高中数学 第一章 三角函数 1.2 任意的三角函数 1.2.1 第2课时 三角函数线及其应用学案 4
高中数学第一章三角函数1.2任意的三角函数1.2.1第2课时三角函数线及其应用课件新人教A版必修

一级达标重点名校中学课件
[ 解 ]
(1) 如 图 , 由 余 弦 线 知 角 α 的 取 值 范 围 是 .
3π 3π α 2kπ- <α<2kπ+ ,k∈Z 4 4 (2)如图,由正切线知角 α 的取值范围是 αkπ-2<α≤kπ+6,k∈Z
一级达标重点名校中学课件
[ 跟踪训练] 2π 2π 2π 2.已知 a=sin ,b=cos ,c=tan ,则( 7 7 7 A.a<b<c C.b<c<a B.a<c<b D.b<a<c )
一级达标重点名校中学课件
D [由如图的三角函数线知: 2π 2π π MP<AT,因为 > = , 7 8 4 所以 MP>OM, 2π 2π 2π 所以 cos <sin <tan , 7 7 7 所以 b<a<c.]
[自 主 预 习· 探 新 知]
1.有向线段
方向 (1)定义:带有_____ 的线段.
(2)表示:用大写字母表示,如有向线段 OM,MP. 2.三角函数线 (1)作图:①α 的终边与单位圆交于 P,过 P 作 PM 垂直于 x 轴,垂足为 M. ②过 A(1,0)作 x 轴的垂线,交 α 的终边或其反向延长线于点 T.
利用三角函数线解三角不等式
[ 探究问题] 1.利用三角函数线如何解答形如 sin α≥a,sin α≤a(|a|≤1)的不等式? 提示:对形如 sin α≥a,sin α≤a(|a|≤1)
的不等式: 画出如图①所示的单位圆;在 y 轴上截取 OM=a,过 点(0,a)作 y 轴的垂线交单位圆于两点 P 和 P′,并作射线 OP 和 OP′;写出终边在 OP 和 OP′上的角的集合;图中阴 影部分即为满足不等式 sin α≤a 的角 α 的范围,其余部分即 为满足不等式 sin α≥a 的角 α 的范围.
高中数学 第一章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的

高中数学第一章三角函数 1.2 任意角的三角函数 1.2.1 任意角的高中数学第一章三角函数1.2任意角的三角函数1.2.1任意角的1.2.1任意角度的三角函数互动课堂疏导1.任意角三角函数的定义设P(a,b)为角α,单位圆的最终边缘与单位圆的交点从P轴到X轴引出一条垂直线,垂直脚为m。
sin根据锐角三角函数α的定义得到=|mp||om||mp|b?.=b,cosα==a,tanα=|Op | om | a | Op |类似地,我们也可以使用单位圆定义任意角度的三角函数,如图1-2-2所示,集α为1个任意角,它的终边与单位圆交于点p(x,y),那么图1-2-2(1)y叫做α的正弦,记作sinα,即sinα=y.(2)x叫做α的余弦,记作cosα,即cosα=x.(3)YY被称为α,其切线被表示为tanα,tanα=。
三十二。
三角函数线设单位圆的圆心与坐标原点重合,则单位圆与x轴的交点分别为a(1,0)、a′(-1,0),与y轴的交点分别为b(0,1)、b′(0,-1).设角α的顶点在圆心o,始边与x轴的正半轴重合,终边与单位圆相交于点p(如图1-2-3(a)),过点p作pm垂直于x轴于m,则点m是点p 在x轴上的正射影(简称射影),由三角函数的定义可知点p的坐标为(cosα,sinα),即p(cosα,sinα).其中cosα=om,sinα=mp。
也就是说,角α的余弦和正弦分别等于最终边和单位圆相交的角度α横坐标和纵坐标,单位圆在点a和α处的切线,如果终端边或其反向延长线在点t(t’)处相交(图1-2-3(b)),则Ta nα=at(at’)。
我们把轴上向量om、mp、at(at')叫做α的余弦线、正弦线、正切线.图1-2-3三.三角函数在各象限的符号三角函数的符号可以通过三角函数的定义和每个象限点坐标的符号来确定sinα=y,于是sinα的符号与y的符号相同,即当α是第一、二象限的角时,sinα>0;当α当它是第三和第四象限的角度时,sinα<0cosα=x,于是cosα的符号与x的符号相同,即当α是第一、四象限角时,cosα>0;当α是第二、三象限的角时,cosα<0.tanα=y、当x和y有相同的符号时,它们的比率为正。
高中数学第一章三角函数1.2.1任意角的三角函数(2)课件

A.0,π6
B.π6,56π
C.π6,23π
D.56π,π
123 4 5
答案
123 4 5
4.函数 y= 2cos x-1的定义域为___-__π3_+__2_k_π_,__π3_+__2_kπ___,__k_∈__Z_.__函数线解不等式
例3 求下列函数的定义域. (1)y= 2sin x- 3;
解 自变量 x 应满足 2sin x- 3≥0,
即
sin
x≥
3 2.
