盾.∴假设不成立.∴a 3+b 3<c 3.求证:1+11+11×2+11×2×3+…+11×2×3×…×n <3.[证明] 由11×2×3×…×k <11·2·2·…·2=12k -1(k 是大于2的自然数),得1+11+11×2+11×2×3+…+11×2×3×…×n <1+1+12+122+123+…+12n -1=1+1-12n1-12=3-12n -1<3.一、选择题1.证明命题:“f (x )=e x +1e x 在(0,+∞)上是增函数”,现给出的证法如下:因为f (x )=e x +1e x ,所以f ′(x )=e x -1e x .因为x >0,所以e x >1,0<1e x <1,所以e x -1ex >0,即f ′(x )>0.所以f (x )在(0,+∞)上是增函数,使用的证明方法是( ) A .综合法 B .分析法 C .反证法 D .以上都不是解析:选A 上述证明过程是从已知条件出发,经过推理论证得到结论,用了综合法. 2.已知x 1>0,x 1≠1且x n +1=x n (x 2n +3)3x 2n +1(n =1,2,…).试证:数列{x n }或者对任意正整数n 都满足x n <x n +1,或者对任意的正整数n 都满足x n >x n +1.当此题用反证法否定结论时,应为( )A .对任意的正整数n ,有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n -1且x n ≥x n +1D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0解析:选B “x n <x n +1或x n >x n +1”的对立面是“x n =x n +1”,“任意一个”的反面是“存在某一个”.3.若a >0,b >0,则p =a a b b ,q =a b b a 的大小关系是( ) A .p ≥q B .p ≤q C .p >q D .p <q 解析:选A p q =a a b b a b ba =⎝⎛⎭⎫ab a -b .当a >b >0时,a b >1,a -b >0,则⎝⎛⎭⎫a b a -b >1,p >q .当0<a <b 时,0<a b <1,a -b <0,则⎝⎛⎭⎫a b a -b >1,p >q .当a =b >0时,⎝⎛⎭⎫a b a -b=1,p =q ,综上可知p ≥q .4.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >a b 2 B.a b 2>a b >aC.a b >a b 2>aD.a b >a >a b2 解析:选C 本题中的四个选项,实际是在比较三个数的大小,可以认为是先比较1b ,1b 2,1的大小,再比较a b ,a b 2,a 的大小.又因为a <0,所以又可认为是在比较-1b ,-1b 2,-1的大小.因为b <-1,所以1>1b 2>1b .也可以令a =-1,b =-2,分别代入A 、B 、C 、D 中,知A 、B 、D 均错.二、填空题5.设α、β为锐角,且M =sin(α+β),N =sin α+sin β,则M 、N 的大小关系是________. 解析:sin(α+β)=sin αcos β+cos αsin β<sin α+sin β. 答案:M <N6.设a >0,b >0,M =a +b a +b +2,N =a a +2+b b +2,则M 与N 的大小关系是________.解析:∵a >0,b >0,∴N =a a +2+b b +2>a a +b +2+ba +b +2=a +b a +b +2=M .∴M <N . 答案:M <N7.若c >a >b >0,比较大小:a c -a ________bc -b .(填“>”“=”或“<”)解析:∵c >a >b >0,∴c -b >c -a >0,∴1c -a >1c -b >0,又∵a >b >0,∴a c -a >bc -b .答案:>8.如果a a +b b >a b +b a ,则实数a ,b 应该满足的条件是________. 解析:a a +b b >a b +b a ⇒a (a -b )-b (a -b )>0 ⇒(a -b )2(a +b )>0 a ≥0,b ≥0且a ≠b . 答案:a ≥0,b ≥0,a ≠b 三、解答题9.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2. 证明:3a 3+2b 3-(3a 2b +2ab 2) =3a 2(a -b )+2b 2(b -a ) =(3a 2-2b 2)(a -b ).因为a ≥b >0,所以a -b ≥0,3a 2-2b 2>0, 从而(3a 2-2b 2)(a -b )≥0. 故3a 3+2b 3≥3a 2b +2ab 2成立.10.已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1, 求证:|ac +bd |≤1.证明:法一(综合法):因为a ,b ,c ,d 都是实数, 所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 法二(比较法):显然有 |ac +bd |≤1⇔-1≤ac +bd ≤1. 先证明ac +bd ≥-1.∵ac +bd -(-1)=ac +bd +12+12=ac +bd +a 2+b 22+c 2+d 22=(a +c )2+(b +d )22≥0.∴ac +bd ≥-1.再证明ac +bd ≤1. ∵1-(ac +bd )=12+12-(ac +bd )=a 2+b 22+c 2+d 22-ac -bd =(a -c )2+(b -d )22≥0,∴ac +bd ≤1.综上得|ac +bd |≤1. 法三(分析法):要证|ac +bd |≤1, 只需证明(ac +bd )2≤1.即只需证明a 2c 2+2abcd +b 2d 2≤1.① 由于a 2+b 2=1,c 2+d 2=1,因此①式等价于 a 2c 2+2abcd +b 2d 2≤(a 2+b 2)(c 2+d 2),② 将②式展开、化简,得(ad -bc )2≥0.③因为a ,b ,c ,d 都是实数,所以③式成立,即①式成立. 原命题得证.11.已知a 、b 、c 为三角形的三条边,求证:以a 1+a ,b 1+b ,c 1+c 为边也可以构成一个三角形.证明:(放缩法)设f (x )=x1+x ,x ∈(0,+∞),设0<x 1<x 2,则f (x 2)-f (x 1) =x 21+x 2-x 11+x 1=x 2-x 1(1+x 1)(1+x 2)>0, 故f (x )在(0,+∞)上为增函数.∵a 、b 、c 为三角形的三条边,于是a +b >c , ∴c 1+c <a +b 1+(a +b )=a 1+a +b +b 1+a +b<a 1+a +b 1+b ,即c 1+c <a 1+a +b 1+b, 同理:b 1+b <a 1+a +c 1+c ,a 1+a <b 1+b +c1+c. ∴以a 1+a ,b 1+b ,c 1+c为边可以构成一个三角形.(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,共50分)1.设a =lg 2+lg 5,b =e x (x <0),则a 与b 的大小关系是 ( ) A .a <b B .a >b C .a =b D .a ≤b解析:选B ∵a =lg 2+lg 5=1,b =e x (x <0),故b <1,∴a >b . 2.若a >b ,则下列不等式正确的是( ) A.1a <1bB .a 3>b 3C .a 2>b 2D .a >|b |解析:选B 若a =1,b =-3,则1a >1b ,a 2<b 2,a <|b |,知A 、C 、D 错误;函数f (x )=x 3,f ′(x )=3x 2≥0,函数f (x )=x 3为增函数,若a >b ,则a 3>b 3.3.已知a =2-5,b =5-2,c =5-25,那么有( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b解析:选A ∵a -b =(2-5)-(5-2)=4-25<0, ∴a <b .b -c =(5-2)-(5-25) =(5-2)(1-5)<0, ∴b <c . ∴a <b <c .4.用反证法证明命题“如果a >b ,那么3a >3b ”时,假设的内容应是( ) A.3a =3b B.3a <3bC.3a =3b 且3a <3bD.3a =3b 或3a <3b 解析:选D3a 与3b 大小包括3a >3b ,3a =3b ,3a <3b 三方面的关系,所以3a >3b的反设应为3a =3b 或3a <3b .5.使不等式3+8>1+a 成立的正整数a 的最大值为( ) A .10 B .11 C .12 D .13解析:选C 用分析法可证a =12时不等式成立,a =13时不等式不成立. 6.设a ,b ,m 都是正数,且a <b ,则下列不等式中恒成立的是( ) A.a b <a +m b +m <1 B.a b ≥a +m b +m C.a b ≤a +m b +m ≤1 D .1<b +m a +m <b a解析:选A ∵0<a <b ,m >0,∴a b -a +m b +m =ab +am -ab -bm b (b +m )=m (a -b )b (b +m )<0,又a +mb +m -1=a +m -b -m b +m =a -b b +m<0,∴a b <a +mb +m <1.7.已知a >b >-1,则1a +1与1b +1的大小关系是( ) A.1a +1>1b +1 B.1a +1<1b +1 C.1a +1≥1b +1 D.1a +1≤1b +1 解析:选B 1a +1-1b +1=(b +1)-(a +1)(a +1)(b +1)=b -a(a +1)(b +1).∵a >b >-1,∴b -a <0,a +1>0,b +1>0. ∴b -a (a +1)(b +1)<0,∴1a +1-1b +1<0.即1a +1<1b +1. 8.设a ,b ∈R +,且a ≠b ,P =a 2b +b 2a ,Q =a +b ,则( )A .P >QB .P ≥QC .P <QD .P ≤Q解析:选A P -Q =a 2b +b 2a -(a +b )=a 3+b 3-ab (a +b )ab=(a +b )(a 2+b 2-2ab )ab=(a +b )(a -b )2ab .∵a ,b 都是正实数,且a ≠b , ∴(a +b )(a -b )2ab >0.∴P >Q .9.已知a ,b ,c ,d ∈R +且S =a a +b +c +b b +c +d +c c +d +a +da +b +d ,则下列判断中正确的是( )A .0<S <1B .1<S <2C .2<S <3D .3<S <4解析:选B 用放缩法,a a +b +c +d <a a +b +c <a a +c ;b a +b +c +d <b b +c +d <bd +b ;c a +b +c +d <c c +d +a <c c +a ;d a +b +c +d <d d +a +b <dd +b .以上四个不等式相加,得1<S <2.10.若α∈⎝⎛⎭⎫π,54π,M =|sin α|,N =|cos α|,P =12|sin α+cos α|,Q =12sin 2α,则它们之间的大小关系为( )A .M >N >P >QB .M >P >N >QC .M >P >Q >ND .N >P >Q >M解析:选D ∵α∈⎝⎛⎭⎫π,54π,∴0>sin α>cos α. ∴|sin α|<|cos α|,∴P =12|sin α+cos α|=12(|sin α|+|cos α|)>12(|sin α|+|sin α|)=|sin α|=M . P =12|sin α|+|cos α|<12(|cos α|+|cos α|)=|cos α|=N .∴N >P >M .对于Q =12sin 2α=sin αcos α<|sin α|+|cos α|2=P . 而Q =sin αcos α>sin 2α=|sin α|=M ,∴N >P >Q >M .