数学人教版七年级下册6.1.1平方根教学设计
人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。
本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。
教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。
但在计算能力和数学思维方面,学生之间存在较大差异。
因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的计算能力。
4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。
四. 教学重难点1.算术平方根的定义及其求法。
2.运用算术平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。
2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。
3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。
3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。
七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。
2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。
3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
人教版七年级数学下册6.1.1《算术平方根》教学设计

人教版七年级数学下册6.1.1《算术平方根》教学设计一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容,主要是让学生理解算术平方根的概念,掌握求算术平方根的方法,并能够应用它解决一些实际问题。
本节内容是建立在实数基础之上的,对于学生来说是一个新的概念,需要通过具体例子和实际操作来加深理解。
二. 学情分析学生在学习本节内容之前,已经学习了实数的概念,对于平方、乘方等运算有一定的了解。
但是,对于算术平方根这个概念,他们可能是初次接触,因此需要通过具体的例子和实际操作来理解和掌握。
同时,学生可能对于抽象的概念理解起来有一定的困难,因此需要教师通过生动的讲解和形象的比喻来帮助他们理解。
三. 教学目标1.知识与技能:使学生理解算术平方根的概念,掌握求算术平方根的方法,并能够应用它解决一些实际问题。
2.过程与方法:通过具体例子和实际操作,让学生理解算术平方根的概念,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探索精神,使学生体验到数学的实用性。
四. 教学重难点1.重点:算术平方根的概念和求法。
2.难点:理解算术平方根的概念,掌握求算术平方根的方法。
五. 教学方法1.情境教学法:通过具体例子和实际操作,让学生理解算术平方根的概念。
2.引导发现法:教师引导学生通过观察、思考、讨论,发现求算术平方根的方法。
3.实践操作法:让学生通过实际操作,加深对算术平方根的理解。
六. 教学准备1.教学课件:制作课件,展示具体例子和实际操作。
2.练习题:准备一些练习题,用于巩固所学知识。
3.板书设计:设计板书,突出算术平方根的概念和求法。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,如面积、体积等,引导学生思考如何求解这些问题。
通过讨论,引出算术平方根的概念。
2.呈现(10分钟)呈现一些具体例子,如求一个正方形的面积,引导学生思考如何求解。
通过实际操作,让学生理解算术平方根的概念。
人教版数学七年级下册6.1.1《算数平方根》教学设计6

人教版数学七年级下册6.1.1《算数平方根》教学设计6一. 教材分析《算数平方根》是人教版数学七年级下册第六章第一节的内容,主要介绍了算数平方根的定义、性质和求法。
本节课的内容是学生学习平方根的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
在本节课中,学生将掌握算数平方根的概念,了解算数平方根的性质,并学会使用平方根求解实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数的概念有一定的了解。
但是,对于算数平方根这一概念,学生可能较为抽象,难以理解。
因此,在教学过程中,教师需要结合学生的实际情况,采用生动形象的教学手段,帮助学生理解和掌握算数平方根的概念和性质。
三. 教学目标1.知识与技能:让学生了解算数平方根的概念,掌握算数平方根的性质,学会求解算数平方根。
2.过程与方法:通过观察、分析、归纳等方法,让学生自主探索算数平方根的性质,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:算数平方根的概念和性质。
2.难点:算数平方根的实际应用。
五. 教学方法1.情境教学法:通过生活实例引入算数平方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、分析、归纳算数平方根的性质,培养学生的逻辑思维能力。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作精神。
六. 教学准备1.教学课件:制作课件,展示算数平方根的定义、性质和实际应用。
2.练习题:准备一些有关算数平方根的练习题,用于巩固所学知识。
3.教学道具:准备一些实物,如平方根的模型,用于直观展示算数平方根的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如面积、体积的计算,引入算数平方根的概念。
引导学生思考:什么是算数平方根?2.呈现(10分钟)展示算数平方根的定义和性质,引导学生观察、分析、归纳。
同时,通过例题讲解,让学生了解如何求解算数平方根。
七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例

2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。
人教版数学七年级下册6.1.1算术平方根优秀教学案例