图中阴影部分就是满足条件的角 x 的范围,
即{x|2kπ+π3≤x≤2kπ+23π,k∈Z}.
解析答案
(2)y=lg(sin x- 22)+ 1-2cos x.
类型二 利用三角函数线比较大小
例 2 利用三角函数线比较 sin23π和 sin45π,cos23π和 cos45π,tan23π和 tan45π的大小. 解 如图,sin23π=MP,cos23π=OM,tan23π=AT, sin45π=M′P′,cos45π=OM′,tan45π=AT′. 显然|MP|>|M′P′|,符号皆正, ∴sin23π>sin45π; |OM|<|OM′|,符号皆负,∴cos23π>cos45π; |AT|>|AT′|,符号皆负,∴tan23π<tan45π.
MP 即为正弦线
答案
余弦线 有向线段 OM 即为余弦线 过点A(1,0)作单位圆的切线,交α的终边或α的终边的反向延长
正切线 线于点T,有向线段 AT 即为正切线
答案
返回
题型探究
类型一 作三角函数线 例 1 作出-58π的正弦线、余弦线和正切线. 解 如图:sin-58π=MP,
高中数学第一章三角函数1.2.1.1三角函数的定义省公开课一等奖新名师优质课获奖PPT课件

探究二
探究三
(1)解析:依题意,x2+
5
3
2
3
α=± ,tan α=
2
3
答案:
5
±3
5
±3
思维辨析
2 2
=1,解得
3
5
x=± 3 ,于是
2
sin α=3,cos
2 5
.
5
=±
2 5
5
±
(2) 解析:由已知得 x=-6,y=8,
8
10
所以 r= 2 + 2 =10,于是 sin θ=
8
-6
4
4
一
二
三
3.做一做:求值
(1)sin 780°;
25
(2)cos 4 π;
(3)tan
15
-4π
.
3
2
解:(1)sin 780°=sin(2×360°+60°)=sin 60°= .
25
π
π
2
(2)cos 4 π=cos 3 × 2π + 4 =cos4 = 2 .
15
π
π
(3)tan - 4 π =tan -2 × 2π + 4 =tan4=1.
第27页
探究一
探究二
探究三
思维辨析
忽视对参数的分类讨论致误
【典例】 角 α 的终边过点 P(-3a,4a),a≠0,则 cos
α=
.
错解因为 x=-3a,y=4a,所以 r= (-3)2 + (4)2 =5a,于是 cos
-3 3
α= 5 =-5.
错解错在什么地方?你能发现吗?怎样避免这类错误呢?
高中数学 第一章 三角函数 1.2.1 任意角的三角函数(2)课件

12/7/2021
第十八页,共二十八页。
(2)由题意,要使 f(x)有意义,则s9i-n xx>2≥0,0.
由 sin x>0 得 2kπ<x<2kπ+π(k∈Z),
①
由 9-x2≥0 得-3≤x≤3,
②
由①②得:f(x)的定义域为{x|0<x≤3}.
12/7/2021
第十九页,共二十八页。
规律方法 求三角函数定义域的方法 (1)求函数的定义域,就是求使解析式有意义的自变量的取值 范围,一般(yībān)通过解不等式或不等式组求得,对于三角函 数的定义域问题,还要考虑三角函数自身定义域的限制. (2)要特别注意求一个固定集合与一个含有无限多段的集合的 交集时,可以用取特殊值把不固定的集合写成若干个固定集 合再求交集.