二、填空题(本大题有4小题,每小题5分,共20分)11.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系是________. 解析:a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a2 =(a -b )⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 答案:a b 2+b a 2≥1a +1b12.设a >0且a ≠1,m =log a (1+a ),n =log a ⎝⎛⎭⎫1+1a ,则m ,n 的大小关系为________. 解析:当a >1时,1+a >1+1a, ∴log a (1+a )>log a ⎝⎛⎭⎫1+1a ,即m >n ; 当0<a <1时,1+a <1+1a, ∴log a (1+a )>log a ⎝⎛⎭⎫1+1a ,即m >n . 答案:m >n13.设0<m <n <a <b ,函数y =f (x )在R 上是减函数,下列四个数f ⎝⎛⎭⎫b a ,f ⎝⎛⎭⎫a b ,f ⎝ ⎛⎭⎪⎫b -m a -m ,f ⎝ ⎛⎭⎪⎫a +n b +n 的大小顺序依次是______________________________________________. 解析:∵a b <a +n b +n <1<b a <b -m a -m,根据函数的单调性, 知f ⎝⎛⎭⎫a b >f ⎝ ⎛⎭⎪⎫a +n b +n >f ⎝⎛⎭⎫b a >f ⎝ ⎛⎭⎪⎫b -m a -m . 答案:f ⎝⎛⎭⎫a b >f ⎝ ⎛⎭⎪⎫a +n b +n >f ⎝⎛⎭⎫b a >f ⎝ ⎛⎭⎪⎫b -m a -m 14.若a >b >c >0,l 1= (c +a )2+b 2,l 2= (b +c )2+a 2,l 3= (a +b )2+c 2,则l 1l 2,l 2l 3,l 22,l 23中最小的一个是________.解析:利用赋值法比较,令a =3,b =2,c =1,可得l 1=20,l 2=18,l 3=26,则l 1l 2=360,l 2l 3=468,l 22=324,l 23=676,可知l 22最小.答案:l 22三、解答题(本大题共有4小题,共50分)15.(本小题满分12分)比较3(1+x 2+x 4)和(1+x +x 2)2的大小.解:∵3(1+x 2+x 4)-(1+x +x 2)2=3(1+x 2+x 4)-(1+x 2+x 4+2x +2x 2+2x 3)=3+3x 2+3x 4-1-x 2-x 4-2x -2x 2-2x 3=2x 4-2x 3+2-2x =2x 3(x -1)+2(1-x )=2(x -1)(x 3-1)=2(x -1)2(x 2+x +1)=2(x -1)2⎣⎡⎦⎤⎝⎛⎭⎫x +122+34≥0. 故3(1+x 2+x 4)≥(1+x +x 2)2.16.(本小题满分12分)设a ,b ,c ,d 均为正数,求证:a 2+b 2+c 2+d 2≥ (a +c )2+(b +d )2. 证明:欲证 a 2+b 2+ c 2+d 2≥ (a +c )2+(b +d )2,只需证(a 2+b 2+c 2+d 2)2≥(a +c )2+(b +d )2, 即证 (a 2+b 2)(c 2+d 2)≥ac +bd ,就是证(a 2+b 2)(c 2+d 2)≥(ac +bd )2,就是证b 2c 2+a 2d 2≥2abcd .也就是证(bc -ad )2≥0.此式显然成立,故所证不等式成立.17.(本小题满分12分)设实数x 、y 满足y +x 2=0,0<a <1,求证:log a (a x +a y )<log a 2+18. 证明:∵a x >0,a y >0,∴a x +a y ≥2a x +y =2ax -x 2. ∵x -x 2=x (1-x )≤⎣⎡⎦⎤x +(1-x )22=14, 又0<a <1,∴ax -x 2≥a 14.当x =12时等号成立, 但当x =12时,a x ≠a -x 2.∴a x +a y >2a 18.又0<a <1,∴log a (a x +a y )<log a ()2a 18=log a 2+18. 18.(本小题满分14分)已知A n (n ,a n )为函数y 1=x 2+1的图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设C n =a n -b n ,其中n ∈N +.(1)求证:数列{C n }既不是等差数列,也不是等比数列.(2)试比较C n 与C n +1的大小.解:(1)证明:根据题意可知:a n =n 2+1,b n =n ,C n =n 2+1-n .假设数列{C n }为等差数列,则2C 2=C 1+C 3,即有2(5-2)=2-1+10-3,有25=2+10,这与事实相矛盾,因而不是等差数列,假设数列{C n }为等比数列,则应有C 22=C 1C 3,即(5-2)2=(2-1)·(10-3),这与事实相矛盾,所以{C n }不是等比数列,由以上可知数列{C n }既不是等差数列,也不是等比数列.(2)∵C n =n 2+1-n >0,C n +1=(n +1)2+1-(n +1)>0,∴C n +1C n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n (n +1)2+1+(n +1). ∵0<n 2+1<(n +1)2+1,0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1,∴0<n 2+1+n(n +1)2+1+(n +1)<1, 即C n +1C n <1,从而有C n +1<C n .。
高中数学人教版选修45数学教案

高中数学人教版选修45数学教案标题:高中数学人教版选修4-5教案一、课程介绍高中数学人教版选修4-5课程,是高中数学学习的重要环节。
本课程主要涉及数学知识点中的数列、数学归纳法、不等式等内容,是学生进一步深化数学理解的必备课程。
通过本课程的学习,学生可以更好地掌握数学方法,提高数学思维能力和解决问题的能力。
二、课程目标1、掌握数列的基本概念和性质,了解数列的递推关系和通项公式,掌握数列的求和方法。
2、理解数学归纳法的原理和证明方法,掌握使用数学归纳法证明简单的数学问题。
3、理解不等式的性质和基本不等式,掌握运用不等式解决实际问题的方法。
三、教学方法在本课程的教学过程中,我们将采用以下教学方法:1、理论讲解:通过详细的讲解和推导,使学生深入理解数列、数学归纳法和不等式的概念和原理。
2、案例分析:通过具体的案例分析,使学生掌握运用数列、数学归纳法和不等式解决实际问题的技巧。
3、互动讨论:通过互动讨论,鼓励学生积极参与课堂讨论,加深学生对知识点的理解和掌握。
四、教学内容及步骤1、数列的基本概念和性质:介绍数列的概念、通项公式、递推关系等基本性质。
2、数列的求和:介绍数列的求和方法,如倒序相加法、错位相减法等。
3、数学归纳法:讲解数学归纳法的原理和证明方法,并通过实例进行演示。
4、不等式的性质:介绍不等式的性质和基本不等式,如加法性质、乘法性质、权方和不等式等。
5、不等式的应用:讲解如何运用不等式解决实际问题,如最值问题、取值范围问题等。
五、教学评估为了更好地评估学生的学习成果,我们将采取以下评估方法:1、课堂表现:观察学生的课堂参与度、回答问题的情况等,了解学生对知识点的掌握情况。
2、作业练习:布置相关练习题和作业,检验学生对知识点的理解和应用能力。
3、期末考试:通过期末考试,全面检测学生对本课程的掌握情况,以便针对问题进行改进。
六、教学反思在完成本课程的教学后,我将进行深入的反思和总结。
我将根据学生的反馈和教学评估结果,分析教学中存在的问题和不足之处,并寻找改进的方法。
山东省2017-2018学年高中数学人教A版选修4-4创新应用教学案: 第二讲 第4节 渐开线与摆线

[核心必知]1.渐开线的概念及产生过程把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.2.摆线的概念及产生过程圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹,圆的摆线又叫旋轮线.3.圆的渐开线和摆线的参数方程(1)圆的渐开线方程:⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ为参数).(2)摆线的参数方程:⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数).[问题思考]1.渐开线方程中,字母r 和参数φ的几何意义是什么?提示:字母r 是指基圆的半径,参数φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.2.摆线的参数方程中,字母r 和参数φ的几何意义是什么?提示:字母r 是指定圆的半径,参数φ是指圆上定点相对于某一定点运动所张开的角度大小.求半径为4的圆的渐开线的参数方程.[精讲详析] 本题考查圆的渐开线的参数方程的求法,解答本题需要搞清圆的渐开线的参数方程的一般形式,然后将相关字母的取值代入即可.以圆心为原点O ,绳端点的初始位置为M 0,x 轴正方向,建立坐标系,设渐开线上的任意点M (x ,y ),绳拉直时和圆的切点为A ,故OA ⊥AM ,按渐开线定义,弧AM 0︵的长和线段AM x 轴正向所夹的角为θ(以弧度为单位),则|AM |=AM 0︵=4θ作AB 垂直于x 轴,过M 点作AB (4cos θ,4sinθ),由几何知识知∠MAB =θ=(4θsin θ,-4θcos θ),=(4cos θ+4θsin θ,4sin θ-4θcos θ) =(4(cos θ+θsin θ),4(sin θ-θcos θ)).(x ,y ),因此有⎩⎪⎨⎪⎧x =4(cos θ+θsin θ),y =4(sin θ-θcos θ),这就是所求圆的渐开线的参数方程.解决此类问题的关键是根据渐开线的形成过程,将问题归结到用向量知识和三角的有关知识建立等式关系上.用向量方法建立运动轨迹曲线的参数方程的过程和步骤: (1)建立合适的坐标系,设轨迹曲线上的动点为M (x ,y ). (2)取定运动中产生的某一角度为参数.(3)用三角、几何知识写出相关向量的坐标表达式.(4)1.基圆直径为10,求其渐开线的参数方程.解:取φ为参数,φ为基圆上点与原点的连线与x 轴正方向的夹角. ∵直径为10,∴半径r =5.代入圆的渐开线的参数方程得:⎩⎪⎨⎪⎧x =5(cos φ+φsin φ),y =5(sin φ-φcos φ),这就是所求的圆的渐开线的参数方程.求半径为2的圆的摆线的参数方程.(如图所示,开始时定点M 在原点O 处,取圆滚动时转过的角度α,(以弧度为单位)为参数)[精讲详析] 本题考查圆的摆线的参数方程的求法.解答本题需要搞清圆的摆线的参数方程的一般形式,然后将相关数据代入即可.当圆滚过α角时,圆心为点B ,圆与x 轴的切点为A ,定点M 的位置如图所示,∠ABM =α.由于圆在滚动时不滑动,因此线段OA 的长和圆弧AM ︵的长相等,它们的长都等于2α,从而B 点坐标为(2α,2).(2α,2),(2sin α,2cos α)(-2sin α,-2cos α),(2α-2sin α,2-2cos α)=(2(α-sin α),2(1-cos α)).动点M 的坐标为(x ,y )(x ,y ).所以⎩⎪⎨⎪⎧x =2(α-sin α),y =2(1-cos α).这就是所求摆线的参数方程.2.圆的半径为r ,沿x 轴正向滚动,圆与x 轴相切于原点O .圆上点M 起始处沿顺时针已偏转φ角.试求点M 的轨迹方程.解:x M =r ·θ-r ·cos [(φ+θ)-π2]=r [θ-sin (φ+θ)],y M =r +r ·sin (φ+θ-π2)=r [1-cos (φ+θ)]. ∴点M 的参数方程为⎩⎪⎨⎪⎧x =r [θ-sin (φ+θ)],y =r [1-cos (φ+θ)].(θ为参数)设圆的半径为8,沿x 轴正向滚动,开始时圆与x 轴相切于原点O ,记圆上动点为M ,它随圆的滚动而改变位置,写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上点的纵坐标y 的最大值,说明该曲线的对称轴.