人教版高中数学必修2全套教案
高中数学必修2全套精品教案有三维目标

1.1.1柱、锥、台、球的结构特征1.知识(zhī shi)与技能:(1)通过实物操作,增强学生(xué sheng)的直观感知。
(2)能根据几何(jǐ hé)结构特征对空间物体进行分类。
(3)会用语言概述(ɡài shù)棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及(yǐjí)柱、锥、台的分类。
2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
1.2.1 空间几何体的三视图(2课时)1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;难点:识别三视图所表示的空间几何体。
1.2.2 空间几何体的直观图1.知识与技能:(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观:提高空间想象力与直观感受,体会对比在学习中的作用,感受几何作图在生产活动中的应用。
二、教学重点、难点:用斜二测画法画空间几何值的直观图。
1.3.1 柱体、锥体、台体的表面积1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
人教版高中数学必修二全套教案

人教版高中数学必修二全套教案
本文档包含了人教版高中数学必修二全套教案,以下是各个章节的概要:
第一章矩阵与行列式
- 第一节二阶与三阶行列式
- 第二节行列式的性质与应用
- 第三节矩阵的概念与运算
- 第四节线性方程组的解与解集
第二章二次函数与一元二次方程
- 第一节二次函数及其图像
- 第二节二次函数的性质与图像的应用
- 第三节一元二次方程的解法
- 第四节一元二次方程的应用
第三章三角函数与解三角形
- 第一节各象限角的三角函数
- 第二节倍角、半角与合角公式
- 第三节解三角形
第四章概率与统计
- 第一节事件与概率
- 第二节条件概率与分组统计
- 第三节随机事件的数量表达与独立性- 第四节随机事件的相互关系
第五章推理与证明
- 第一节数学归纳法
- 第二节常见数学问题的证明方法
- 第三节直角三角形的判定定理
第六章平面向量
- 第一节平面向量的概念与运算
- 第二节向量的线性运算与共线问题- 第三节三角形与平面向量
第七章立体几何
- 第一节立体几何的基本概念
- 第二节球面与球台
- 第三节圆锥曲线与锥体
第八章三角恒等变换与解三角恒等式
- 第一节三角恒等变换及其证明
- 第二节三角方程的解法与平面解的应用
以上是人教版高中数学必修二全套教案的章节概要,具体内容请参考教材。
人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。
旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。
对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。
第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。
2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。
3、学生应注意知识点的归纳和总结,形成自己的知识体系。
4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。
四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。
外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。
高中人教版数学必修二教案

高中人教版数学必修二教案
第一课时:直线与圆的位置关系
一、教学目标:
1. 知识与技能:掌握直线与圆的位置关系,能够解决相关问题。
2. 过程与方法:通过讲解、示范、练习等方式,培养学生的逻辑思维和解题能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的数学思维能力。
二、教学重难点:
1. 重点:直线与圆的位置关系。
2. 难点:如何判断直线与圆的位置关系,如何运用相关知识解决实际问题。
三、教学过程:
1. 导入新知:通过引入一个实际问题,让学生思考直线与圆的位置关系。
2. 教学内容:讲解直线与圆的位置关系的相关概念和判断方法。
3. 案例分析:结合具体案例,让学生运用所学知识解决问题。
4. 小结归纳:总结本节课的重点内容,强化学生的学习效果。
四、课堂练习:
1. 练习题:判断直线与圆的位置关系,并解决相关题目。
2. 作业布置:布置相关练习题,巩固学生的学习成果。
五、教学反思:
本节课通过引入实际问题和案例分析的方式,让学生更加深入理解直线与圆的位置关系,提高他们的解题能力和运用知识的能力。
在今后的教学中,可以多结合实际问题,引导学生灵活运用所学知识解决问题,更好地掌握数学知识。
高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载

2.过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想.
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(8)不等式 的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.