12/7/2021
第二页,共二十八页。
知识点 1 三角函数的定义域 正弦函数 y=sin x 的定义域是_____R_____;余弦函数 y= cos x 的定义域是_____R_____;正切函数 y=tan x 的定义域是 {_x_|_x_∈__R_且___x_≠__k_π_+__π2_,__k_∈__Z_}__________.
规律方法 1.利用三角函数线比较大小的两个注意点 (1)角的终边的位置要找准; (2)比较两个三角函数值的大小,不仅要看其长度,还要看其 方向(fāngxiàng). 2.利用三角函数线解不等式的方法 (1)首先作出单位圆,然后根据各问题的约束条件,利用三角 函数线画出角α满足条件的终边范围. (2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位 圆交点的纵坐标是该角的正弦值. (3)写角的范围时,抓住边界值,然后再注意角的范围的写法 要求.
1.2.1 任意(rènyì)角的三角函数学习目标 1.掌握正弦、余弦、正切函数的定义域(重点).2.了解 三角函数线的意义,能用三角函数线表示一个角的正弦、余弦 和正切(重点).3.能利用(lìyòng)三角函数线解决一些简单的三角函数 问题(难点).
高中数学第一章三角函数1.2任意的三角函数1.2.1第1课时任意角的三角函数的定义aa高一数学

2021/12/9
第二十七页,共四十页。
2.设角α是第三象限角,且sinα2=-sinα2,则角α2是第________象限角. 四 [角α是第三象限角,则角α2是第二、四象限角,
∵sinα2=-sinα2,∴角α2是第四象限角.]
2021/12/9
第二十八页,共四十页。
诱导公式一的应用
求值: (1)tan 405°-sin 450°+cos 750°; (2)sin73πcos-263π+tan-145πcos133π.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最后
判断乘积的符号.
(1)C
[(1)因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边在
第三象限.]
(2)①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
2021/12/9
第二十四页,共四十页。
2021/12/9
第十五页,共四十页。
(1)已知角θ的终边上有一点P(x,3)(x≠0),且cos θ= 1100x, 则sin θ+tan θ的值为________.
(2)已知角α的终边落在直线 3x+y=0上,求sin α,cos α,tan α 的值.
[思路探究] (1) 依据余弦函数定义列方程求x
2021/12/9
第二十六页,共四十页。
[跟踪训练] 1.已知角α的终边过点(3a-9,a+2)且cos α≤0,sin α>0,则实数a的取 值范围是________. -2<a≤3 [因为cos α≤0,sin α>0, 所以角α的终边在第二象限或y轴非负半轴上,因为α终边过(3a-9,a+ 2), 所以3aa+-29>≤00,, 所以-2<a≤3.]
必修四第一章 三角函数1.2.2

返回导航
第一章 三角函数
[思路分析] tanα=3,即sinα=3cosα,结合sin2α+cos2α=1,解方程组可求 出sinα和cosα;对于(2),注意到分子分母都是sinα与cosα的一次式,可分子分母 同除以cosα化为tanα的表达式;对于(3),如果把分母视作1,进行1的代换,1= sin2α+cos2α然后运用(2)的方法,分子分母同除以cos2α可化为tanα的表达式,也 可以将sinα=3cosα代入sin2α+cos2α=1中求出cos2α,把待求式消去sinα,也化为 cos2α的表达式求解.
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
[解析] (1)tanα=3=csoinsαα>0, ∴α 是第一或第三象限角. 当 α 是第一象限角时,结合 sin2α+cos2α=1,有
sinα=3
10 10
.
cosα=
10 10
当 α 是第三象限角时,结合 sin2α+cos2α=1,有
如 sin23α+cos23α=1 成立,但是 sin2α+cos2β=1 就不一定成立.
(2)sin2α 是(sinα)2 的简写,读作“sinα 的平方”,不能将 sin2α 写成 sinα2,前
者是 α 的正弦的平方,后者是 α2 的正弦,两者是不同的,要弄清它们的区别,并
能正确书写.
数
(3)同角三角函数的基本关系式是针对使三角函数有意义的角而言的,sin2α+
人
教
A
版
返回导航
第一章 三角函数
3.化简 1-sin2440°=____c_o_s_8_0_°_____.
