2019-2020年高考数学一轮复习 第四章 平面向量 第二节 平面向量的基本定理与坐标表示习题 理

合集下载

新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》

新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》

2.在平行四边形ABCD中,E和F分别是CD和BC的中点.若 AC AE AF,其中λ ,μ ∈R,则λ +μ =________.
【解析】 选择 AB,AD 作为平面向量的一组基底,
则 AC AB AD,AE 1 AB AD,AF AB 1 AD,
2
2
又 AC AE AF (1 )AB ( 1 )AD, 于是得
C.- 1 a- 5 b
3 12
B. 1 a- 13 b
3 12
D.- 1 a+ 13 b
3 12
【解析】选C. DE DC CE
1 BC 3 CA 34
1 (AC AB) 3 AC
3
4
1 AB 5 AC 1 a 5 b.
3 12
3 12
【一题多解微课】 解决本题还可以采用以下方法: 选C.不妨设∠BAC=90°,取直角坐 标系xOy,设A(0,0),B(1,0),C(0,1), 则a=(1,0),b=(0,1),
【题组练透】 1.已知平面向量a=(1,1),b=(1,-1),则向量 1 a- 3 b
22
=()
A.(-2,-1) C.(-1,0)
B.(-2,1) D.(-1,2)
【解析】选D.因为a=(1,1),b=(1,-1),所以 1 a- 3 b
22
=
1 2
(1,1)-
3 (1,-1)=
2
(1 , 1) (3 , 3) =(-1,2).
3
3
【解析】选B.因为a∥b,所以-2x-3(y-1)=0,化简得
2x+3y=3,又因为x,y均为正数,
所以 3 2 = ( 3 2) 1(2x+3y)

高考理科第一轮复习课件(4.2平面向量的坐标运算)

高考理科第一轮复习课件(4.2平面向量的坐标运算)
向量的坐 若起点A(x1,y1),终点B(x2,y2),则 AB =
(λ x,λ y) 设a=(x,y),λ ∈R,则λ a=____________

(x2-x1,y2-y1) _______________
4.向量平行的坐标表示 设a,b是非零向量且a=(x1,y1),b=(x2,y2),y1,y2≠0,则 x1y2-x2y1=0 a∥b⇔__________. 定理1:若两个向量(与坐标轴不平行)平行,则它们相应的 成比例 坐标_______.
【互动探究】在本例题(2)图中,连接CD交AM于点P,若
AP AM,CP CD 求λ ,μ 的值. ,
【解析】CD AD AC 2 AB AC 2 a b,
3 3 1 1 AM (AB AC) (a b). 2 2 AC AP PC AP CP AM CD
则向量 MN =______. CM 3CA CN 2CB , ,
【思路点拨】(1)利用向量坐标运算的法则求解即可.
(2)根据向量的共线及向量坐标运算的法则逐一验证即可.
(3)利用平面向量的基本概念及其坐标表示求解.
【规范解答】(1)选B.设b=(x,y),则2b-a=(2x-3,2y-3)= (-1,1), 故

)
(4)平面向量的基底不唯一,只要基底确定后,平面内的任 何一个向量都可被这组基底唯一表示.( )
(5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示 成 x1 = y1 . (
x2 y2
)
【解析】(1)错误.只有不共线的两个向量才能作为平面的一 组基底.

高考理科第一轮复习课件(4.4平面向量的应用)

高考理科第一轮复习课件(4.4平面向量的应用)
弦,求出三角形的面积化简即可. (2)建立平面直角坐标系,将问题转化为向量的坐标运算即 可.
【规范解答】(1)选C.设a,b的夹角为θ,由条件得
cos ab , a b ab 2 ) 1 , 2 a b | | a | b |
sin 1 cos 2 1 (
【解析】选D.|F3|2=|F1|2+|F2|2+2|F1||F2|cos 60°=28,所以
|F3|= 2 7, 选D.
2.若不重合的四点P,A,B,C,满足 PA PB PC 0,
AB AC mAP, 则实数m的值为(