§1.1.2集合间的基本关系
一.教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
第一章集合与函数
§1.1.1集合的含义与表示
一.教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
高中数学人教版必修2 3.2.2直线的两点式方程 教案1

3.2.2《直线的两点式方程》教案【教学目标】1.直线的两点式方程的推导过程;2.直线的截距式方程的构成,了解直线方程截距式的形式特点及适用范围; 3 截距的含义。
掌握直线方程的两点的形式特点及适用范围。
【导入新课】 问题导入:利用点斜式解答如下问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程。
(2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。
新授课阶段1.直线的两点式方程的推导过程已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1))1(232-=-x y(2))(112121x x x x y y y y---=-指出:当21y y ≠时,方程可以写成),(2121121121y y x x x x x x y y y y ≠≠--=--由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式。
思考:若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;当21y y =时,直线与y轴垂直,直线方程为:1y y=。
例1 已知直线l :120kx y k -++= (1) 证明直线l 经过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程;(3) 若直线不经过第三象限,求k 的取值范围。
解:(1)(-2,1);(2)由直线l 的方程得A (-12kk+,0),B (0,1+2k),由题知:-12kk+<0,且1+2k >0,∴k >0 ∵S=12 |OA||OB|=11(44)2k k++≥4.当且仅当k >0,4k=1k ,即k=12时,面积取最小值4,此时直线的方程是:x -2y +4=0.(3)由(2)知直线l 在坐标轴上的截距,直线不经过第四象限则-12kk+≤0,且1+2k≥0,∴k >0。
人教版高中数学必修2《直线的倾斜角与斜率》教学设计及教案
人教版高中数学必修2《直线的倾斜角与斜率》教学设计及教案本节课选自高中数学《必修2》(普通高中课程标准实验教科书)第三章第一节第一节课。
一、内容和内容解析内容:解析几何介绍,直线的倾斜角和斜率。
每一章的第一节课非常重要,所讲内容要体现出“大问题”,“显著问题”,要从全章的角度来看问题。
因此教学内容不仅有倾斜角、斜率的概念,还应当包含坐标法、数形结合思想、解析几何发展史等。
直线的倾斜角和斜率都描述了直线的倾斜程度,倾斜角用几何位置关系刻画,斜率从数量关系刻画,二者的联系桥梁是正切函数值,并且可以用直线上两个点的坐标表示。
建立斜率公式的过程,体现了坐标法的基本思想:把几何问题代数化,通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带,研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念,不仅其建立过程很好地体现了解析法,而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用,这是因为在直角坐标系下,确定直线的条件最本质条件是直线上的一个点及其斜率,其他形式都可以化归到这两个条件上来。
教学重点:1、使学生经历几何问题代数化的过程,初步了解解析几何研究问题的基本思想方法,体会坐标法;2、理解斜率的定义,掌握过两点的直线的斜率公式。
二、目标和目标解析1.理解倾斜角的概念,体会在直角坐标系下,以坐标轴为“参照系”,用统一的标准刻画几何元素的思想方法。
2.理解斜率的定义和斜率公式,经历几何问题代数化的过程,了解解析法的基本步骤,感受解析几何的思想方法。
3.通过解析几何发展史的简单介绍,渗透数学文化教育。
三、教学问题诊断分析平面几何中,“两点确定一条直线”是没有“参照系”的,如何使学生在这一知识的基础上,顺利、自然地过渡到直角坐标系下用一个点和倾斜角确定一条直线,是比较困难的。
事实上,已知直线的倾斜角就相当于已知直线的方向,因此已知“两个点可以确定直线的方向,这与‘一个点和直线的方向确定一条直线’是一致的”。
高中数学必修2教案全套(完整资料).doc
【最新整理,下载后即可编辑】第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
高中必修二数学教案(最新8篇)
高中必修二数学教案(最新8篇)高中数学必修2优秀教案篇一一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识。
主要内容是:画出空间几何体的三视图。
比较准确地画出几何图形,是学好立体几何的一个前提。
因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视。
画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力。
“视图”是将物体按正投影法向投影面投射时所得到的投影图。
光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”。
用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”。
教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务。
进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点。
三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成。
因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容。
教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用。
对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图。
教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流。