高中数学 第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系学案 苏教版必修4

1.2.2 同角三角函数关系1.理解同角三角函数的两种基本关系.2.了解同角三角函数的基本关系的常见变形形式.3.学会应用同角三角函数的基本关系化简、求值与证明.同角三角函数的基本关系式1.判断(正确的打“√”,错误的打“×”)(1)对任意角α,sin 24α+cos 24α=1都成立.( ) (2)对任意角α,sinα2cosα2=tan α2都成立.( )(3)对任意的角α,β有sin 2α+cos 2β=1.( ) (4)sin 2α与sin α2所表达的意义相同.( )解析:(1)正确.当角α∈R 时,sin 24α+cos 24α=1都成立,所以正确.(2)错误.当α2=k π+π2,k ∈Z ,即α=2k π+π,k ∈Z 时,tan α2没意义,故sinα2cosα2=tanα2不成立,所以错误.(3)错误.当α=π2,β=0时,sin 2α+cos 2β≠1,故此说法是错误的.(4)错误.sin 2α是(sin α)2的缩写,表示角α的正弦的平方,sin α2表示角α2的正弦,故两者意义不同,此说法是错误的.答案:(1)√ (2)× (3)× (4)×2.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则cos α等于( )A .45B .-45C .-17D .35答案:B3.化简:(1+tan 2 α)·cos 2α等于( ) A .-1 B .0 C .1 D .2答案:C4.已知tan α=1,则2sin α-cos αsin α+cos α=________.解析:原式=2tan α-1tan α+1=2-11+1=12.答案:12已知一个三角函数值求其他三角函数值已知cos α=-35,求sin α,tan α的值.【解】 因为cos α<0且cos α≠-1, 所以α是第二或第三象限角. 所以当α为第二象限角时, sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-43.当α为第三象限角时, sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352= -45,tan α=sin αcos α=43.已知角α的某一三角函数值,求角α的其余三角函数值时,要注意公式的合理选择;若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论.1.(1)已知α是第二象限角,且tan α=-724,则cos α=________.(2)已知sin θ=a (a ≠0),且tan θ>0,求cos θ、tan θ. 解:(1)因为α是第二象限角, 故sin α>0,cos α<0, 又tan α=-724,所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.故填-2425.(2)因为tan θ>0,则θ在第一、三象限,所以a ≠±1. ①若θ在第一象限,sin θ=a >0,且a ≠1时, cos θ=1-sin 2θ=1-a 2. 所以tan θ=sin θcos θ=a1-a2. ②若θ在第三象限,sin θ=a <0,且a ≠-1时, cos θ=-1-sin 2θ=-1-a 2. 所以tan θ=sin θcos θ=-a1-a2. 利用同角三角函数关系化简化简下列各式: (1)1-2sin 10°cos 10°sin 10°-1-sin 210°; (2)1-sin α1+sin α+1+sin α1-sin α,其中sin αtan α<0.【解】 (1)1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1. (2)由于sin αtan α<0,则sin α,tan α异号, 所以α是第二、三象限角,所以cos α<0.所以1-sin α1+sin α+1+sin α1-sin α=(1-sin α)21-sin 2α+ (1+sin α)21-sin 2α=|1-sin α||cos α|+|1+sin α||cos α|=1-sin α+1+sin α-cos α=-2cos α.(1)三角函数式的化简过程中常用的方法①化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.②对于含有根号的,常把根号下式子化成完全平方式,然后去根号,达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)对三角函数式化简的原则 ①使三角函数式的次数尽量低. ②使式中的项数尽量少. ③使三角函数的种类尽量少. ④使式中的分母尽量不含有三角函数. ⑤使式中尽量不含有根号和绝对值符号.⑥能求值的要求出具体的值,否则就用三角函数式来表示.2.化简:1-sin 4x -cos 4x1-sin 6x -cos 6x.解:原式=1-[(sin 2x +cos 2x )2-2sin 2x cos 2x ]1-(sin 2x +cos 2x )(sin 4x +cos 4x -sin 2x cos 2x ) =1-1+2sin 2x cos 2x1-[(sin 2x +cos 2x )2-3sin 2x cos 2x ] =2sin 2x cos 2x 3sin 2x cos 2x =23. 利用同角三角函数关系式证明求证:(1)1+tan 2α=1cos 2α;(2)sin α1-cos α=1+cos αsin α. 【证明】 证明:(1)因为1+tan 2α=1+sin 2αcos 2α= cos 2α+sin 2αcos 2α=1cos 2α, 所以原式成立.