【思路点拨】(1)将a·b表示为θ的三角函数,然后求得a·b 的最值,转化为解不等式的问题. (2)①由 | BC BA | 2 得到关于θ的关系式,两边平方可求解; ②用含θ的关系式表示m,n,然后转化为三角函数的最值问题

求解.
【规范解答】(1)选B.由已知得|b|=1,所以|a|= 因此a· b=mcos θ+nsin θ =
3. 在△ABC中,∠C=90°,且CA=CB=3,点M满足 BM=2MA, 则 CMCB 等于( (A)2 (B)3



) (C)4 (D)6
【解析】选B.由题意可知,
1 CM CB CA+ AB)CB =( 3 1 =CACB ABCB + 3 1 =0+ 3 2 3cos 45=3. 3
(A)等边三角形
(C)等腰非等边三角形
(B)直角三角形
(D)三边均不相等的三角形
【解析】选A.由 ( AB AC )BC 0 知△ABC为等腰三角形,且 AB | AC | AB=AC.由 AB AC 1 知, 与AC 的夹角为60°,所以 AB 2 AB | AC |

2020版高考数学一轮复习平面向量基本定理及坐标表示学案文含解析

2020版高考数学一轮复习平面向量基本定理及坐标表示学案文含解析

第二节 平面向量基本定理及坐标表示2019考纲考题考情1.平面向量基本定理(1)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底。

(2)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2。

2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中a 在x 轴上的坐标是x ,a 在y 轴上的坐标是y 。

3.平面向量的坐标运算若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0。

1.平面内不共线向量都可以作为基底,反之亦然。

2.若a 与b 不共线,λa +μb =0,则λ=μ=0。

3.已知a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2。

一、走进教材1.(必修4P 99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析 由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3)。