值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成。
另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形。
二、教学目标1、知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2、过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
新人教版高中数学必修二复数全套教案
复数的概念【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数是如何定义的?其表示方法又是什么?2.复数分为哪两大类?3.复数相等的条件是什么?二、新知探究探究点1:复数的概念下列命题:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④实数集是复数集的真子集.其中正确的命题是()A.①B.②C.③D.④解析:对于复数a+b i(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.答案:D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a +b i 的形式,更要注意这里a ,b 均为实数时,才能确定复数的实部、虚部.提醒:解答复数概念题,一定要紧扣复数的定义,牢记i 的性质. 探究点2: 复数的分类当实数m 为何值时,复数z =m2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?解:(1)当⎩⎨⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m ≠0,m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i (a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i (a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0. 探究点3: 复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i (m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________. 解析:(1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A .(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎨⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎨⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2. 【答案:(1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.注意:在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立. 三、课堂总结1.复数的有关概念 (1)复数的定义形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (2)复数集全体复数所构成的集合C ={a +b i|a ,b ∈R }叫做复数集. (3)复数的表示方法复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i (a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,非纯虚数a ≠0W.(2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i (b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i (b ∈R )才是纯虚数. 四、课堂检测1.若复数z =a i 2-b i (a ,b ∈R )是纯虚数,则一定有( ) A .b =0 B .a =0且b ≠0 C .a =0或b =0D .ab ≠0解析:选B .z =a i 2-b i =-a -b i ,由纯虚数的定义可得a =0且b ≠0. 2.若复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为( ) A .-1 B .2 C .1D .-1或2解析:选D .因为复数z =m 2-1+(m 2-m -2)i 为实数, 所以m 2-m -2=0,解得m =-1或m =2.3.若复数z =(m +1)+(m 2-9)i <0,则实数m 的值等于____________.解析:因为z <0,所以⎩⎨⎧m 2-9=0,m +1<0,解得m =-3.答案:-34.已知x 2-x -6x +1=(x 2-2x -3)i (x ∈R ),则x =________.解析:因为x ∈R ,所以x 2-x -6x +1∈R ,由复数相等的条件得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,x +1≠0,解得x =3. 答案:3【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题: 1.复平面是如何定义的?2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 3.复数z =a +b i 的共轭复数是什么? 二、新知探究探究点1:复数与复平面内的点已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.解:(1)若z 对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. 故a 的取值范围是⎝ ⎛⎭⎪⎫-1,12. 互动探究:变条件:本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值.解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =54.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i (a ,b ∈R )可以用复平面内的点Z(a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.