[精讲详析] 本题考查摆线的参数方程的求法及应用.解答本题需要先分析题意,搞清M 点的轨迹的形状,然后借助图象求得最值.轨迹曲线的参数方程为⎩⎪⎨⎪⎧x =8(t -sin t ),y =8(1-cos t ),(0≤t ≤2π)即t =π时,即x =8π时,y 有最大值16. 曲线的对称轴为x =8π.—————————————摆线的参数方程是三角函数的形式,可考虑其性质与三角函数的性质有类似的地方.3.当φ=π2、π时,求出渐开线⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ上对应的点A 、B ,并求出A 、B 间的距离.解:将φ=π2代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得x =cos π2+π2·sin π2=0+π2=π2,y =sin π2-π2·cos π2=1.∴A (π2,1).将φ=π,代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得x =cos π+π·sin π=-1,y =sin π-πcos π=π. ∴B (-1,π).∴|AB |=(π2+1)2+(1-π)2 =54π2-π+2.本课时考点是圆的渐开线或摆线的参数方程的应用,近几年的高考题中还未出现过.本考题以填空题的形式对圆的摆线的参数方程的应用进行了考查,属低档题.[考题印证]摆线⎩⎪⎨⎪⎧x =t -sin t ,y =1-cos t (0≤t ≤2π)与直线y =1的交点的直角坐标为________.[命题立意] 本题主要考查摆线方程及其参数的几何意义. [解析] 由题设得1=1-cos t ,解得t 1=π2,t 2=32π.对应交点的坐标为⎩⎨⎧x 1=π2-1,y 1=1,⎩⎪⎨⎪⎧x 2=32π+1,y 2=1,交点为(π2-1,1),(32π+1,1).答案:(π2-1,1),(32π+1,1)一、选择题1.关于渐开线和摆线的叙述,正确的是( )A .只有圆才有渐开线B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C .正方形也可以有渐开线D .对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 解析:选C 本题主要考查渐开线和摆线的基本概念.不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线,渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同.对于同一个圆不论在什么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同.2.⎩⎪⎨⎪⎧r =5(φ-sin φ),y =5(1-cos φ)(φ为参数)表示的是( ) A .半径为5的圆的渐开线的参数方程 B .半径为5的圆的摆线的参数方程 C .直径为5的圆的渐开线的参数方程 D .直径为5的圆的摆线的参数方程解析:选B 根据圆的渐开线与摆线的参数方程可知B 正确.3.已知一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ(φ为参数),那么圆的摆线方程中参数取π2对应的点A 与点B ⎝⎛⎭⎫3π2,2之间的距离为( ) A.π2-1 B. 2 C.10 D.3π2-1 解析:选C 根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数), 把φ=π2代入参数方程中可得⎩⎨⎧x =3(π2-1),y =3,即A (3(π2-1),3).∴|AB |=[3(π2-1)-3π2]2+(3-2)2=10.4.已知一个圆的摆线过点(1,0),则摆线的参数方程为( ) A.⎩⎨⎧x =12k π(φ-sin φ),y =12k π(1-cos φ)B.⎩⎨⎧x =1k π(φ-sin φ),y =1k π(1-cos φ)C.⎩⎨⎧x =12k π(φ-sin φ),y =12k π(1+cos φ)D.⎩⎨⎧x =1k π(φ-sin φ),y =1k π(1-cos φ)解析:选A 圆的摆线的参数方程为⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ),令r (1-cos φ)=0,得:φ=2k π,代入x =r (φ-sin φ), 得:x =r (2k π-sin 2k π),又过(1,0), ∴r (2k π-sin 2k π)=1,∴r =12k π, 又r >0,∴k ∈N +. 二、填空题5.已知圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数),则此渐开线对应的基圆的直径是________,当参数φ=π4时对应的曲线上的点的坐标为________.解析:圆的渐开线的参数方程由圆的半径惟一确定,从方程不难看出基圆的半径为1,故直径为2.求当φ=π4时对应的坐标只需把φ=π4代入曲线的参数方程,得x =22+2π8,y=22-2π8,由此可得对应的坐标为(22+2π8,22-2π8). 答案:2 (22+2π8,22-2π8) 6.我们知道关于直线y =x 对称的两个函数互为反函数,则圆的摆线⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数)关于直线y =x 对称的曲线的参数方程为________. 解析:关于直线y =x 对称的函数互为反函数,而求反函数的过程主要体现了x 与y 的互换,所以要写出摆线方程关于y =x 对称的曲线方程,只需把其中的x ,y 互换.答案:⎩⎪⎨⎪⎧x =r (1-cos φ),y =r (φ-sin φ)(φ为参数)7.渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________.解析:根据圆的渐开线方程可知基圆的半径r =6,其方程为x 2+y 2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为(12x )2+y 2=36,整理可得x 2144+y 236=1,这是一个焦点在x 轴上的椭圆.c =a 2-b 2=144-36=63,故焦点坐标为(63,0)和(-63,0).答案:(63,0)和(-63,0)8.圆的渐开线⎩⎨⎧x =2(cos t +t sin t ),y =2(sin t -t cos t )上与t =π4对应的点的直角坐标为________.解析:对应点的直角坐标为⎩⎪⎨⎪⎧x =2(cos π4+π4sin π4)=2(22+π4·22)=1+π4y =2(sin π4-π4·cos π4)=2(22-π4·22)=1-π4∴t =π4对应的点的直角坐标为(1+π4,1-π4).答案:(1+π4,1-π4)三、解答题9.半径为r 的圆沿直轨道滚动,M 在起始处和原点重合,当M 转过53π和72π时,求点M 的坐标.解:由摆线方程可知:φ=53π时,x M =10π+336r ,y M =12r ;φ=72π时,x M =12r (7π+2),y M =r .∴点M 的坐标分别是(10π+336,12r )、(12r (7π+2),r ).10.如图ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE 、EF 、FG 、GH …的圆心依次按B 、C 、D 、A 循环,它们依次相连接,求曲线AEFGH 的长.解:根据渐开线的定义可知,AE ︵是半径为1的14圆周长,长度为π2,继续旋转可得EF ︵是半径为2的14圆周长,长度为π;FG ︵是半径为3的14圆周长,长度为3π2;GH ︵是半径为4的14圆周长,长度为2π.所以曲线AEFGH 的长是5π.11.已知圆C 的参数方程是⎩⎪⎨⎪⎧x =1+6cos α,y =2+6sin α(α为参数),直线l 的普通方程是x -y -62=0.(1)如果把圆心平移到原点O ,请问平移后圆和直线有什么关系? (2)写出平移后圆的摆线方程. (3)求摆线和x 轴的交点.解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得摆线方程是23 ⎩⎪⎨⎪⎧x=6φ-6sin φ,y=6-6cos φ,(φ为参数).(3)令y=0,得6-6cos φ=0⇒cos φ=1,所以φ=2kπ(k∈Z).代入x=6φ-6sin φ,得x=12kπ(k∈Z),即圆的摆线和x轴的交点为(12kπ,0)(k∈Z).。
2017-2018学年高中数学人教A版选修4-4创新应用教学案: 第二讲 第1节 第1课时 参数方程的概念 Word版含答案

第1课时 参数方程的概念[核心必知]1.参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①叫做这条曲线的参数方程.联系变量x ,y 的变数t 叫做参变数,简称参数. 2.普通方程相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.[问题思考]1.参数方程中的参数t 是否一定有实际意义?提示:参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.曲线的参数方程一定是唯一的吗?提示:同一曲线选取参数不同,曲线参数方程形式也不一样.如⎩⎪⎨⎪⎧x =4t +1,y =2t (t ∈R )和⎩⎪⎨⎪⎧x =2m +1,y =m (m ∈R ) 都表示直线x =2y +1.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2t ,y =3t 2-1(t 为参数). (1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.[精讲详析] 本题考查曲线的参数方程及点与曲线的位置关系.解答此题需要将已知点代入参数方程,判断参数是否存在.(1)把点M 1的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1, 得⎩⎪⎨⎪⎧0=2t ,-1=3t 2-1, ∴t =0.即点M 1在曲线C 上.把点M 2的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1, 得⎩⎪⎨⎪⎧4=2t ,10=3t 2-1,方程组无解.即点M 2不在曲线C 上. (2)∵点M (2,a )在曲线C 上,∴⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. ∴t =1,a =3×12-1=2.即a 的值为2.已知曲线的参数方程,判断某点是否在曲线上,就是将点的坐标代入曲线的参数方程,然后建立关于参数的方程组,如果方程组有解,则点在曲线上;否则,点不在曲线上.1.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<π),则下列各点A (1,3),B (2,2),C (-3,5)在曲线上的点是________.解析:将A (1,3)点代入方程得θ=0;将B 、C 点坐标代入方程,方程无解,故B 、C 点不在曲线上.答案:A (1,3)如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.[精讲详析] 本题考查曲线参数方程的求法,解答本题需要先确定参数,然后分别用同一个参数表示x 和y .法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q . 如图所示,则Rt △OAB ≌Rt △QBP .取OB =t ,t 为参数(0<t <a ). ∵|OA |=a 2-t 2,∴|BQ |=a 2-t 2. ∴点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2,y =t ,(0<t <a ) 法二:设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示.