设P (x ,y ),则P 1P →=(x -1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1)。

高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全

高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全

第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价. 即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y 2. 2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、习题改编1.(必修4P99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析:选D.由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3).设P (x ,y ),则P 1P →=(x-1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1).故选D.2.(必修4P119A 组T8改编)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=( )A .-12B.12 C .-2D .2解析:选A.由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( ) (5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B.平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A.法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).故选A.平面向量基本定理及其应用(师生共研)(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC→=b ,则DE →=( )A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b(2)(2020·某某市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=.【解析】 (1)DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC→=b ,则PQ →=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A.由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A.2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →, 所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →, 又因为OP →=mOA →+OB →, 所以OB →=OB →+(m +1)OA →,依题意OA →,OB →是非零向量且不共线, 所以m +1=0, 解得m =-1.平面向量的坐标运算(师生共研)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为→=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7). 答案:(4,7)2.如图所示,以e 1,e 2为基底,则a =.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2平面向量共线的坐标表示(多维探究) 角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =. 解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ).因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0,即2m -3=0,所以m =32.思想方法系列8 坐标法解决平面向量的线性运算(2020·某某某某调研)在直角三角形ABC 中,∠A =90°,AB =3,AC =4,P 在△ABC斜边BC 的中线AD 上,则AP →·(PB →+PC →)的最大值为( )A.2516B.258C.254D .252【解析】 以A 为坐标原点,AB →,AC →的方向分别为x 轴、y 轴正方向建立平面直角坐标系,则B (3,0),C (0,4),BC 中点D ⎝ ⎛⎭⎪⎫23,2,则直线AD 的方程为y =43x .设P ⎝ ⎛⎭⎪⎫x ,43x ,所以PB →=⎝ ⎛⎭⎪⎫3-x ,-43x ,PC →=⎝ ⎛⎭⎪⎫-x ,4-43x ,AP→=⎝ ⎛⎭⎪⎫x ,43x ,AP →·(PB →+PC →)=-509x 2+253x =-509⎝ ⎛⎭⎪⎫x -342+258,所以当x =34时,AP →·(PB →+PC →)的最大值为258.故选B. 【答案】 B系要建得巧,题就解得妙坐标是向量代数化的媒介,而坐标的获得又要借助于直角坐标系,对于某些平面向量问题,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系;(2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限.如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=.解析:法一:以AB ,AD 所在直线分别为x 轴,y 轴,建立平面直角坐标系,如图所示,设正方形的边长为1,则AM →=⎝ ⎛⎭⎪⎫1,12,BN →=⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).因为AC →=λAM →+μBN→=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25,所以λ+μ=85.法二:由AM →=AB →+12AD →,BN →=-12AB →+AD →,得AC →=λAM →+μBN →=⎝ ⎛⎭⎪⎫λ-μ2AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25.所以λ+μ=85.答案:85[基础题组练]1.已知e 1=(2,1),e 2=(1,3),a =(-1,2).若a =λ1e 1+λ2e 2,则实数对(λ1,λ2)为( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)解析:选B.因为e 1=(2,1),e 2=(1,3),所以a =λ1e 1+λ2e 2=λ1(2,1)+λ2(1,3)=(2λ1+λ2,λ1+3λ2).又因为a =(-1,2),所以⎩⎪⎨⎪⎧2λ1+λ2=-1,λ1+3λ2=2,解得⎩⎪⎨⎪⎧λ1=-1,λ2=1.故选B.2.(2020·某某某某三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A.13 B .-13C .-3D .3解析:选B.法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B.法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B.3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎫-23,-23B.⎝ ⎛⎭⎪⎫-13,-13C.⎝ ⎛⎭⎪⎫13,13D .⎝ ⎛⎭⎪⎫23,23 解析:选A.易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以E ⎝ ⎛⎭⎪⎫-23,-23.4.(2020·某某豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C .3D .2 3解析:选A.如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0). AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=.解析:因为a =(1,2),b =(2,3),所以λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3).因为向量λa +b 与向量c =(-4,-7)共线, 所以-7(λ+2)+4(2λλ=2. 答案:26.已知点A (2,3),B (4,5),C (7,10),若AP →=AB →+λAC →(λ∈R ),且点P 在直线x -2y =0上,则λ的值为.解析:设P (x ,y ),则由AP →=AB →+λAC →,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x =5λ+4,y =7λP 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.答案:-237.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=.解析:选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.答案:438.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,所以A ,B ,M 三点共线.[综合题组练]1.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2).2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1 B. 2 C. 3D .2解析:选B.因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.设OA →=(-2,4),OB →=(-a ,2),OC →=(b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为.解析:由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 因为A ,B ,C 三点共线,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫3+2a b +b a ≥12⎝ ⎛⎭⎪⎫3+22a b ·b a =32+2(当且仅当a =2-2,b =22-2时等号成立).答案:32+ 24.(2020·某某某某二模)已知W 为△ABC 的外心,AB =4,AC =2,∠BAC =120°,设AW →=λ1AB →+λ2AC →,则2λ1+λ2=.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.根据已知条件可知A (0,0),B (4,0),C (-1,3). 根据外心的性质可知点W 在直线x =2上(如图所示).易知线段AC 中点的坐标为⎝ ⎛⎭⎪⎫-12,32,直线AC 的斜率为-3,故线段AC 的中垂线l的斜率为33(如图所示),方程为y -32=33⎝ ⎛⎭⎪⎫x +12. 令x =2,解得y =433,故W ⎝ ⎛⎭⎪⎫2,433.由AW →=λ1AB →+λ2AC →得⎝ ⎛⎭⎪⎫2,433=λ1(4,0)+λ2(-1,3),即⎩⎪⎨⎪⎧4λ1-λ2=2,3λ2=433,解得⎩⎪⎨⎪⎧λ1=56,λ2=43.所以2λ1+λ2=53+43=3.答案:3。