探究点2:复数与复平面内的向量在复平面内,复数i ,1,4+2i 对应的点分别是A ,B ,C .求平行四边形ABCD 的顶点D 所对应的复数.解:法一:由复数的几何意义得A (0,1),B (1,0),C (4,2),则AC 的中点为⎝ ⎛⎭⎪⎫2,32,由平行四边形的性质知该点也是BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,所以⎩⎨⎧x =3,y =3,即点D的坐标为(3,3),所以点D 对应的复数为3+3i .法二:由已知得OA →=(0,1),OB →=(1,0),OC →=(4,2),所以BA →=(-1,1),BC →=(3,2),所以BD →=BA →+BC →=(2,3),所以OD →=OB →+BD →=(3,3), 即点D 对应的复数为3+3i .复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.探究点3: 复数的模(1)设复数z 1=a +2i ,z 2=-2+i 且|z 1|<|z 2|,则实数a 的取值范围是( ) A .-1<a <1 B .a <-1或a >1 C .a >1D .a >0(2)(2019·贵州遵义贵龙中学期中测试)已知复数z 满足|z |2-2|z |-3=0,则复数z 在复平面内对应点的集合是( )A .1个圆B .线段C .2个点D .2个圆解析:(1)由题意得a 2+22<(-2)2+12,即a 2+4<5(a ∈R ),所以-1<a <1. (2)由题意知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1, 因为|z |≥0,所以|z |=3,所以复数z 在复平面内对应点的集合是1个圆. 答案:(1)A (2)A求解复数的模的思路解决复数的模的求解问题,应先把复数表示成标准的代数形式,再根据复数的模的定义求解. 三、课堂总结1.复平面建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的两种几何意义(1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R ) ←――→一一对应平面向量OZ →.3.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|4.共轭复数(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(2)虚部不等于0的两个共轭复数也叫做共轭虚数. (3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i . ■名师点拨复数z =a +b i 在复平面内对应的点为(a ,b ),复数z -=a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称. 四、课堂检测1.已知z =(m +3)+(m -1)i (m ∈R )在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:选A .由题意得⎩⎨⎧m +3>0,m -1<0,解得-3<m <1.2.在复平面内,O 为原点,向量OA →对应的复数为-1-2i ,若点A 关于实轴的对称点为B ,则向量OB→对应的复数为( ) A .-2-i B .2+i C .1+2iD .-1+2i解析:选D .由题意可知,点A 的坐标为(-1,-2),则点B 的坐标为(-1,2),故向量OB→对应的复数为-1+2i . 3.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是____________. 解析:依题意,可知z =a +i (a ∈R ),则|z |2=a 2+1.因为0<a <2,所以a 2+1∈(1,5),即|z |∈(1,5).答案:(1,5)4.若复数z 1=2+b i 与复数z 2=a -4i 互为共轭复数,则a =________,b =________. 解析:因为z 1与z 2互为共轭复数, 所以a =2,b =4. 答案:2 4复数的三角表示【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数z =a +b i 的三角形式是什么? 2.复数的辐角、辐角的主值是什么? 3.复数三角形式的乘、除运算公式是什么? 4.复数三角形式乘、除运算的几何意义是什么? 二、基础知识1.复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数z =a +b i 都可以表示成r (cos θ+isin θ)的形式,其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ→所在射线(射线OZ →)为终边的角,叫做复数z =a+b i 的辐角,我们规定在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z .r (cos θ+isin θ)叫做复数z =a +b i 的三角表示式,简称三角形式.a +b i 叫做复数的代数表示式,简称代数形式.■名师点拨(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍. (2)复数0的辐角是任意的.(3)在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z ,且0≤arg z <2π. (4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等. 2.复数三角形式的乘、除运算若复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),且z 1≠z 2,则 (1)z 1z 2=r 1(cos θ1+isin θ1)·r 2(cos θ2+isin θ2) =r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)]. (2)z 1z 2=r 1(cos θ1+isin θ1)r 2(cos θ2+isin θ2)=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 即:两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和. 