解直角三角形及应用
解直角三角形及应用

【知识点结构】:1.直角三角形中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,那么: (1)三边关系:222a b c +=;(2)两锐角关系:∠A +∠B=90°;(3)边、角关系:,a bsinA cosB cosA sinB c c ====t a n c o t ,c o t t a n a bA B A B b a====。
2.解直角三角形(1)定义:由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
(2)解直角三角形的四种基本类型的常用解法如下表所示:cot a AB=90°-∠sin Acos A22a b +,a bb注意:在Rt △中,除直角外,再知道两个元素(其中至少有一个为边),则这个直角三角形其他元素都可求出。
3.解直角三角形的应用题中常见的有关概念:(1)仰角与俯角。
它们都是在同一铅垂面内视线和水平面的夹角,视线在水平线上方的叫做仰角,视线在水平线下方的叫做俯角。
(2)坡角与坡度。
【典型精解】例1 在△ABC 中,∠C=90°,a =15,∠A=35°,求b 。
例2 (1)在△ABC 中,∠C=90°,a =3,b =4,求其他各边各角。
(2)在△ABC 中,∠C=90°,a =9,c =B 、∠A 、b 。
例3 已知,如图,Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上,且∠BDC=60°,AD=20,求BC 。
两船的距离。
例5 如图,一艘货船以30km/h的速度向正北航行,在A处看见灯塔C在船的北偏西30°,20min 后货船行至B处,看见灯塔C在船的北偏西60°,若货船向北继续航行,当灯塔C在船的正西方向时,灯塔与货船相距多少千米?例6 如图,水库的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB坡度i=CD坡度'1:1i=,求斜坡AB的长及坡角α及坝宽AD。
初中九年级数学 解直角三角形及其应用

0.1m)?
B
A
D
C
3海里内有暗礁,一艘客轮以每小
时9海里的速度由西向东航行,行
至A处测得灯塔P在它的北偏东60°,
继续行驶20分钟后,到达B处,又
测得灯塔P在它的北偏东45°,问客
轮不改变方向,继续前进有无触礁
解:过P的点作危P险D垂?直于AB,交AB的延
P
长∵线∠于1=D60∠2=45°∴
在R°t△BDP∠PBD∠=P4AD=30°,∠PBD=45°
例l3.一铁路路基的l 横断面是等腰梯 形,路基顶部的宽为9.8米,路基高为 5.8米,斜坡与地面所成的角A为60 度.求路基低部的宽(精确到0.1米)
❖ 练习:热气球的探测器显示,从热 气球看一栋高楼顶部的仰角为30°, 看这栋高楼底部的俯角为60°,热 气球与高楼的水平距离为120m,这 栋高楼有多高?(结果精确到
3 山坡与地面成300的倾斜角,某人上坡走 60米,则他
(目标3) 上升 米,坡度是
D
C
4 如图已知堤坝的横断面为梯形,AD坡面
的水平宽度为
A
B
3√3米,DC=4米,B=600,则
(1)斜坡AD 的铅直高度是
(2)斜坡AD 的长是 (3)坡角A的
(目标3) 6 如图从山 顶A望地面的C、D 两点,俯角分别时 A
α
练习: 如图,某飞机于空中A 处探测到目标C,此时飞行高 度AC=1200米,从飞机上看低 平面控制点B的俯角α=16031/,
练习 某人在A处测得大厦的仰角∠BAC
为300 ,沿AC方向行20米至D处,测得仰角 ∠BDC 为450,求此大厦的高度BC.
B
A 300
450
D
2解直角三角形及其应用

B
例4. 在矩形ABCD中,AB=8,BC=10,点P 在矩形的边DC上,且由点D向点C运动,沿 直线AP翻折△ADP,形成如图所示的四种情 形。设DP=x,△ADP和矩形的重叠部分 (阴影 )的面积为y。
A D
B
C
A
图a
DA
图b
D P
P
B A D' 图c C B DA
图d
D'
C D
B D'
P C B
E D'
C (P)
(1)当P运动到与C点重合时(图d),求重 叠部分的面积y;
A 图d
1 2
D
X
B10-x E D'
X
3
C (P)
(2)当点P运动到何处时,翻折△ADP点D 恰好落在BC上(图b),这时重合部分的面积 y是多少? 图 b A D P B
D'
C
例5.如图,直角梯形纸片ABCD中, AD∥BC,∠A=90°,∠C=30°.折叠纸 片使BC经过点D,点C落在点E处,BF是折 痕,且BF=CF=8. (1)求∠BDF的度数; (2)求AB的长.
解直角三角形及其应用
1.解直角三角形的概念、方法及应用: 解直角三角形:由直角三角形中除直角外的已知元素, 求出所有未知元素的过程叫做解直角三角形. 直角三角形中的边角关系:在 Rt△ABC 中,∠C=90°, ∠A、∠B、∠C 所对的边分别为 a、b、c,则: 2 2 2 a +b =c (1)边与边的关系:______________ ; ∠A+∠B= 90° (2)角与角的关系: ______________ ;
3 变式:小山岗的斜坡 AC 的坡度是 tanα = ,在与山脚 C 4 距离 200 米的 D 处,测得山顶 A 的仰角为 26.6°,求小山 岗的高 AB.(结果取整数;参考数据:sin 26.6°=0.45, cos 26.6°=0.89,tan 26.6°=0.50)
解直角三角形及其应用