取∠QBP =θ,θ为参数(0<θ<π2),则∠ABO =π2-θ.在Rt △OAB 中,|OB |=a cos (π2-θ)=a sin θ.在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ. ∴点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a (sin θ+cos θ),y =a sin θ.(θ为参数,0<θ<π2).(1)求曲线参数方程的主要步骤:第一步,建立直角坐标系,设(x ,y )是轨迹上任意一点的坐标.画出草图(画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系).第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式.(2)求曲线的参数方程时,要根据题设条件或图形特性求出参数的取值范围并标注出来.2.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA 交OA 于D ,PB ∥OA ,试求点P 的轨迹的参数方程.解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ,由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cos θ=OA ·cos 2θ=2a cos 2θ,y =AB =OA tan θ=2a tan θ.所以P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θ,y =2a tan θ,θ∈(-π2,π2).曲线参数方程的应用,是高考模拟的热点内容.本考题以实际问题为背景考查了曲线参数方程的实际应用,是高考模拟命题的一个新亮点.[考题印证]已知弹道曲线的参数方程为⎩⎨⎧x =2t cosπ6,y =2t sin π6-12gt 2.(t 为参数)(1)求炮弹从发射到落地所需时间; (2)求炮弹在运动中达到的最大高度.[命题立意] 本题主要考查曲线参数方程中参数的实际意义及其应用. [解] (1)令y =0,则2t sin π6-12gt 2=0, 解之得t =2g.∴炮弹从发射到落地所需要的时间为2g .(2)y =2t sinπ6-12gt 2=-12gt 2+t =-12g (t 2-2g t )=-12g [(t -1g )2-1g 2]=-12g (t -1g )2+12g ,∴当t =1g 时,y 取最大值12g.即炮弹在运动中达到的最大高度为12g .一、选择题1.方程⎩⎪⎨⎪⎧x =1+sin θ,y =sin 2θ(θ是参数)所表示曲线经过下列点中的( )A .(1,1) B.⎝⎛⎭⎫32,12 C.⎝⎛⎭⎫32,32 D.⎝ ⎛⎭⎪⎫2+32,-12解析:选C 将点的坐标代入方程:⎩⎪⎨⎪⎧x =1+sin θ,y =sin 2θ,解θ的值.若有解,则该点在曲线上.2.直线l 的参数方程为⎩⎪⎨⎪⎧x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离是( )A .|t 1|B .2|t 1| C.2|t 1| D.22|t 1| 解析:选C ∵P 1(a +t 1,b +t 1),P (a ,b ),∴|P 1P |=(a +t 1-a )2+(b +t 1-b )2=t 21+t 21=2|t 1|.3.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6+4cos θ,y =5tan θ-3(θ为参数,π≤θ<2π).已知点M (14,a )在曲线C 上,则a =( )A .-3-5 3B .-3+5 3C .-3+53 3D .-3-53 3解析:选A ∵(14,a )在曲线C 上, ∴⎩⎪⎨⎪⎧14=6+4cos θ, ①a =5tan θ-3. ② 由①得:cos θ=12,又π≤θ<2π.∴sin θ=-1-(12)2=-32,∴tan θ=- 3.∴a =5·(-3)-3=-3-5 3.4.参数方程⎩⎪⎨⎪⎧x =t +1t ,y =-2(t 为参数)所表示的曲线是( )A .一条射线B .两条射线C .一条直线D .两条直线解析:选B 因为x =t +1t ∈(-∞,-2]∪[2,+∞),即x ≤-2或x ≥2,故是两条射线. 二、填空题5.由方程x 2+y 2-4tx -2ty +3t 2-4=0(t 为参数)所表示的一族圆的圆心的轨迹的参数方程为________.解析:由x 2+y 2-4tx -2ty +3t 2-4=0得: (x -2t )2+(y -t )2=4+2t 2.设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2t ,y =t .答案:⎩⎪⎨⎪⎧x =2t ,y =t (t 为参数)6.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 为参数,a ∈R ).点M (5,4)在该曲线上,则常数a =________.解析:∵点M (5,4)在曲线C 上∴⎩⎪⎨⎪⎧5=1+2t ,4=at 2, 解得:⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1.答案:17.曲线(x -1)2+y 2=4上点的坐标可以表示为________(填序号). ①(-1+cos θ,sin θ),②(1+sin θ,cos θ), ③(-1+2cos θ,2sin θ),④(1+2cos θ,2sin θ)解析:分别将①、②、③、④代入曲线(x -1)2+y 2=4验证可知,只有④使方程成立. 答案:④8.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为________.解析:设M (x ,y ),则在x 轴上的位移为:x =1+9t ,在y 轴上的位移为y =1+12t . ∴参数方程为:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t .答案:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t (t 为参数)三、解答题9.设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60 rad/s ,运动开始时质点位于A (2,0),试以时间t 为参数,建立质点运动轨迹的参数方程.解:如图,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知:⎩⎪⎨⎪⎧x =2cos θy =2sin θ又θ=π60·t ,故参数方程为:⎩⎨⎧x =2cos π60t ,y =2sin π60t(t 为参数).10.过M (0,1)作椭圆x 2+y 24=1的弦,试求弦中点的轨迹的参数方程.解:设过M (0,1)的弦所在的直线方程为y =kx +1,其与椭圆的交点为(x 1,y 1)和(x 2,y 2),设中点P (x ,y )则有:x =x 1+x 22,y =y 1+y 22由⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1得:(k 2+4)y 2-8y +4-4k 2=0 ∴y 1+y 2=8k 2+4,x 1+x 2=-2k k 2+4. ∴⎩⎨⎧x =-kk 2+4,y =4k 2+4.(k 为参数)这就是以动弦斜率k 为参数的动弦中点的轨迹的参数方程.11.舰A 在舰B 的正东,距离6千米;舰C 在舰B 的北偏西30°,距离4千米.它们准备围捕海中某动物,某时刻A发现动物信号,4秒后B 、C 同时发现这种信号,A 于是发射麻醉炮弹,假设舰与动物都是静止的,动物信号的传播速度为1千米/秒,炮弹初速度为 203g3千米/秒,其中g 为重力加速度,空气阻力不计,求舰A 炮击的方位角与仰角.解:以BA 为x 轴,BA 中垂线为y 轴建立直角坐标系(如图),则B (-3,0),A (3,0),C (-5,23).设海中动物为P (x ,y ).因为|BP |=|CP |,所以P 在线段BC 的中垂线上,易知中垂线方程是y =33(x +7).又|PB |-|P A |=4,所以P 在以A 、B 为焦点的双曲线右支上,双曲线方程是x 24-y 25=1.从而得P (8,53).设∠xAP =α,则tan α=k AP =3,∴α=60°,这样炮弹发射的方位角为北偏东30°.再以A 为原点,AP 为x ′轴建立坐标系x ′Ay ′,(如图).|P A |=10,设弹道曲线方程是⎩⎪⎨⎪⎧x ′=v 0t cos θ,y ′=v 0t sin θ-12gt 2,(其中θ为仰角)将P (10,0)代入,消去t 便得sin 2θ=32,θ=30°或60°这样舰A 发射炮弹的仰角为30°或60°.。
2017-2018学年高中数学人教A版选修4-4创新应用教学案: 第二讲 第3节 直线的参数方程 Word版含答案

第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程(1)抛物线y 2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt,t ∈R . (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,则焦点在x 轴上; 如果y 对应的参数形式是a sec φ,则焦点在y 轴上.3.若抛物线的参数方程表示为⎩⎨⎧x =2ptan 2α,y =2p tan α.则参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 本题考查双曲线的参数方程的应用,解答本题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),则B ′(-a sec α,a tan α). ∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a ,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 本题考查抛物线的参数方程的求法及其应用.解答本题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2,变形为y 0=14x 20,即x 2=4y .表示的为抛物线.在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t 得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 本题考查椭圆及双曲线的参数方程,解答本题需要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条件求出椭圆的参数方程求解即可.∵x 216-y 29=1, ∴右焦点(5,0),右顶点(4,0). 设椭圆x 2a 2+y 2b 2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin (θ-φ)|5(tan φ=54).∴d max =3415.对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(广东高考)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎨⎧x 25+y 2=1,x =54y 2则5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),则x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.