两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差. 三、合作探究1.复数的代数形式与三角形式的互化 角度一 代数形式化为三角形式把下列复数的代数形式化成三角形式:(1)3+i ; (2)2-2i.【解】(1)r =3+1=2,因为3+i 对应的点在第一象限, 所以cos θ=32,即θ=π6,所以3+i =2⎝ ⎛⎭⎪⎫cos π6+isin π6.(2)r =2+2=2,cos θ=22, 又因为2-2i 对应的点位于第四象限, 所以θ=7π4.所以2-2i =2⎝⎛⎭⎪⎫cos 7π4+isin7π4.复数的代数形式化三角形式的步骤 (1)先求复数的模. (2)决定辐角所在的象限. (3)根据象限求出辐角. (4)求出复数的三角形式.[提醒]一般在复数三角形式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定取主值.角度二 三角形式化为代数形式分别指出下列复数的模和辐角的主值,并把这些复数表示成代数形式.(1)4⎝ ⎛⎭⎪⎫cos π6+isin π6;(2)32(cos 60°+isin 60°);(3)2⎝⎛⎭⎪⎫cos π3-isin π3.【解】(1)复数4⎝⎛⎭⎪⎫cos π6+isin π6的模r =4,辐角的主值为θ=π6.4⎝⎛⎭⎪⎫cos π6+isin π6=4cos π6+4isin π6=4×32+4×12i=23+2i.(2)32(cos 60°+isin 60°)的模r =32,辐角的主值为θ=60°. 32(cos 60°+isin 60°)=32×12+32×32i =34+34i.(3)2⎝⎛⎭⎪⎫cos π3-isin π3=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2π-π3+isin ⎝ ⎛⎭⎪⎫2π-π3=2⎝ ⎛⎭⎪⎫cos 53π+isin 53π. 所以复数的模r =2,辐角的主值为53π.2⎝ ⎛⎭⎪⎫cos 53π+isin 53π=2cos 53π+2isin 53π =2×12+2×⎝ ⎛⎭⎪⎫-32i=1-3i.复数的三角形式z =r (cos θ+isin θ)必须满足“模非负、余正弦、+相连、角统一、i 跟sin ”,否则就不是三角形式,只有化为三角形式才能确定其模和辐角,如本例(3).2.复数三角形式的乘、除运算计算:(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π;(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)]; (3)4÷⎝⎛⎭⎪⎫cos π4+isin π4.【解】(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π=32⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫43π+56π+isin ⎝ ⎛⎭⎪⎫43π+56π=32⎝ ⎛⎭⎪⎫cos 136π+isin 136π=32⎝⎛⎭⎪⎫cos π6+isin π6=32⎝ ⎛⎭⎪⎫32+12i=163+16i.(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)] =32[cos(225°-150°)+isin(225°-150°)] =62(cos 75°+isin 75°) =62⎝ ⎛⎭⎪⎫6-24+6+24i =6-238+6+238i =3-34+3+34i.(3)4÷⎝⎛⎭⎪⎫cos π4+isin π4=4(cos 0+isin 0)÷⎝⎛⎭⎪⎫cos π4+isin π4=4⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π4+isin ⎝ ⎛⎭⎪⎫-π4 =22-22i.(1)乘法法则:模相乘,辐角相加. (2)除法法则:模相除,辐角相减.(3)复数的n 次幂,等于模的n 次幂,辐角的n 倍. 3.复数三角形式乘、除运算的几何意义在复平面内,把复数3-3i 对应的向量分别按逆时针和顺时针方向旋转π3,求所得向量对应的复数.【解】因为3-3i =23⎝ ⎛⎭⎪⎫32-12i=23⎝ ⎛⎭⎪⎫cos 116π+isin 116π所以23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎝ ⎛⎭⎪⎫cos π3+isin π3=23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π+π3+isin ⎝ ⎛⎭⎪⎫116π+π3=23⎝ ⎛⎭⎪⎫cos 136π+isin 136π=23⎝ ⎛⎭⎪⎫cos π6+isin π6=3+3i ,23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3=23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π-π3+isin ⎝ ⎛⎭⎪⎫116π-π3=23⎝ ⎛⎭⎪⎫cos 32π+isin 32π=-23i.故把复数3-3i 对应的向量按逆时针旋转π3得到的复数为3+3i ,按顺时针旋转π3得到的复数为-23i.两个复数z 1,z 2相乘时,先分别画出与z 1,z 2对应的向量OZ 1→,OZ 2→,然后把向量OZ 1→绕点O 按逆时针方向旋转角θ2(如果θ2<0,就要把OZ 1→绕点O 按顺时针方向旋转角|θ2|),再把它的模变为原来的r 2倍,得到向量OZ →,OZ →表示的复数就是积z 1z 2. 四、课堂检测1.复数1-3i 的辐角的主值是( ) A .53π B .23π C .56πD .π3解析:选A .因为1-3i =2⎝ ⎛⎭⎪⎫12-32i =2⎝ ⎛⎭⎪⎫cos 53π+isin 53π,所以1-3i 辐角的主值为53π.2.复数9(cos π+isin π)的模是________. 答案:93.arg(-2i)=________.答案:32π 4.计算:(1)(cos 75°+isin 75°)(cos 15°+isin 15°);(2)2(cos 300°+isin 300°)÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π. 解:(1)(cos 75°+isin 75°)(cos 15°+isin 15°) =cos(75°+15°)+isin(75°+15°) =cos 90°+isin 90° =i.