(2)法一:由sin α≠0知,cos α≠-1, 所以1+cos α≠0.于是左边=sin α(1+cos α)(1-cos α)(1+cos α)=sin α(1+cos α)1-cos 2α=sin α(1+cos α)sin 2α=1+cos αsin α=右边. 所以原式成立.法二:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α, 即sin 2α=(1-cos α)(1+cos α). 因为1-cos α≠0,sin α≠0, 所以sin α1-cos α=1+cos αsin α.证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则. (2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.3.(1)求证:1-2sin x cos x cos 2x -sin 2x =1-tan x1+tan x. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明:(1)左边=sin 2x -2sin x cos x +cos 2xcos 2x -sin 2x=tan 2x -2tan x +11-tan 2x=(tan x -1)2(1-tan x )(1+tan x )=1-tan x1+tan x =右边. 所以原式成立.(2)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α =左边, 所以原等式成立.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 23α+cos 23α=1.2.在使用同角三角函数关系式时要注意使式子有意义,如式子tan 90°=sin 90°cos 90°不成立.3.注意公式的变形,如sin 2α=1-cos 2α,cos 2α=1-sin 2α,sin α=cos αtan α,cosα=sin αtan α等. 4.在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.已知sin α+cos α=13,其中0<α<π,求sin α-cos α的值.【解】 因为sin α+cos α=13,所以(sin α+cos α)2=19,可得:sin α·cos α=-49.因为0<α<π,且sin α·cos α<0,所以sin α>0,cos α<0.所以sin α-cos α>0, 又(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.(1)在处得到sin α·cos α<0,为判断sin α,cos α的具体符号提供了条件,是解答本题的关键;若没有判断出处的关系式,则下一步利用平方关系求解sin α-cos α的值时,可能会出现两个,是解答本题的易失分点;若前边的符号问题都正确,但在处书写不正确,没有考虑前面的符号而出现sin α-cos α=±173,则是解答本题的又一易失分点. (2)在解题过程中要充分利用题中的条件,判断出所求的三角函数式的符号.1.已知sin α=23,tan α=255,则cos α=( )A .13 B .53 C .73D .55解析:选B .因为tan α=sin αcos α,所以cos α=sin αtan α=23255=53.2.化简:⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=( )A .sin αB .cos αC .1+sin αD .1+cos α解析:选A .⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin α. 3.已知cos θ=35,且3π2<θ<2π,那么tan θ的值为________.解析:因为θ为第四象限角, 所以tan θ<0,sin θ<0,sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.答案:-434.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解:由tan α=sin αcos α=43,得sin α=43cos α,①又sin 2α+cos 2α=1,② 由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,所以cos α=-35,sin α=-45.[学生用书P83(单独成册)])[A 基础达标]1.若cos α=13,则(1+sin α)(1-sin α)等于( )A .13B .19C .223D .89解析:选B .原式=1-sin 2α=cos 2α=19,故选B .2.若α是第四象限角,tan α=-512,则sin α=( )A .15B .-14C .513D .-513解析:选D .因为tan α=sin αcos α=-512,sin 2α+cos 2α=1,所以sin α=±513.因为α是第四象限角,所以sin α=-513.3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )A .23B .-23C .13D .-13解析:选A .由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=29.因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23. 4.