高考数学一轮复习 4.2 平面向量的基本定理及坐标表示课件 理 新人教A版

高考数学一轮复习 4.2 平面向量的基本定理及坐标表示课件 理 新人教A版
第三十三页,共59页。
解得 x=4+
5 5
或 x=4-
5 5
.
y=1+2 5 5
y=1-2
5 5
∴d=20+5 5,5+52 5或 d=20-5 5,5-52 5.
第三十四页,共59页。
(2013·北京西城期末)已知向量 a=(1,3),b=(-2,1),c= (3,2).若向量 c 与向量 ka+b 共线,则实数 k=________.
第九页,共59页。
问题探究 1:平面内任一向量用两已知不共线向量 e1、e2 表 示时,结果唯一吗?平面内任何两个向量 a、b 都能作一组基底 吗?
提示:表示结果唯一.平面内只有不共线的两个向量才能作 基底.
问题探究 2:向量的坐标与点的坐标有何不同? 提示:向量的坐标与点的坐标有所不同,相等向量的坐标是 相同的,但起点、终点的坐标却可以不同,以原点 O 为起点的向 量O→A的坐标与点 A 的坐标相同.
第三页,共59页。
考情分析
平面向量的坐标表示是通过坐标运算将几何问题转化为代 数问题来解决.特别地,用坐标表示的平面向量共线的条件 是高考考查的重点,属中低档题目,如 2013 年辽宁卷 3、 重庆卷 10,常与向量的数量积、运算等交汇命题.注重对 转化与化归、函数与方程思想的考查,如 2013 年江苏卷 15、 天津卷 12 等.
则x<0 y>0
且(x,y)=(1,2)+t(3,3),
∴xy==12++33tt ,∴12++33tt<>00 ,∴-23<t<-13.
第二十八页,共59页。
(2)因为O→A=(1,2),P→B=O→B-O→P=(3-3t,3-3t), 若四边形 OABP 为平行四边形,则O→A=P→B. ∵33--33tt==12 ,无解, ∴四边形 OABP 不可能为平行四边形.

2020版导与练一轮复习理科数学课件:第四篇 平面向量(必修4) 第2节 平面向量基本定理及其坐标表示 .pdf

2020版导与练一轮复习理科数学课件:第四篇 平面向量(必修4) 第2节 平面向量基本定理及其坐标表示 .pdf

第2节 平面向量基本定理及其坐标表示1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.[考纲展示]考点专项突破知识链条完善 把散落的知识连起来知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a = .我们把不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.2.平面向量的正交分解把一个向量分解为两个 的向量,叫做把向量正交分解.不共线λ1e 1+λ2e 2互相垂直单位向量3.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个i ,j 作为基底,a 为坐标平面内的任意向量,由平面向量基本定理知,有且只有一对实数x,y,使得a =x i +y j ,这样,平面内的任一向量a 都可由x,y唯一确定,我们把实数对 叫作向量a 的坐标,记作 .(2)若A(x 1,y 1),B(x 2,y 2),则=(x 2-x 1,y 2-y 1).4.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a ±b = ;(2)若a =(x,y),则λa =(λx,λy).(x,y)a =(x,y)(x 1±x 2,y 1±y 2)5.向量共线的充要条件的坐标表示若a=(x1,y1),b=(x2,y2),则a∥b⇔ .x1y2-x2y1=0对点自测B1.已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是( )(A)e 1+e 2和e 1-e 2 (B)3e 1-2e 2和4e 2-6e 1(C)e 1+2e 2和e 2+2e 1 (D)e 2和e 1+e 2解析:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B.D2.(2018·三明月考)已知向量a=(2,4),b=(-1,1),则2a+b等于( )(A)(5,7)(B)(5,9)(C)(3,7)(D)(3,9)解析:2a+b=2(2,4)+(-1,1)=(3,9),故选D.A 3.(2018·湖南省永州市一模)已知a =(1,-1),b = (1,0),c=(1,-2),若a 与m b -c平行,则实数m等于( )(A)-1 (B)1 (C)2 (D)3解析:由题m b -c=(m-1,2),又因为a 与m b -c平行,所以1×2=-(m-1),m=-1,故选A.4.(教材改编题)已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为 .答案:(1,5)5.已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为 .答案:-3考点专项突破 在讲练中理解知识考点一 平面向量基本定理及其应用反思归纳(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.考点二 平面向量的坐标运算【例2】 (1)向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为( ) (A)(-3,4)(B)(3,4)(C)(3,-4)(D)(-3,-4)答案:(1)A (2)已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为 .答案:(2)(2,4).反思归纳(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.【跟踪训练2】 (1)(2018·福州模拟)已知向量a=(2,4),b=(-1,1),则2a+b等于( )(A)(5,7)(B)(5,9)(C)(3,7)(D)(3,9)解析:(1)2a+b=2×(2,4)+(-1,1)=(3,9),故选D.(2)已知向量a=(5,2),b=(-4,-3),c=(x,y),若3a-2b+c=0,则c等于( )(A)(-23,-12)(B)(23,12)(C)(7,0) (D)(-7,0)解析:(2)3a-2b+c=(23+x,12+y)=0,故x=-23,y=-12,故选A.考点三 共线向量的坐标表示答案:(1)B (2)(2018·全国Ⅲ卷)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ= .反思归纳(1)两平面向量共线的充要条件有两种形式:①若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;②若a∥b(b≠0),则a=λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.答案:(1)A(2)已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)∥(m-n),则λ= .解析:(2)因为m+n=(2λ+3,3),m-n=(-1,-1),又(m+n)∥(m-n),所以(2λ+3)×(-1)=3×(-1),解得λ=0.答案:(2)0备选例题【例2】 已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的( )(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件解析:由题意得a+b=(2,2+m),由m=-6得a+b=(2,-4),因为(-1)×(-4)=-2×2=0,所以a∥(a+b);由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件,故选A.点击进入应用能力提升。