o
F
A
E
B
例2:计算6tan45 -2cos60
o
o
一般地,当ɑ,β为任意角时,sin(ɑ+β)与 sin(ɑ-β)的值可以用下面的公式求得: sin(ɑ+β)=sinɑ cosβ+cosɑ sinβ sin(ɑ-β)=sinɑ cosβ-cosɑ sinβ 例如: o o o o o o sin90 =sin(60 +30 )=sin60 cos30 +cos60 sin o 30 = 3 3 1 1 =1
A F H B C
A F H B E G
C
D
2 3
5 3
10 5
5 5
2 2 2 2
类似的可以求得sin15 的值是
o
例3:某市在创建文明城市活动中,对道路进 行美化。如图,道路两旁分别有两个高度相同 的路灯AB和CD,两个路灯之间的距离BD长为 24米,小明在点E(B,E,D,G在一条直线上)处 o 测得路灯AB顶部A点的仰角为45 ,然后沿BE方 向前进8米到达点G处,测得路灯CD顶端的C 点仰角为30。已知小明的两个观测点F,H距离 地面的高度EF,GH均为1.6米,求路灯AB的高 度。(精确到0.1米,参考数据 2≈1.41, 3≈ 1.73)
1、由直角三角形中已知的边和角,计算出未 知的边和角的过程,叫做解直角三角形。
解直角三角形需要除直角之外的两个元素,且至少有一个元素是边。
2、锐角三角函数:我们把正弦、余弦、正切 统称为“锐角三角函数”。
3、正弦=对边/斜边 余弦=邻边/斜边 正切=对边/邻边 (特殊三角函数值的记忆)
例1:如图,在Rt∆ABC中,∠C=90 , o ∠A=30 ,E为AB上一点且AE:EB=4:1,EF⊥AC 于点F,连接FB,则tan∠CFB=
解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边 (如∠A ,a)∠B=90°-∠A ,,斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA ,PB ,PC 的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA ,OB ,OC ,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例1(1)-(3)】【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2016•包头)如图,已知四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E . (1)若∠A=60°,求BC 的长; (2)若sinA=,求AD 的长.(注意:本题中的计算过程和结果均保留根号)【思路点拨】(1)要求BC 的长,只要求出BE 和CE 的长即可,由题意可以得到BE 和CE 的长,本题得以解决; (2)要求AD 的长,只要求出AE 和DE 的长即可,根据题意可以得到AE 、DE 的长,本题得以解决. 【答案与解析】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE ﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x ,则AE=5x ,得AB=3x , ∴3x=6,得x=2,∴BE=8,AE=10, ∴tanE====,解得,DE=,∴AD=AE ﹣DE=10﹣=,即AD 的长是.【总结升华】本题考查解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值; (3)在(2)的条件下,求弦AB 的长.【答案与解析】(1)∵ AD CD =,∴ ∠1=∠2,又BC 是⊙O 的直径,∴ ∠BAC =∠BDC =90°. ∴ △ABE ∽△DBC .(2)由△ABE ∽△DBC ,∴ ∠AEB =∠DCB . 在Rt △BDC 中,BC =52,CD =52, ∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB =525552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DE DB AD=,∴ 2AD DE DB =.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭,∴354BE=.在Rt△ABE中,AB=BEsin∠AEB=32355452⨯=.【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造直角三角形来解决问题. (1)根据圆周角定理易证△ABE∽△DBC.(2)利用(1)的结论,将∠AEB转化为Rt△BCD中的DCB∠.(3)在Rt△ABE中求AB.举一反三:【高清课程名称:解直角三角形及其应用高清ID号:395952关联的位置名称(播放点名称):例2】【变式】如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532, 在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。
解直角三角形在实际生活中应用