天津高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.[命题立意] 本题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EF A 中,|EF |=2|F A |,即3+p2=2p ,得p =2.答案:2一、选择题1.下列参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos 2t C.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2t D.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数范围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3(sin 2θ+cos 2θ)cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t -2-t,y =2t+2-t (t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得: x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t >0,2t +2-t ≥22t ·2-t =2,即y ≥2.可见与以上参数方程等价的普通方程为: y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 二、填空题5.(陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,则焦点坐标为(1,0). 答案:(1,0)6.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O不重合),P (x ,y )是线段OM 的中点,则点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),则x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),则中点为M (a2(secα+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β) =-a (sec α-sec β)b (tan α-tan β)[x -a 2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a (sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2. ∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2),则k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2.又设MN 的中点为P (x ,y ),则⎩⎨⎧x =8t 21+8t 222,y =8t 1+8t22.∴k AP =4(t 1+t 2)4(t 21+t 22)-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4(t 21+t 22),y =4(t 1+t 2), 则y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1). ∴所求轨迹方程为y 2=4(x -1).11.已知圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2 =(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
2017-2018学年高中数学人教A版选修4-5教学案:第二讲本讲知识归纳与达标验收

对应学生用书P27考情剖析从近两年的高考试题来看,不等式的证明主要考察比较法与综合法,而比较法多用作差比较,综合法主要波及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依照命题供给的信息选择适合的方法与技巧进行证明.假如已知条件与待证结论之间的联系不明显,可考虑用剖析法;假如待证的命题以“起码”“至多”“恒建立”等方式给出,可考虑用反证法.在必需的状况下,可能还需要使用换元法、放缩法、结构法等技巧简化对问题的表述和证明.真题体验1. (福建高考 )设不等式 |2x- 1|< 1 的解集为 M.①求会合 M;②若 a, b∈ M,试比较 ab+1 与 a+ b 的大小.解:①由 |2x- 1|< 1 得- 1< 2x-1< 1,解得 0< x< 1,所以 M={ x|0< x< 1} .②由①和 a, b∈M 可知 0<a< 1,0< b< 1.所以 (ab+ 1) -(a+ b)= (a- 1)(b- 1)> 0,故 ab+ 1> a+ b.2. (辽宁高考 )设 f( x)= ln x+x- 1,证明:3(1)当 x>1 时, f(x)<2(x- 1);9x- 1(2)当 1< x<3 时, f(x)< x+5 .解: (1)法一:记 g(x)= ln x+3 1 1 3 x- 1-(x- 1),则当 x>1 时, g′ (x)=+2 x- <0.2 x 2 3又 g(1)= 0,故 g(x)<0,即 f(x)<2(x-1) .法二 :由均值不等式,当 x>1 时, 2 x<x +1,x 1故 x<2+ 2.①1令 k(x)= ln x - x + 1,则 k(1)= 0, k ′ (x)= x - 1<0,故 k(x)<0 ,即 ln x<x - 1.②3由①②得,当x>1 时, f(x)<2(x -1).9 x - 1(2)法一 :记 h( x)= f(x)- ,x + 5 当 1<x<3 时,由 (1)得1+1-542+ x54x + 554x +5 3- 216x= -4x -=4x x + 5 2.h ′ (x)= x 2 xx + 522xx +5 2<x + 52令 l(x) =(x + 5)3- 216x,1<x<3,l ′ (x)=3(x +5)2- 216<0,所以 l(x)在 (1,3)内是递减函数,又由 l(1)= 0,得 l(x)<0,所以 h ′(x)<0. 所以 h(x)在 (1,3)内是递减函数,又由h(1)= 0,得 h(x)<0.9 x - 1.于是当 1< x<3 时, f(x)<x + 5法二 :记 h(x)= (x + 5)f(x)- 9(x - 1),则当 1<x<3 时,由 (1)得 h ′ (x)= f(x)+ (x +5)f ′ (x)- 931 + 1 <2(x - 1)+ (x + 5) x2 x -91= 2x [3x(x - 1)+ (x + 5)(2+ x)- 18x]1x 1- 18x]<2x [3x(x - 1)+ (x + 5) 2+ 2+2 12- 32x + 25)<0, = 4x (7x所以 h(x)在 (1,3)内单一递减,又 h(1)= 0,所以 h(x)<0,9x-1即 f(x)<.x+ 5对应学生用书P27比较法证明不等式比较法证明不等式的依照是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.此中,变形是证明推理中一个承前启后的重点,变形的目的在于判断差的符号,而不是考虑差可否化简或值是多少,变形所用的方法要详细状况详细剖析,能够配方,能够因式分解,能够运用全部有效的恒等变形的方法.[例 1] [证明 ]2 2设 a, b 为实数, 0<n< 1,0<m< 1,m+n= 1,求证:a+b≥ (a+ b)2. m na2 b2- (a+ b) 2∵ +nmna2+ mb2 nm a2+2ab+ b2=-mnmnna 2 1- m + mb 2 1- n - 2mnab =mnn2a2+ m2b2- 2mnab na- mb 2=mn =≥ 0,mna2 b2 2∴ +≥ (a+ b) .m n综合法证明不等式综合法证明不等式的思想方向是“顺推”,即由已知的不等式出发,逐渐推出其必需条件( 由因导果 ),最后推导出所要证明的不等式建立.综合法证明不等式的依照是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依照和出发点的几个重要不等式(已知或已证 )建立的条件常常不一样,应用时要先考虑能否具备应有的条件,防止错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当时,取等号”的原因要理解掌握.[例 2]已知a,b,c为△ ABC的三条边,求证:a2+ b2+ c2<2(ab+ bc+ ca)[证明 ]设a,b两边的夹角为θ,则由余弦定理:a2+b2-c2cos θ=2ab∵因为 0<θ<π,∴cos θ<1.a2+ b2- c2∴<1.2ab即 a2+ b2- c2<2ab.同理可证: b2+ c2- a2<2 bc,c2+ a2- b2<2ac.将上边三个同向不等式相加,即得:a2+ b2+ c2<2(ab+ bc+ ca).剖析法证明不等式剖析法证明不等式的依照也是不等式的基天性质、已知的重要不等式和逻辑推理的基本理论.剖析法证明不等式的思想方向是“逆推”,即由待证的不等式出发,逐渐找寻使它建立的充足条件(执果索因 ),最后获得的充足条件是已知(或已证 )的不等式.当要证的不等式不知从何下手时,可考虑用剖析法去证明,特别是关于条件简单而结论复杂的题目常常更加有效.剖析法是“执果索因”,步步追求上一步建立的充足条件,而综合法是“由因导果”,逐渐推导出不等式建立的必需条件,二者是对峙一致的两种方法.一般来说,关于较复杂的不等式,直接用综合法常常不易下手,所以,往常用剖析法探究证题门路,而后用综合法加以证明,所以剖析法和综合法可联合使用.[例 3]已知a>b>0.求证:a-b<a- b.[证明 ]要证a-b<a- b只要证:a< a- b+b,只要证: ( a)2<( a- b+b)2,只要证: a<a- b+ b+ 2 b a- b ,只要证: 0<2 b a-b .∵a>b>0.上式明显建立,∴原不等式建立.即a-b<a- b.反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假定欲证的命题是“若 A 则 B”,我们能够经过否认 B 来达到必定 B 的目的,假如 B 只有有限多种状况,便可用反证法.用反证法证明不等式,其本质是从否认结论出发,经过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,进而必定原命题建立.[例 4]已知:在△ ABC中,∠ CAB>90°,D是BC的中点,求证:1AD <2BC (如右图所示 ).1[证明 ]假定AD≥ 2BC.1(1)若 AD =2BC,由平面几何中定理“ 若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A= 90°,与题设矛盾.1所以 AD ≠2BC.1 1(2)若 AD >2BC,因为 BD = DC =2BC,所以在△ABD 中, AD>BD,进而∠B>∠BAD .同理∠C>∠CAD .所以∠B+∠C>∠BAD +∠CAD.即∠B+∠C>∠A.因为∠B+∠C= 180°-∠A,所以 180°-∠A>∠A 即∠A< 90°,与已知矛盾,1故 AD >2BC 不建立.1由 (1)(2) 知 AD<2BC 建立 .放缩法证明不等式放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传达性,作适合的放大或减小,证明比原不等式更强的不等式来取代原不等式的一种证明方法.放缩法的本质是非等价转变,放缩没有必定的准则和程序,需按题意适合放缩,不然达..不到目的.[例 5]已知|x|<3,|y|<6,|z|<9,求证: |x+ 2y- 3z|<?.[证明 ]∵|x|<3,|y|<6,|z|<9,∴|x+ 2y- 3z|= |x+ 2y+ (- 3z)|≤|x|+ |2y|+ |-3z|= |x|+2|y|+ 3|z|< 3+2×6+3×9=?.