如果tan θ=2,那么1+sin θcos θ=( ) A .73 B .75 C .54D .53解析:选B .法一:1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ =tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.法二:tan θ=2,即sin θ=2cos θ, 又sin 2θ+cos 2θ=1, 所以(2cos θ)2+cos 2θ=1, 所以cos 2θ=15.又tan θ=2>0,所以θ为第一或第三象限角. 当θ为第一象限角时,cos θ=55,此时sin θ=1-cos 2θ=255,则1+sin θcos θ=1+255×55=75;当θ为第三象限角时,cos θ=-55, 此时sin θ=-1-cos 2θ=-255,则1+sin θcos θ=1+(-255)×(-55)=75.5.若cos α+2sin α=-5,则tan α=( ) A .12 B .2C .-12D .-2解析:选B .由⎩⎨⎧cos α+2sin α=-5,sin 2α+cos 2α=1得(5sin α+2)2=0. 所以sin α=-255,cos α=-55.所以tan α=2.6.已知tan α=m ⎝⎛⎭⎪⎫π<α<3π2,则sin α=________.解析:因为tan α=m ,所以sin 2αcos 2α=m 2,又sin 2α+cos 2α=1,所以cos 2α=1m 2+1,sin 2α=m 2m 2+1.又因为π<α<3π2,所以tan α>0,即m >0.因而sin α=-mm 2+1. 答案:-m1+m27.已知sin α-cos αsin α+cos α=2,则sin αcos α的值为________.解析:由sin α-cos αsin α+cos α=2,等式左边的分子分母同除以cos α,得tan α-1tan α+1=2,所以tanα=-3,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-310. 答案:-310 8.已知α是第二象限角,则sin α1-cos 2 α+21-sin 2 αcos α=________. 解析:因为α是第二象限角,所以sin α>0,cos α<0,所以sin α1-cos 2α+21-sin 2αcos α=sin αsin α+-2cos αcos α=-1. 答案:-19.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 解:原式=sin 2x sin x -cos x -sin x +cos x sin 2xcos 2x-1 =sin 2x sin x -cos x -cos 2x (sin x +cos x )sin 2x -cos 2x=sin 2x -cos 2x sin x -cos x=sin x +cos x . 10.已知tan α=2,求下列各式的值:(1)2sin 2α-3cos 2α4sin 2α-9cos 2α; (2)sin 2α-3sin αcos α+1.解:(1)因为tan α=2,所以cos α≠0.所以2sin 2α-3cos 2α4sin 2α-9cos 2α=2tan 2α-34tan 2α-9 =2×22-34×22-9=57. (2)因为tan α=2,所以cos α≠0.所以sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35. [B 能力提升]1.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为( ) A .153 B .-153 C .53 D .-53解析:选A .因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153. 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.解析:因为tan θ=2,所以cos θ≠0,则原式可化为sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2cos 2θcos 2θsin 2θcos 2θ+cos 2θcos 2θ=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. 答案:453.已知2sin θ-cos θ=1,3cos θ-2sin θ=a ,记数a 形成的集合为A ,若x ∈A ,y ∈A ,则以点P (x ,y )为顶点的平面图形是什么图形?解:联立⎩⎪⎨⎪⎧2sin θ-cos θ=1,sin 2θ+cos 2θ=1,解得⎩⎪⎨⎪⎧sin θ=0,cos θ=-1,或⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以a =3cos θ-2sin θ=-3或15,即A =⎩⎨⎧⎭⎬⎫-3,15.因此,点P (x ,y )可以是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3,15,P 3⎝ ⎛⎭⎪⎫15,15,P 4⎝ ⎛⎭⎪⎫15,-3.经分析知,这四个点构成一个正方形.4.(选做题)已知关于x 的方程2x 2-(3+1)x +m =0的两根分别为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cosθ1-tan θ的值;(2)m 的值;(3)方程的两根及此时θ的值.解:由根与系数的关系,可得⎩⎪⎨⎪⎧sin θ+cos θ=3+12,①sin θ·cos θ=m2,②Δ=4+23-8m ≥0.