在导入新课后,教师开始讲授新知识。首先,教师可以利用多媒体课件或实物模型,为学生提供丰富的感性材料,引导学生观察和操作。例如,教师可以展示一个正方形的模型,让学生观察并描述其特征,从而引导学生思考正方形的面积与边长之间的关系。接着,教师提出算术平方根的概念,并通过举例解释其含义。
(三)学生小组讨论
在讲授新知识后,教师将学生分成若干小组,让学生在小组内进行讨论、交流和合作。教师可以设计以下任务:
1.每个小组探究一个正整数的算术平方根,并总结求解方法。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)总结归纳
在学生小组讨论结束后,教师组织学生进行总结归纳。教师可以引导学生回顾本节课所学的内容,让学生总结算术平方根的定义、性质以及求解方法。同时,教师要注意关注学生的个体差异,引导每个学生都能参与到总结归纳的过程中。
人教版数学七年级下册6.1.1算术平方根优秀教学案例
一、案例背景
在我国基础教育课程体系中,算术平方根的概念是学生从小学过渡到初中阶段必须掌握的重要数学知识。对于七年级下册的学生而言,他们在学习了有理数、整数等基础知识后,算术平方根的概念及其性质,不仅是对原有知识的深化,更是为后续的代数学习奠定基础。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)反思与评价
本节课的教学结束时,教师引导学生进行反思与评价,使学生对所学知识有一个清晰的认识。教师可以设计以下问题:
1.你在这节课中学到了什么?你对自己的学习有何评价?
2.你觉得算术平方根在实际生活中有哪些应用?
二、教学目标
(一)知识与技能
数学人教版七年级下册6.1.1算数平方根的教案

6.1.1平方根 第一课时算数平方根教学设计教学目标:1.了解算数平方根的概念,会用根号表示正数的算数平方根,并了解算数平方根的非负性。
2.会用平方运算求某些非负数的算数平方根。
教学重难点:重 点:算数平方根的概念。
难 点:根据算数平方根的概念正确求出非负数的算数平方根。
教学过程:一:情景引入2003年10月15日,是我们每个中国人值得骄傲的日子,这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想。
那么,大家知道宇宙飞船离开地球进入轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度1v (/m s )而小于第二宇宙速度2v (/m s ),1v 、2v 满足21v gR =,222v gR =,其中g 是物理中的一个常数,29.8/g m s ≈,R 是地球的半径,66.410R m ≈⨯,怎么求1v 、2v 呢?这就要用到平方根的概念。
今天我们就学习第一课时,算数平方根。
二:教学过程1.学生自学68P 页例1上面的内容,完成学案上的自测题。
(1)一般地,如果一个正数x 的平方第等于a ,即2x a =,那么这个正数x 叫做a 的_________,a 的算数平方根记为________,读作________,a 叫做________。
(2)0的算数平方根是 ,即= 。
(3)算数平方根的性质:正数的算数平方根是 ,0的算数平方根是 ,负数的算数平方根 。
即(4)① 0的算数平方根是0。
( )② 一个正方形的边长就是这个正方形的面积的算数平方根。
( )③ 6-是2(6)-的算数平方根。
( )a 的取值范围。
并出示相关例子,0a ≥)a 去任意数)(满足(1a -)0≥,即1a ≥)0=,则0a =0=;则5a =。
2.学生自学例1,并完成下列练习题。
(1)求下列各数的算数平方根。
① 0.25 ② 23 ③4981 ④ 1124 (2)求下列各式的值。
① ②③ ④ 4. 课堂主题训练(1) 算术平方根等于它本身的数是 。
人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。
本节课主要介绍了算术平方根的概念、性质及其求法。
通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。
但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。
此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。
三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:算术平方根的概念及其求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。
2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。
3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。
4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教材:人教版七年级下册数学教材。
2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。
3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。
4.板书:准备黑板,用于书写重要概念和步骤。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。
例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。
人教版数学七年级下册6.1.1《算数平方根》教学设计4