(2)2(cos 300°+isin 300°)÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π=2⎝ ⎛⎭⎪⎫cos 53π+isin 53π÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π =2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫53π-34π+isin ⎝ ⎛⎭⎪⎫53π-34π=2⎝ ⎛⎭⎪⎫cos 1112π+isin 1112π=-1+32+3-12i.复数的四则运算【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数的加、减法运算法则是什么?运算律有哪些? 2.复数的加、减法的几何意义是什么?二、新知探究探究点1:复数的加、减法运算(1)计算:(5-6i )+(-2-i )-(3+4i );(2)设z 1=x +2i ,z 2=3-y i (x ,y ∈R ),且z 1+z 2=5-6i ,求z 1-z 2. 解:(1)原式=(5-2-3)+(-6-1-4)i =-11i . (2)因为z 1=x +2i ,z 2=3-y i ,z 1+z 2=5-6i ,所以(3+x )+(2-y )i =5-6i , 所以⎩⎨⎧3+x =5,2-y =-6,所以⎩⎨⎧x =2,y =8,所以z 1-z 2=(2+2i )-(3-8i )=(2-3)+[2-(-8)]i=-1+10i .解决复数加、减运算的思路两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).探究点2:复数加、减法的几何意义已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i .(1)求AO→表示的复数; (2)求CA→表示的复数.解:(1)因为AO→=-OA →,所以AO →表示的复数为-(3+2i ),即-3-2i . (2)因为CA→=OA →-OC →, 所以CA →表示的复数为(3+2i )-(-2+4i )=5-2i . 互动探究:1.变问法:若本例条件不变,试求点B 所对应的复数.解:因为OB →=OA →+OC →,所以OB →表示的复数为(3+2i )+(-2+4i )=1+6i .所以点B所对应的复数为1+6i .2.变问法:若本例条件不变,求对角线AC ,BO 的交点M 对应的复数.解:由题意知,点M 为OB 的中点,则OM →=12OB →,由互动探究1中知点B 的坐标为(1,6),得点M 的坐标为⎝ ⎛⎭⎪⎫12,3,所以点M 对应的复数为12+3i .复数加、减法几何意义的应用技巧(1)复数的加减运算可以转化为点的坐标或向量运算.(2)复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则. 三、课堂总结1.复数加、减法的运算法则及加法运算律 (1)加、减法的运算法则设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i .(2)加法运算律 对任意z 1,z 2,z 3∈C ,有 ①交换律:z 1+z 2=z 2+z 1.②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). 2.复数加、减法的几何意义如图所示,设复数z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )对应的向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是OZ →,与z 1-z 2对应的向量是Z 2Z 1→.四、课堂检测1.(6-3i )-(3i +1)+(2-2i )的结果为( ) A .5-3i B .3+5i C .7-8iD .7-2i解析:选C .(6-3i )-(3i +1)+(2-2i )=(6-1+2)+(-3-3-2)i =7-8i .2.已知复数z 1=(a 2-2)-3a i ,z 2=a +(a 2+2)i ,若z 1+z 2是纯虚数,则实数a 的值为____________.解析:由z 1+z 2=a 2-2+a +(a 2-3a +2)i 是纯虚数,得⎩⎨⎧a 2-2+a =0,a 2-3a +2≠0⇒a =-2.答案:-23.已知复数z 1=-2+i ,z 2=-1+2i . (1)求z 1-z 2;(2)在复平面内作出复数z 1-z 2所对应的向量.解:(1)由复数减法的运算法则得z 1-z 2=(-2+i )-(-1+2i )=-1-i .(2)在复平面内作复数z 1-z 2所对应的向量,如图中OZ→.【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数的乘法和除法运算法则各是什么? 2.复数乘法的运算律有哪些? 3.如何在复数范围内求方程的解? 二、新知探究探究点1: 复数的乘法运算(1)(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=( )A .1+3iB .-1+3iC .3+iD .-3+i(2)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i )2=( )A .5-4iB .5+4iC .3-4iD .3+4i(3)把复数z 的共轭复数记作z -,已知(1+2i ) z -=4+3i ,求z .解:(1)选B .(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=(1-i )(1+i )⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i=2⎝ ⎛⎭⎪⎫-12+32i =-1+3i . (2)选D .因为a -i 与2+b i 互为共轭复数, 所以a =2,b =1,所以(a +b i )2=(2+i )2=3+4i . (3)设z =a +b i (a ,b ∈R ),则z -=a -b i ,由已知得,(1+2i )(a -b i )=(a +2b )+(2a -b )i =4+3i ,由复数相等的条件知,{a +2b =4,2a -b =3,解得a =2,b =1,所以z =2+i .复数乘法运算法则的应用复数的乘法可以按照多项式的乘法计算,只是在结果中要将i 2换成-1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如(a +b i )2=a 2+2ab i +b 2i 2=a 2-b 2+2ab i ,(a +b i )3=a 3+3a 2b i +3ab 2i 2+b 3i 3=a 3-3ab 2+(3a 2b -b 3)i .