∴原不等式建立.对应学生用书P49(时间: 90 分钟,总分120 分 )一、选择题 (本大题共 10 小题,每题 5 分,满分 50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的 )1.用剖析法证明不等式的推论过程必定是()A.正向、逆向均可进行正确的推理B.只好进行逆向推理C.只好进行正向推理D.有时能正向推理,有时能逆向推理分析:在用剖析法证明不等式时,是从求证的不等式出发,逐渐探究使结论建立的充足条件即可,故只要能进行逆向推理即可.答案: B2.设 a= (m2+ 1)(n2+ 4), b= (mn+ 2)2,则 ()A . a> b B. a< bC.a≤ b D. a≥ b分析:∵a- b= (m2+ 1)(n2+4)- (mn+2) 2= 4m2+ n2- 4mn= (2m- n)2≥ 0,∴a≥ b.答案:Dc<-d,则以下不等式中建立的是( ) 3.已知 a, b, c, d 为实数, ab> 0,-a bA . bc< ad B. bc> adC.a>bD.a<bc d c dc dab,得- bc<- ad,分析:将-a<-b两边同乘以正数所以 bc> ad.答案:B4.用反证法证明命题“假如a> b,那么3a> 3 b ”时,假定的内容应是 ( )A. 3a=3b B.3a<3bC. 3a=3b 且3a<3b D.3a=3b或3a<3b分析:3a与3b大小包含3a> 3 b ,3a=3b,3a< 3 b三方面的关系,所以 3 a> 3 b的反设应为3a=3b或3a< 3 b.答案: D5.(山东高考 )用反证法证明命题“设a,b 为实数,则方程 x3+ ax+ b=0 起码有一个实根”时,要做的假定是( )A .方程 x3+ ax+b= 0 没有实根B.方程 x3+ ax+b= 0 至多有一个实根C.方程 x3+ ax+b= 0 至多有两个实根D.方程 x3+ ax+b= 0 恰巧有两个实根分析:起码有一个实根的否认是没有实根,故做的假定是“ 方程x3+ax+b=0没有实根”.答案: A6.使不等式 3+ 8> 1+ a 建立的正整数 a 的最大值为 ()A .10B . 11C .12D . 13分析 :用剖析法可证 a =12 时不等式建立, a = 13 时不等式不建立.答案 :C2 27.设 a , b ∈ R + ,且 a ≠b , P =a + b, Q =a + b ,则 ()baA .P>QB .P ≥QC .P<QD . P ≤Q22分析: P - Q = a b + ba - (a + b)3 3- ab a + b a + b = aba +b a 2+ b 2- 2ab = aba +b a - b 2 = ab ,∵a , b 都是正实数,且 a ≠b ,a +b a - b 2∴ab >0.∴P>Q.答案: Aa + b≤- 2 建立的一个充足而不用要条件是 ()8.已知 a ,b 为非零实数, 则使不等式: b aA . ab > 0B . ab < 0C .a > 0, b <0D . a > 0,b > 0分析 :因为a ba b≤ - 2,知abab 与a 同号,由 b + ab < 0,a < 0,即 ab < 0,又若 ab <0,则 b <0,ba < 0,a b所以 b + aab=- -b + - aab≤ - 2- b ·- a =- 2,综上, ab < 0 是ab + ba ≤ - 2 建立的充要条件,a b所以 a > 0, b <0 是 b + a ≤ - 2 建立的一个充足而不用要条件. 答案 :C9.假如 log a 3>log b 3,且 a + b = 1,那么 ( )A . 0<a<b<1B . 0<b<a<1C .1< a<bD . 1<b<a分析: 法一: ∵a , b 为对数底数,∴a>0,b>0,又 a + b =1,故 a<1,b<1 ,利用对数函数图像的特色:当底数小于 1 大于0 时,底数越小,图像越靠近x 轴,∴a<b.法二: 由 log a 3>log b 3? 1 - log 3b - log 3 a 1 >0? log 3 a ·log 3b >0 ,log 3a log 3 b由 0<a<1,0< b<1,得 log 3a ·log 3b>0,∴log 3b - log 3a>0, log 3b>log 3a.故 b>a.答案: A10.若 a>b>0,以下各式中恒建立的是 ( )2a + b ab 2+ 1 b 2 A.a + 2b >bB.a 2+ 1>a 21 1a bC .a + a >b +bD . a >b1 1分析: 利用不等式性质得,当a>b>0 时, a <b ,由此可知, C 不恒建立;当 0<a<1,a>b时,可知 a a<b b,D 不可以恒建立;选用适合的特别值,若 a = 2, b = 1,可知 2a + b 5,a= 2,= a + 2b 4 b 因而可知 A 不恒建立.因为此题为单项选择题,仅有一个结论建立,综上可知清除A , C ,D.答案: B二、填空题 (本大题共 4 个小题, 每题 5 分,满分 20 分.把答案填写在题中的横线上 )11.用反证法证明“在△ ABC 中,若∠ A 是直角,则∠ B 必定是锐角”时,应假定________________ .分析 :“ ∠B 必定是锐角 ”的否认是 “∠B 不是锐角 ”.答案 :∠ B 不是锐角12.假如 a a + b b>a b + b a ,则实数 a , b 应当知足的条件是 ________. 分析:由 a 知 a ≥ 0, b 知 b ≥ 0,而 a a + b b ≠ a b +b a ,知 b ≠ a.此时 a a + b b -(a b + b a)= ( a - b)2(a + b)>0,不等式建立.答案: a ≥ 0, b ≥ 0, a ≠ b13.记 A =1 1 + 1 + + 1,则 A 与 1 的大小关系为 ________.10+ 1010 112 2 + 1 2 + 2 2 - 1分析: ∵211- 1= 210+ (210- 1),∴A 是 210 项之和.1 1 1 1 1 1 1 1 10∵A = 10+ 10 + 10 + + 11 < 2 10+10++ 10 = 2 10×2 =1.2 2 + 1 2 + 2 2 - 1 2 2答案: A<1lg b= 100,则 lg( ab) 的最小值是 ________.14.已知 a > 1, a 分析 :对 a lg b = 100 两边取常用对数得 lg alg b = 2,∵lg alg b ≤lg a +lg b2= lg ab2,22∴lg(ab)≥ 2 2.当且仅当 lg a = lg b = 2时,等号建立. 答案 :2 2三、解答题 (本大题共 4 个小题,满分 50 分.解答时应写出必需的文字说明、证明过程 或演算步骤 )15. (本小题满分 12 分 )设 |a|< 1, |b|<1,求证: |a + b|+ |a - b|< 2.证明 :当 a + b 与 a - b 同号时, |a + b|+ |a - b|= |a + b + a - b|= 2|a|< 2;当 a +b 与 a - b 异号时, |a + b|+ |a - b|= |a + b - (a - b)|= 2|b|<2.∴|a + b|+ |a - b|< 2.2 a 2+ 1 3+ 116. (本小题满分 12 分 )求证:2≥ 3.a 2+ 12 a 2+13 +1证明: 2 = 2 a 2+ 1+1a 2 +1a 2+ 12017-2018学年高中数学人教A 版选修4-5教教案:第二讲本讲知识概括与达标查收 11 / 11 = a 2+ 1+ a 2+ 1+ 1 ≥ 3 3a 2+ 12· 1 = 3.a 2 +1 a 2+ 12 2 217. (本小题满分 12 分 )已知 a + b + c = 1,1 求证:- ≤ ab +bc + ca ≤ 1.证明: 因为 (a + b +c)2≥ 0,所以 a 2+b 2+c 2+2(ab + bc + ca)≥ 0.2 2 2 1又因为 a + b + c = 1,所以 ab + bc +ca ≥ - 2.因为 ab ≤ a 2+ b 2 , bc ≤ b 2 +c 2 a 2+ c 22 2 , ac ≤ ,2所以 ab + bc + ca ≤ a 2+ b 2 b 2+ c 2 a 2+ c 22 + 2 + 2= a 2+ b 2+ c 2= 1.1所以- 2≤ ab + bc + ca ≤ 1.218. (本小题满分 14 分 )设二次函数 f(x)= ax + bx + c(a ≠ 0) 中的 a , b ,c 均为整数,且 f(0), f(1) 均为奇数.求证:方程 f(x)=0 无整数根.证明: 假定方程 f(x)= 0 有一个整数根 k ,则ak 2+ bk + c = 0.①∵f(0) =c , f(1)= a + b + c 均为奇数,则a +b 必为偶数. 当 k 为偶数时,令k = 2n(n ∈Z ),则ak 2+ bk = 4n 2a + 2nb = 2n(2na + b)必为偶数.ak 2+ bk + c 必为奇数,与①式矛盾;当 k 为奇数时,令 k = 2n +1(n ∈Z ),则 ak 2+ bk =(2n + 1)(2na + a + b)为一奇数与一偶数之积,必为偶数,也与①式相矛盾, 所以假定不正确,即方程 f(x)= 0 无整数根.。
2017-2018学年高中数学人教A版选修4-5创新应用教学案

[核心必知]1.二维形式的柯西不等式(1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d )(a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R ); a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ). 2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.3.二维形式的三角不等式(1)x 21+y 21+x 22+y 22x 1,y 1,x 2,y 2∈R ).(2)推论:(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1,x 2,x 3,y 1,y 2,y 3∈R ).[问题思考]1.在二维形式的柯西不等式的代数形式中,取等号的条件可以写成a b =cd 吗?提示:不可以.当b ·d =0时,柯西不等式成立,但a b =cd不成立.2.不等式x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,x2,y1,y2∈R)中,等号成立的条件是什么?提示:当且仅当P1(x1,y1),P2(x2,y2),O(0,0)三点共线,且P1,P2在原点两旁时,等号成立.2·a2+c2≥a+c,设a,b,c为正数,求证:a2+b2+b2+c2+a2+c2≥2(a+b+c).[精讲详析]本题考查柯西不等式的应用.解答本题需要根据不等式的结构,分别使用柯西不等式,然后将各组不等式相加即可.由柯西不等式:a2+b2·12+12≥a+b,即2·a2+b2≥a+b,同理:2·b2+c2≥b+c,2·a2+c2≥a+c,将上面三个同向不等式相加得:2(a2+b2+b2+c2+a2+c2)≥2(a+b+c),∴a2+b2+b2+c2+a2+c2≥2·(a+b+c).——————————————————利用二维柯西不等式的代数形式证题时,要抓住不等式的基本特征:(a2+b2)(c2+d2)≥(ac+bd)2,其中a,b,c,d∈R或(a+b)·(c+d)≥(ac+bd)2,其中a,b,c,d∈R+.1.设a1,a2,a3为正数,求证:a31+a21a2+a1a22+a32+a32+a22a3+a2a23+a33+a33+a23a1+a3a21+a31≥2(a31+a32+a33).证明:因为a31+a21a2+a1a22+a32=(a1+a2)·(a21+a22),由柯西不等式得[(a 1)2+(a 2)2](a 21+a 22)≥(a 1a 1+a 2a 2)2, 于是a 31+a 21a 2+a 1a 22+a 32≥(a 31+a 32)2. 