第二节平面向量基

第二节平面向量基

=(1,2)
,DA=-
1 3
BA
=(1,2)
又∵AC=0C- OA
∴0C=AC+0A=(1,2)+(-1,2)=(0,4)
∴C(0,4)
又∵DA=0A-0D
∴0D=0A- DA=(-1,2)-(1,2)=(-2,0)
∴D(-2,0)
例5 已知平面内三个向量:a=(3,2),b=(-1,2),c=(4,1)
解: 设P(x,y)
∵ A(4,0),B(4,4),C(2,6)
∴0P=(x,y), 0B=(4,4), AP=(x-4,y), AC=(-2,6)
∵0P、0B共线
∴4x-4y=0

又∵AP、AC共线
∴(x-4)×6 - y×(-2)=0

由①②得x=4 , y=3
∴P(3,3)
小结
1. 平面向量基本定理 2. 平面向量的坐标表示 3. 平面向量的坐标运算
例3.(2009年辽宁卷)在平面直角坐标系xOy中,
四边形ABCD的边AB∥DC,AD∥BC.已知
A(-2,0),B(6,8),C(8,6),则D点的坐标为
__(_0_,_-__2)_.
D (x,y)
C(8,6)
解析:设D点的坐标为(x,y)
由题意知四边形ABCD为平行四边形 ∴ AD=BC 即(2,-2)=(x+2,y) ∴X+2=2, y=-2 ∴X=0, y=-2 ∴D点坐标为(0,-2)
(1)3a+b-3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42)
(2) ∵a=mb+nc
∴(5,-5)= (-6m+n,-3m+8n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高考数学一轮复习第四章平面向量第二节平面向
量的基本定理与坐标表示习题理
[基础达标]
一、选择题(每小题5分,共35分)
1=(2,4), =(1,3),则=() A.(1,1) B.(-1,-1)
C.(3,7)
D.(-3,-7)
1.B【解析】=-=(-2,-4)+(1,3)=(-1,-1).
2a=(2,-1),b=(λ,-3),若a∥b,则实数λ的值为()
A.-
B.
C.6
D.-6
2.C【解析】由a∥b得2×(-3)+λ=0,即λ=6.
3,在△ABC中,已知=3,则=()
A.
B.
C.
D.
3.C【解析】因为,又由已知=3,得
=3(),即.
4a=(1,-2),a+b=(0,2),则|b|=()
A.B.4 C.D.
4.A【解析】由a=(1,-2),a+b=(0,2)得b=(0,2)-(1,-2)=(-1,4),所以
|b|=.
5.在△ABC中,点G是△ABC的重心,若存在实数λ,μ,使=λ+μ,则()
A.λ=,μ=
B.λ=,μ=
C.λ=,μ=
D.λ=,μ=
5.A【解析】∵点G是△ABC的重心,∴点G是在△ABC的中线上,∴
)=).∵=λ+μ,∴λ=μ=.
6.设x,y满足约束条件向量a=(y-2x,m),b=(1,1),且a∥b,则m的最小值为
()
A.6
B.-6
C.
D.
6.B【解析】因为a∥b,可得m=y-2x.由不等式组可得可行域为由点A(4,2),B,C(1,8)构成的三角形内部及其边界,当x=4,y=2时,m有最小值-6.
7.已知两点A(1,0),B(1,),O为坐标原点,点C在第二象限,且∠AOC=120°,设
=-2+λ (λ∈R),则λ=() A.-1 B.2 C.1 D.-2