解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。
直角三角形的重要性在于它具有很多实际应用价值。
本文将介绍一些直角三角形在实际生活中的应用。
一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。
通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。
例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。
二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。
在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。
直角三角形可以帮助我们测量坡度的比例。
通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。
三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。
然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。
通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。
四、导航和定位直角三角形在导航和定位中也有广泛的应用。
例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。
通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。
五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。
例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。
通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。
六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。
通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。
这对于照明设计师来说非常重要,以确保正确照亮目标物体。
解直角三角形的方法,步骤与应用

解直角三角形的方法,步骤与应用
几何学中最常见的形状之一是直角三角形,它的特点是一个锐角90度,三
条边均不等的三角形。
学习有关直角三角形的方法有助于理解和应用几何学。
一、如何确定一个三角形是直角三角形?
若要确定一个三角形是否为直角三角形,可以使用斜边-直角定理:如果一个
三角形的斜边的平方等于另外两边相加的平方,则此三角形正是直角三角形。
另外,我们可以使用勾股定理快速判断一个三角形是否为直角三角形,即两个直角边的平方等于对角边的平方。
二、如何确定一个直角三角形的高度?
要计算直角三角形的高度,可以使用直角三角形高度公式:高度=斜边×正弦
度数,其中斜边是三角形斜边的长度;正弦度数是三角形斜边相对应的角度,也就是直角相对应的角度。
三、直角三角形的应用
直角三角形在工程学、护理学、机械学、建筑学等领域都有广泛应用。
在工程学中,直角三角形可以用来计算坡度,从而实现控制俯仰角;在护理学中,直角三角形可以帮助计算肌肉拉伸时的牵力;在机械学中,直角三角形的绘制可以帮助机械工程师确定轴的夹角;在建筑学中,直角三角形可以帮助建筑师设计建筑物的外形和内部空间结构。
综上所述,学习有关直角三角形的方法有助于我们更好地理解几何学知识,并将其应用于各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形及应用(第一课时) 【基础梳理】
1.在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别是a,b,c,则有下列关系 (1)三边之间的关系:.
(2)两锐角之间的关系:_______________________________. (3)边角之间的关系:sinA= cosA= tanA=
1.坡面的铅直高度与水平宽度的比叫做坡面的 (或坡比);坡面与水平面的夹角α叫
2.仰角、俯角的定义
【解直角三角形】
1.如图,△ABC 中,∠C =45°,点D 在AB 上,点E 在BC 上,若AD =DB =DE ,AE =1,则AC 的长为( )
A. 5
B.2
C. 3
D. 2
2.如图4,在平行四边形ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF :BC =1:2,连接DF ,EC ,若AB =5,AD =8,sin B =
5
4
,则DF 的长等于( ) A .10 B .15 C .17 D .52
3.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6.若点P 在直线AC 上(不与点A ,C 重合),且∠ABP =30°,则CP 的长为______.
4.如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,∠A =120°,AD =2,BD 平分∠ABC ,则梯形ABCD 的周长是.
【方向角】
1.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1:1.5,则坝底AD 的长度为( )
A .26米 B.28米C .30米
D.46米
2.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A
处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( )
A. 40海里
B. 40海里
C. 80海里
D. 40海里 3.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B
在C 的北偏东60°方向上,
则
B ,
C 之间的距离为( )
A20海里. (B
) (C ) (D )30海里.
4.
“马航事件”的发生引起了我国政府的离度重视,迅速派出了舰船和飞机到相关海坡进行搜寻.如图10,在一次空中搜寻中,水平飞行的飞机现测得在点A 俯角为30°方向的F 点处有疑似飞机残骸的物体(该物体视为静止).为了便于现察,飞机继续向前飞行了800米到达B 点.此时测得点F 在点B 俯箱为45°的方向上.请你计算当飞机飞机F 点的正上方点C 时(点A 、B 、C 在同一直线上),竖直高度CF
B
E
D
C
F
(第3题图)
C
A
5.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即
调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C 处时,测得A 处渔政船的俯角为60°,测得B 处发生险情渔船的俯角为30°.请问:此时渔政船和渔船相距多远?(结果保留根号)
6.国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
某天该深潜器在海面下1800米处作业(如图),测得正前方海底沉船C 的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B 点,此时测得海底沉船C 的俯角为60°.
(1)沉船C 是否在“蛟龙”号深潜极限范围内?并说明理由;
(2)由于海流原因,“蛟龙”号需在B 点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.
(
B
D
(第22题)。