人教版数学七年级下册6.1.1《算数平方根》教学设计4一. 教材分析人教版数学七年级下册6.1.1《算数平方根》是学生在学习了有理数的乘方、平方等相关知识的基础上,进一步探究平方根的概念及求法。
本节内容通过算数平方根的引入,让学生了解平方根的定义,掌握求一个正数的平方根的方法,能熟练运用平方根解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固算数平方根的知识,提高解决问题的能力。
二. 学情分析学生在学习本节内容时,已经具备了初步的数学思维能力,对于有理数的乘方、平方等概念有一定的了解。
但部分学生可能对平方根的概念理解不够深入,求平方根的方法不够熟练。
因此,在教学过程中,教师需要针对学生的实际情况,采用合适的教学方法,引导学生理解和掌握算数平方根的知识,提高解决问题的能力。
三. 教学目标1.理解算数平方根的概念,掌握求一个正数的平方根的方法。
2.能运用算数平方根解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.算数平方根的概念。
2.求一个正数的平方根的方法。
3.运用算数平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解算数平方根的概念,提高学生的学习兴趣。
2.启发式教学法:教师提问,引导学生思考,激发学生的学习积极性。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队协作能力。
4.练习法:通过大量的练习题,巩固学生的学习成果,提高解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示算数平方根的概念、求法及实际应用。
2.练习题:准备适量的练习题,用于巩固学生的学习成果。
3.教学素材:收集一些与算数平方根相关的实际问题,用于引导学生运用所学知识解决实际问题。
七. 教学过程1.导入(5分钟)教师通过一个生活实例,如“一个正方形的边长是6厘米,求这个正方形的面积”,引导学生思考,引出本节课的主题——算数平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.1平方根
第一课时
一.【教学目标】
知识与技能:
通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;
过程与方法:
通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:
通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教具准备: 三块大小相等的正方形纸片;学生计算器。
教学方法: 自主探究、启发引导、小组合作
【教学过程】
一、情境引入:
问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?
二、探索归纳:
1.探索:
学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:
如果正方形的面积分别是1、9、16、36、25
4,那么正方形的边长分别是多
学生会求出边长分别是1、3、4、6、5
2,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:
⑴算术平方根的概念:
一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:
a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:
例1、 求下列各数的算术平方根:
⑴100 ⑵6449 ⑶9
71 ⑷0001.0 ⑸0 解:⑴因为,100102=所以100的算术平方根是10,即10100=; ⑵因为6449)87(2=,所以6449的算术平方根是87,即8
76449=; ⑶因为916)34(,9169712==,所以971的算术平方根是34,即3
4916971==; ⑷因为0001.001.02=,所以0001.0的算术平方根是01.0,即01.00001.0=; ⑸因为002=,所以0的算术平方根是0,即00=。
注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;
②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;
③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:
你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根
归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
即:只有非负数有算术平方根,如果a x =有意义,那么0,0≥≥x a 。
注:0≥a 且0≥a 这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。
例2、 求下列各式的值:
(1)4 (2)8149
(3)2)11(- (4)26
分析:此题本质还是求几个非负数的算术平方根。
解:(1)24= (2)97
8149= (3)11
11)11(22==- (4)662=
例3、 求下列各数的算术平方根:
⑴23 ⑵34 ⑶2)10(- ⑷6101
解:(1)因为932=,所以3932==;
⑵因为238644==,所以86443==;
⑶因为2210100)10(==-,所以10100)10(2==-; ⑷因为63101101=,所以36101101
=。
根据学生的学习能力和理解能力可进行如下总结:
1、由332=,662=,可得)0(2≥=a a a
2、由11)11(2=-,10)10(2=-,可得)0(2≤-=a a a
教师需强调0=a 时对两种情况都成立。
四、随堂练习:
1、算术平方根等于本身的数有_____。
2、求下列各式的值:
1, 25
9, 25, 2)7(- 3、求下列各数的算术平方根:
0025.0, 121, 24, 2)21(-,16
91 4、已知,011=-++b a 求b a 2+的值。
五、课堂小结
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
六、布置作业
课本第75页习题13.1第1、2题
教学反思
本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.能使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.。