7.C【解析】=-2+λ=-2(1,0)+λ(1,)=(λ-2,λ),即C(λ-2,λ),又∠AOC=120°,所以tan 120°=,解得λ=1.
二、填空题(每小题5分,共15分)
8.已知向量a=(λ,1),b=(λ+2,1),若|a+b|=|a-b|,则实数λ=.
8.-1【解析】依题意,a+b=(2λ+2,2),a-b=(-2,0).由|a+b|=|a-b|得(2λ+2)2+22=(-2)2,
解得λ=-1.
9.已知A(-3,0),B(0,),O为坐标原点,C在第二象限,且∠AOC=30°, =λ,则实数λ的值为.
9.1【解析】由题意知=(-3,0), =(0,),则=(-3λ,).由∠AOC=30°知以x轴的非负半轴为始边,OC为终边的一个角为150°,所以tan 150°=,即-=-,
解得λ=1.
10.设e1,e2是平面内两个不共线的向量, =(a-1)e1+e2, =b e1-2e2,a>0,b>0.若A,B,C 三点共线,则的最小值是.
10.4【解析】∵a>0,b>0,A,B,C三点共线,∴设=x,即(a-1)e1+e2=x(b e1-2e2),∵e1,e2是平面内两个不共线的向量,∴解得x=-,a-1=-b,即a+b=1,则
=
=1+1+≥4,当且仅当a=,b=1时,取等号,故的最
小值为4.
[高考冲关]
1.(5分a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)
D .(-7,0)
1.A 【解析】∵向量a =(5,2),b =(-4,-3),c =(x ,y ),且3a -2b +c =0,∴c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).
2.(5分=(1,-2), =(a ,-1),
=(-b ,0),a>0,b>0,O 为坐标原点,若A ,B ,C 三点共线,则
的最小值是 ( )
A .2
B .4
C .6
D .8
2.D 【解析】由题意可得=(a-1,1), =(-b-1,2).又∵
A ,
B ,
C 三点共线,∴,从而(a-1)×2-1×(-b-1)=0,∴2a+b=1.又∵a>0,b>0,∴
·(2a+b )=4+≥4+4=8,故的最小值是8.
3.(5分ABC 中,点D 在线段BC 的延长线上,且,
点O 在线段CD 上(点O 与点C ,D 不重合),若=x +y ,则x 的取值范围是 ( )
A .(0,1)
B .
C .(-1,0)
D .
3.C【解析】如图所示:由于,点O在线段CD上(点O与点C,D不重合),故存在
实数λ∈(0,1),使得=λ,所以
+λ+λ+λ()=-λ+(1+λ),又=x+y,所以x=-λ,因为0<λ<1,所以-1<-λ<0,即-1<x<0.
4.(10分a=(-3,2),b=(2,1),c=(3,-1),t∈R.
(1)求|a+t b|的最小值及相应的t值;
(2)若a-t b与c共线,求实数t的值.
4.【解析】(1)∵a=(-3,2),b=(2,1),c=(3,-1),
∴a+t b=(-3,2)+t(2,1)=(-3+2t,2+t).
∴|a+t b|=
=
=
≥.
当且仅当t=时取等号,即|a+t b|有最小值为.
(2)∵a-t b=(-3,2)-t(2,1)=(-3-2t,2-t),
又a-t b与c共线,c=(3,-1),
∴(-3-2t)×(-1)-(2-t)×3=0,解得t=.。

相关文档
最新文档