故a 31+a 21a 2+a 1a 22+a 32≥a 31+a 32, 同理a 32+a 22a 3+a 2a 23+a 33≥a 32+a 33, a 33+a 23a 1+a 3a 21+a 31≥a 33+a 31.将以上三个同向不等式相加,即得a 31+a 21a 2+a 1a 22+a 32+a 32+a 22a 3+a 2a 23+a 23+ a 33+a 23a 1+a 3a 21+a 31≥2(a 31+a 32+a 33).设a ,b ,c ,d 是4个不全为零的实数,求证: ab +2bc +cd a 2+b 2+c 2+d2≤ 2+12. [精讲详析] 本题考查柯西不等式的灵活应用,解答本题需要从欲证不等式左边的分子入手,将其进行适当的变形,创造利用柯西不等式的条件. ab +2bc +cd =(ab +cd )+(bc -ad )+(bc +ad )≤2[(ab +cd )2+(bc -ad )2]+(b 2+a 2)(c 2+d 2) =2·(a 2+c 2)(b 2+d 2)+(a 2+b 2)(c 2+d 2) ≤2·(a 2+c 2)+(b 2+d 2)2+(a 2+b 2)+(c 2+d 2)2=2+12(a 2+b 2+c 2+d 2).∴ab +2bc +cd a 2+b 2+c 2+d2≤2+12. ——————————————————利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.2.设a ,b ∈R +,且a +b =2.求证:a 22-a +b 22-b ≥2.证明:根据柯西不等式,有 [(2-a )+(2-b )]⎝⎛⎭⎫a 22-a +b22-b=[(2-a )2+(2-b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a 2-a +2-b ·b 2-b 2=(a +b )2=4.∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. ∴原不等式成立.若3x +4y =2,求x 2+y 2的最小值.[精讲详析] 本题考查柯西不等式的应用.解答本题需要熟知柯西不等式的结构,凑成柯西不等式的结构,然后利用柯西不等式求最值.由柯西不等式得(x 2+y 2)(32+42)≥(3x +4y )2, 25(x 2+y 2)≥4,所以x 2+y 2≥425. 当且仅当x 3=y4时等号成立,由⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4.得⎩⎨⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425.——————————————————利用柯西不等式求最值的方法(1)先变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或为常数的各项,就可以应用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)而有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用的技巧之一.3.如何把一条长为m 的绳子截成2段,各围成一个正方形,使这2个正方形的面积和最小?解:设这2段的长度分别为x ,y ,则x +y =m ,且2个正方形的面积和S =⎝⎛⎭⎫x 42+⎝⎛⎭⎫y 42=116(x 2+y 2).因为(x 2+y 2)(12+12)≥(x +y )2=m 2,等号当且仅当x =y =m 2时成立, 所以x 2+y 2有最小值m 22,从而S 有最小值m 232.把绳子两等分后,这2段所围成的2个正方形的面积和最小.柯西不等式在求最值中的应用是考试的热点.本考题以解答题的形式考查了柯西不等式在求最值中的应用,是高考命题的一个新亮点.[考题印证]已知实数a 、b 、c 、d 满足a 2+b 2=1,c 2+d 2=2,求ac +bd 的最大值. [命题立意] 本题考查柯西不等式在求最值中的应用. [解] ∵a 2+b 2=1,c 2+d 2=2,∴由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2, 得(ac +bd )2≤1×2=2. ∴-2≤ac +bd ≤ 2.当且仅当ad =bc ,即c a =db =2时取最大值 2.∴ac +bd 的最大值为 2.一、选择题1.若a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ]C .[-10,10 ]D .(-5, 5 ] 解析:选A ∵a 2+b 2=10, ∴(a 2+b 2)(12+12)≥(a +b )2, 即20≥(a +b )2, ∴-25≤a +b ≤2 5.2.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536 D.3625解析:选B 2x 2+3y 2=(2x 2+3y 2)⎝⎛⎭⎫12+13·65 ≥65(2x ·22+3y ·33)2=65(x +y )2=65. 3.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是( ) A .P ≤Q B .P <Q C .P ≥Q D .P >Q解析:选A 设m =(ax ,b y ),n =(a ,b ),则|ax +by |=|m·n |≤|m ||n |=(ax )2+(by )2·(a )2+(b )2=ax 2+by 2·a +b = ax 2+by 2,∴(ax +by )2≤ax 2+by 2.即P ≤Q .4.已知p ,q ∈R +,且p 3+q 3=2,则p +q 的最大值为( ) A .2 B .8 C.12D .4解析:选A 设m =(p 32,q 32),n =(p 12,q 12), 则p 2+q 2=p 32p 12+q 32q 12=|m ·n |≤|m |·|n | =p 3+q 3·p +q =2·p +q .又∵(p +q )2≤2(p 2+q 2), ∴(p +q )22≤p 2+q 2≤2p +q .∴(p +q )4≤8(p +q ). ∴p +q ≤2. 二、填空题5.设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +dn,则P 与Q 的大小________.解析:由柯西不等式,得 P =am ·b m+nc ×dn≤(am )2+(nc )2×⎝⎛⎭⎫ b m 2+⎝⎛⎭⎫ d n 2=am +nc ×b m +dn =Q . 答案:P ≤Q6.函数f (x )=x -6+12-x 的最大值为________. 解析:由柯西不等式得(x -6+12-x )2≤(12+12)·[(x -6)2+(12-x )2]=12, ∴x -6+12-x ≤23(当x =9时,“=”成立). 答案:2 37.设xy >0,则⎝⎛⎭⎫x 2+4y 2⎝⎛⎭⎫y 2+1x 2的最小值为________. 解析:原式=⎣⎡⎦⎤x 2+⎝⎛⎭⎫2y 2⎣⎡⎦⎤⎝⎛⎭⎫1x 2+y 2≥⎝⎛⎭⎫x ·1x +2y ·y 2=9. 答案:98.已知a ,b ∈R +,且a +b =1,则(4a +1+4b +1)2的最大值是________. 解析:(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2]=2(4×1+2)=12.答案:12 三、解答题9.已知a 2+b 2=1, x 2+y 2=1,求证:|ax +by |≤1. 证明:由柯西不等式得 (ax +by )2≤(a 2+b 2)(x 2+y 2)=1. 故|ax +by |≤1成立.10.已知实数a 、b 、c 满足a +2b +c =1,a 2+b 2+c 2=1. 求证:-23≤c ≤1.证明:因为a +2b +c =1,a 2+b 2+c 2=1,所以a +2b =1-c ,a 2+b 2=1-c 2. 由柯西不等式得(12+22)(a 2+b 2)≥(a +2b )2, 5(1-c 2)≥(1-c )2, 整理得,3c 2-c -2≤0, 解得-23≤c ≤1.所以-23≤c ≤1.11.若x 2+4y 2=5.求x +y 的最大值及最大值点. 解:由柯西不等式得 [x 2+(2y )2]⎣⎡⎦⎤12+⎝⎛⎭⎫122≥(x +y )2即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x 2+4y 2=5,x =4y , 得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,最大值点为⎝⎛⎭⎫2,12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[核心必知]1.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们称这种证明问题的方法为反证法.2.放缩法证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.我们把这种方法称为放缩法.[问题思考]1.用反证法证明不等式应注意哪些问题?提示:用反证法证明不等式要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等,但推导出的矛盾必须是明显的.2.运用放缩法证明不等式的关键是什么?提示:运用放缩法证明不等式的关键是放大(或缩小)要适当.如果所要证明的不等式中含有分式,那么我们把分母放大时相应分式的值就会缩小;反之,如果把分母缩小,则相应分式的值就会放大.有时也会把分子、分母同时放大,这时应该注意不等式的变化情况,可以与相应的函数相联系,以达到判断大小的目的,这些都是我们在证明中的常用方法与技巧,也是放缩法中的主要形式.设a ,b ,c ,d 都是小于1的正数,求证:4a (1-b ),4b (1-c ),4c (1-d ),4d (1-a )这四个数不可能都大于1.[精讲详析] 本题考查反证法的应用.解答本题若采用直接法证明将非常困难,因此可考虑采用反证法从反面入手解决.假设4a (1-b )>1,4b (1-c )>1,4c (1-d )>1,4d (1-a )>1,则有a (1-b )>14,b (1-c )>14,c (1-d )>14,d (1-a )>14. ∴a (1-b )>12,b (1-c )>12,c (1-d )>12,d (1-a )>12.又∵a (1-b )≤a +(1-b )2,b (1-c )≤b +(1-c )2, c (1-d )≤c +(1-d )2, d (1-a )≤d +(1-a )2,∴a +1-b 2>12,b +1-c 2>12, c +1-d 2>12,d +1-a 2>12.将上面各式相加得2>2,矛盾. ∴4a (1-b ),4b (1-c ),4c (1-d ),4d (1-a ) 这四个数不可能都大于1.(1)当证明的结论中含有“不是”,“不都”,“不存在”等词语时,适于应用反证法,因为此类问题的反面比较具体.(2)用反证法证明不等式时,推出的矛盾有三种表现形式:①与已知相矛盾,②与假设矛盾,③与显然成立的事实相矛盾.1.已知f(x)是R上的单调递增函数,且f(a)+f(-b)>f(-a)+f(b).求证:a>b.证明:假设a≤b,则当a=b时-b=-a,于是有f(a)+f(-b)=f(b)+f(-a)与已知矛盾.当a<b时,-a>-b,于是有f(a)<f(b),f(-b)<f(-a),∴f(a)+f(-b)<f(b)+f(-a)与已知矛盾.∴a>b.实数a、b、c、d满足a+b=c+d=1,ac+bd>1,求证:a、b、c、d中至少有一个是负数.[精讲详析]本题考查“至多”、“至少”型命题的证明方法.解答本题应假设a、b、c、d都是非负数,然后证明并得出矛盾.