探究点2: 复数的除法运算计算:(1)(1+2i )2+3(1-i )2+i;(2)(1-4i )(1+i )+2+4i 3+4i.解:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i2+i=i2+i=i (2-i )5=15+25i .(2)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i =7+i 3+4i=(7+i )(3-4i )(3+4i )(3-4i )=21-28i +3i +425=25-25i 25=1-i .复数除法运算法则的应用复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.探究点3: i 的运算性质(1)复数z =1-i1+i,则ω=z 2+z 4+z 6+z 8+z 10的值为( ) A .1 B .-1 C .iD .-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019等于________. 解析:(1)z 2=⎝⎛⎭⎪⎫1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i )2 019=⎝ ⎛⎭⎪⎫2i 22 019=i 2 019=(i 4)504·i 3=1504·(-i )=-i .答案:(1)B (2)-i(1)i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N *). (2)记住以下结果,可提高运算速度. ①(1+i )2=2i ,(1-i )2=-2i .②1-i 1+i =-i ,1+i 1-i =i . ③1i =-i . 探究点4:在复数范围内解方程在复数范围内解下列方程. (1)x 2+5=0;(2)x 2+4x +6=0.解:(1)因为x 2+5=0,所以x 2=-5, 又因为(5i )2=(-5i )2=-5, 所以x =±5i ,所以方程x 2+5=0的根为±5i . (2)法一:因为x 2+4x +6=0, 所以(x +2)2=-2,因为(2i )2=(-2i )2=-2, 所以x +2=2i 或x +2=-2i , 即x =-2+2i 或x =-2-2i ,所以方程x 2+4x +6=0的根为x =-2±2i . 法二:由x 2+4x +6=0知Δ=42-4×6=-8<0, 所以方程x 2+4x +6=0无实数根.在复数范围内,设方程x 2+4x +6=0的根为x =a +b i (a ,b ∈R 且b ≠0), 则(a +b i )2+4(a +b i )+6=0, 所以a 2+2ab i -b 2+4a +4b i +6=0,整理得(a 2-b 2+4a +6)+(2ab +4b )i =0,所以⎩⎨⎧a 2-b 2+4a +6=0,2ab +4b =0,又因为b ≠0,所以⎩⎨⎧a 2-b 2+4a +6=0,2a +4=0,解得a =-2,b =±2. 所以x =-2±2i ,即方程x 2+4x +6=0的根为x =-2±2i .在复数范围内,实系数一元二次方程ax 2+bx +c =0(a ≠0)的求解方法 (1)求根公式法①当Δ≥0时,x =-b ±b 2-4ac2a.②当Δ<0时,x =-b ±-(b 2-4ac )i2a .(2)利用复数相等的定义求解设方程的根为x=m+n i(m,n∈R),将此代入方程ax2+bx+c=0(a≠0),化简后利用复数相等的定义求解.三、课堂总结1.复数乘法的运算法则和运算律(1)复数乘法的运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律2.复数除法的运算法则设z1=a+b i,z2=c+d i(c+d i≠0)(a,b,c,d∈R),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).■名师点拨对复数除法的两点说明(1)实数化:分子、分母同时乘以分母的共轭复数,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.(2)代数式:注意最后结果要将实部、虚部分开.四、课堂检测1.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-1 2C.12D.2解析:选D.因为(1+b i)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.2.已知i为虚数单位,则复数i2-i的模等于()A.5B.3C.33D.55解析:选D.因为i2-i=i(2+i)(2-i)(2+i)=i(2+i)5=-15+25i,所以|i2-i |=|-15+25i|=(-15)2+(25)2=55,故选D.3.计算:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018;(2)(4-i5)(6+2i7)+(7+i11)(4-3i).解:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018=2+2i-2i+⎝⎛⎭⎪⎫22i1 009=i(1+i)+⎝⎛⎭⎪⎫1i1 009=-1+i+(-i)1 009=-1+i-i=-1.(2)原式=(4-i)(6-2i)+(7-i)(4-3i)=22-14i+25-25i=47-39i.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版A版高一数学必修2全套教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
(六)教学反思:1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。
教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)(五)教学反思:1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。
(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。
2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。
3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。
如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。