假设a、b、c、d都是非负数,即a≥0,b≥0,c≥0,d≥0,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd,这与已知中ac+bd>1矛盾,∴原假设错误,∴a、b、c、d中至少有一个是负数.(1)在证明中含有“至少”、“至多”、“最多”等字眼时,或证明否定性命题、唯一性命题时,可使用反证法证明.在证明中常见的矛盾可以与题设矛盾,也可以与已知矛盾,与显然的事实矛盾,也可以自相矛盾.(2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,在证明过程中必须使用这个增加的条件,否则就不是反证法.2.已知函数y =f (x )在区间(a ,b )上是增函数,求证:y =f (x )在区间(a ,b )上至多有一个零点.证明:假设函数y =f (x )在区间(a ,b )上至少有两个零点,不妨设x 1,x 2(x 1≠x 2)为函数y =f (x )在区间(a ,b )上的两个零点,且x 1<x 2,则f (x 1)=f (x 2)=0.∵函数y =f (x )在区间(a ,b )上为增函数, x 1,x 2∈(a ,b )且x 1<x 2,∴f (x 1)<f (x 2),与f (x 1)=f (x 2)=0矛盾, ∴原假设不成立.∴函数y =f (x )在(a ,b )上至多有一个零点.求证:32-1n +1<1+122+…+1n 2<2-1n(n ∈N +且n ≥2).[精讲详析] 本题考查放缩法在证明不等式中的应用,解答本题要注意欲证的式子中间是一个和的形式,但我们不能利用求和公式或其他方法求和,因此可考虑将分母适当放大或缩小成可以求和的形式,进而求和,并证明该不等式.∵k (k +1)>k 2>k (k -1), ∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k (k ∈N +且k ≥2). 分别令k =2,3,…,n得12-13<122<1-12,13-14<132<12-13,…1n -1n +1<1n 2<1n -1-1n , 将这些不等式相加得12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n , 即12-1n +1<122+132+…+1n 2<1-1n, ∴1+12-1n +1<1+122+132+…+1n 2<1+1-1n ,即32-1n +1<1+122+132+…+1n 2<2-1n(n ∈N +且n ≥2)成立.(1)放缩法证不等式主要是根据不等式的传递性进行变换,即欲证a >b ,可换成证a >c 且c >b ,欲证a <b ,可换成证a <c 且c <b .(2)放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标.而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:⎝⎛⎭⎫a +122+34>⎝⎛⎭⎫a +122; 将分子或分母放大(缩小):1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1(k ∈R ,k >1)等.3.已知:a n =1×2+2×3+3×4+…+n (n +1)(n ∈N +),求证:n (n +1)2<a n <n (n +2)2.证明:∵n (n +1)=n 2+n , ∴n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+3+…40+n =n (n +1)2.∵n (n +1)<n +(n +1)2,∴a n <1+22+2+32+3+42+…+n +(n +1)2=12+(2+3+…+n )+n +12=n (n +2)2. 综上得:n (n +1)2<a n <n (n +2)2.反证法和放缩法在高考中单独命题的可能性不大,一般以解答题一问的形式出现,但反证法和放缩法是一种重要的思维模式,在逻辑推理中有着广泛的应用.[考题印证](安徽高考)设直线l 1:y =k 1x +1,l 2:y =k 2x -1, 其中实数k 1,k 2满足k 1k 2+2=0. (1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.[命题立意] 本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,考查学生推理论证的能力.[证明] (1)反证法.假设l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2.代入k 1k 2+2=0,得k 21+2=0,此与k 1为实数的事实相矛盾.从而k 1≠k 2,即l 1与l 2相交.(2)法一 :由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标(x ,y )为⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1.而2x 2+y 2=2⎝⎛⎭⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.此即表明交点P (x ,y )在椭圆2x 2+y 2=1上.法二:l 1与l 2的交点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧y -1=k 1x ,y +1=k 2x .故知x ≠0,从而⎩⎨⎧k 1=y -1x,k 2=y +1x .代入k 1k 2+2=0,得y -1x ·y +1x +2=0,整理后,得2x 2+y 2=1,所以交点P 在椭圆2x 2+y 2=1上.一、选择题1.否定“自然数a 、b 、c 中恰有一个为偶数”时正确的反设为 ( ) A .a 、b 、c 都是奇数 B .a 、b 、c 都是偶数 C .a 、b 、c 中至少有两个偶数D .a 、b 、c 中至少有两个偶数或都是奇数解析:选D 三个自然数的奇偶情况有“三偶、三奇、二偶一奇、二奇一偶”4种,而自然数a 、b 、c 中恰有一个为偶数包含“二奇一偶”的情况,故反面的情况有3种,只有D 项符合.2.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y ,则A 、B 的大小关系为( )A .A =B B .A <BC .A ≤BD .A >B解析:选B B =x 1+x +y 1+y >x 1+x +y +y1+x +y =x +y 1+x +y =A ,即A <B .3.设a ,b ,c ∈(-∞,0),则三数a +1b ,b +1c ,c +1a 的值 ( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2 解析:选C 假设都大于-2,则a +1b +b +1c +c +1a >-6,∵a ,b ,c <0,∴a +1a ≤-2,b +1b ≤-2,c +1c≤-2,∴a +1a +b +1b +c +1c ≤-6,这与假设矛盾,则选C.4.对“a 、b 、c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( )A .0个B .1个C .2个D .3个解析:选C 对①,若(a -b )2+(b -c )2+(c -a )2=0,这时a =b =c ,不符合题意,故①(a -b )2+(b -c )2+(c -a )2≠0符合题意,∴①对.对②,当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对.对③,显然不正确.二、填空题 5.M =1210+1210+1+1210+2+…+1211-1与1的大小关系为________. 解析:M =1210+1210+1+1210+2+…+1211-1=1210+1210+1+1210+2+…+1210+(210-1) <1210+1210+1210+…+1210共210项=1.即M <1. 答案:M <16.用反证法证明“已知平面上有n (n ≥3)个点,其中任意两点的距离最大为d ,距离为d 的两点间的线段称为这组点的直径,求证直径的数目最多为n 条”时,假设的内容为________.解析:对“最多”的否定应当是“最少”,二者之间应该是完全对应的,所以本题中的假设应为“直径的数目最少为n +1条”.答案:直径的数目最少为n +1条 7.A =1+12+13+…+1n 与n (n ∈N +)的大小关系是________. 解析:A =11+12+13+…+1n ≥项 =nn=n . 答案:A ≥n8.已知a >2,则log a (a -1)log a (a +1)________1(填“>”、“<”或“=”). 解析:∵a >2,∴log a (a -1)>0,log a (a +1)>0, 又log a (a -1)≠log a (a +1),∴log a (a -1)log a (a +1)<log a (a -1)+log a (a +1)2,而log a (a -1)+log a (a +1)2=12log a (a 2-1)<12log a a 2=1, ∴log a (a -1)log a (a +1)<1. 答案:< 三、解答题9.已知0<x <2,0<y <2,0<z <2,求证:x (2-y ),y (2-z ),z (2-x )不都大于1. 证明:法一:假设x (2-y )>1且y (2-z )>1且z (2-x )>1均成立,则三式相乘有:xyz (2-x )(2-y )(2-z )>1.① 由于0<x <2,∴0<x (2-x )=-x 2+2x =-(x -1)2+1≤1. 同理:0<y (2-y )≤1,且0<z (2-z )≤1, ∴三式相乘得:0<xyz (2-x )(2-y )(2-z )≤1② ②与①矛盾,故假设不成立.∴x (2-y ),y (2-z ),z (2-x )不都大于1.法二:假设x (2-y )>1且y (2-z )>1且z (2-x )>1. ∴x (2-y )+y (2-z )+z (2-x )>3.③ 又x (2-y )+y (2-z )+z (2-x ) ≤x +(2-y )2+y +(2-z )2+z +(2-x )2=3,④ ④与③矛盾,故假设不成立, ∴原题设结论成立.10.已知实数x 、y 、z 不全为零,求证: x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).证明:x 2+xy +y 2 =⎝⎛⎭⎫x +y 22+34y 2≥ ⎝⎛⎭⎫x +y 22=|x +y 2|≥x +y 2.同理可得:y 2+yz +z 2≥y +z 2,z 2+zx +x 2≥z +x2.由于x 、y 、z 不全为零,故上述三式中至少有一式取不到等号,所以三式累加得: x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝⎛⎭⎫x +y 2+⎝⎛⎭⎫y +z 2+⎝⎛⎭⎫z +x 2=32(x +y +z ). 11.已知数列{a n }满足a 1=2,a n +1=2⎝⎛⎭⎫1+1n 2·a n (n ∈N +), (1)求a 2,a 3并求数列{a n }的通项公式; (2)设c n =n a n ,求证:c 1+c 2+c 3+…+c n <710.解:(1)∵a 1=2,a n +1=2⎝⎛⎭⎫1+1n 2·a n (n ∈N +),∴a 2=2⎝⎛⎭⎫1+112·a 1=16, a 3=2⎝⎛⎭⎫1+122·a 2=72.又∵a n +1(n +1)2=2·a n n 2,n ∈N +,∴⎩⎨⎧⎭⎬⎫a n n 2为等比数列. ∴a n n 2=a 112·2n -1=2n , ∴a n =n 2·2n .(2)证明:c n =n a n =1n ·2n ,∴c 1+c 2+c 3+…+c n =11·2+12·22+13·23+…+1n ·2n <12+18+124+14·⎝⎛⎭⎫124+125+…+12n =23+14·124⎣⎡⎦⎤1-⎝⎛⎭⎫12n -31-12<23+14·1241-12=23+132=6796=670960<96×796×10=710,所以结论成立.。