③(1)sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由①平方,得1+2sin θcos θ=2+32,所以sin θcos θ=34.又由②,得m 2=34,所以m =32,由③,得m ≤2+34, 所以m =32符合题意; (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧cos θ=32,sin θ=12. 又因为θ∈(0,2π),所以θ=π3或π6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 三角函数线及其应用学习目标:1.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.(重点)2.能利用三角函数线解决一些简单的三角函数问题.(难点)[自 主 预 习·探 新 知]1.有向线段(1)定义:带有方向的线段.(2)表示:用大写字母表示,如有向线段OM ,MP .2.三角函数线(1)作图:①α的终边与单位圆交于P ,过P 作PM 垂直于x 轴,垂足为M .②过A (1,0)作x 轴的垂线,交α的终边或其反向延长线于点T .(2)图示:图12 3(3)结论:有向线段MP 、OM 、AT ,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.[基础自测]1.思考辨析(1)角α的正弦线的长度等于sin α.( )(2)当角α的终边在y 轴上时,角α的正切线不存在.( )(3)余弦线和正切线的始点都是原点.( )[解析] (1)错误.角α的正弦线的长度等于|sin α|.(2)正确.(3)错误.正切线的始点是(1,0).[答案] (1)× (2)√ (3)×2.角π7和角8π7有相同的( ) A .正弦线B .余弦线C .正切线D .不能确定C [角π7和角8π7的终边互为反向延长线,所以正切线相同.] 3.如图124,在单位圆中角α的正弦线、正切线完全正确的是( )图12 4A .正弦线MP ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线MP ,正切线ATC [α为第三象限角,故正弦线为MP ,正切线为AT ,C 正确.][合 作 探 究·攻 重 难]作已知角的三角函数线 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3. [解] 如图.其中MP 为正弦线,OM 为余弦线,AT 为正切线.[规律方法] 三角函数线的画法1作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.2作正切线时,应从A 1,0点引x 轴的垂线,交α的终边α为第一或第四象限角或α终边的反向延长线α为第二或第三象限角于点T ,即可得到正切线AT .[跟踪训练]1.作出-5π8的正弦线、余弦线和正切线. [解] 如图:sin ⎝ ⎛⎭⎪⎫-5π8=MP , cos ⎝ ⎛⎭⎪⎫-5π8=OM , tan ⎝ ⎛⎭⎪⎫-5π8=AT .利用三角函数线解三角不等式1.利用三角函数线如何解答形如sin α≥a ,sin α≤a (|a |≤1)的不等式?提示:对形如sin α≥a ,sin α≤a (|a |≤1)的不等式:画出如图①所示的单位圆;在y 轴上截取OM =a ,过点(0,a )作y 轴的垂线交单位圆于两点P 和P ′,并作射线OP 和OP ′;写出终边在OP 和OP ′上的角的集合;图中阴影部分即为满足不等式sin α≤a 的角α的范围,其余部分即为满足不等式sin α≥a 的角α的范围.图①2.利用三角函数线如何解答形如cos α≥a ,cos α≤a (|a |≤1)的不等式?提示:对形如cos α≥a ,cos α≤a (|a |≤1)的不等式:画出如图②所示的单位圆;在x 轴上截取OM =a ,过点(a,0)作x 轴的垂线交单位圆于两点P 和P ′,作射线OP 和OP ′;写出终边在OP 和OP ′上的角的集合;图中阴影部分即为满足不等式cos α≤a 的角α的范围,其余部分即为满足不等式cos α≥a 的角α的范围.图②利用三角函数线确定满足下列条件的角α的取值范围.(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12. [思路探究]确定对应方程的解―→确定角α的终边所在区域―→写出角α的取值范围 [解] (1)如图,由余弦线知角α的取值范围是⎩⎨⎧ α⎪⎪⎪⎭⎬⎫2k π-3π4<α<2k π+3π4,k ∈Z .(2)如图,由正切线知角α的取值范围是⎩⎨⎧ α⎪⎪⎪⎭⎬⎫k π-π2<α≤k π+π6,k ∈Z .(3)由|sin α|≤12,得-12≤sin α≤12.如图,由正弦线知角α的取值范围是⎩⎨⎧ α⎪⎪⎪⎭⎬⎫k π-π6≤α≤k π+π6,k ∈Z .[规律方法] 利用单位圆中的三角函数线解不等式的方法1首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角α满足条件的终边的位置.2角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.3写角的范围时,抓住边界值,然后再注意角的范围的写法要求.提醒:在一定范围内先找出符合条件的角,再用终边相同的角的表达式写出符合条件的所有角的集合.母题探究:1.将本例(1)的不等式改为“cos α<22”,求α的取值范围. [解] 如图,由余弦线知角α的取值范围是⎩⎨⎧ α⎪⎪⎪⎭⎬⎫2k π+π4<α<2k π+7π4,k ∈Z .2.将本例(3)的不等式改为“-12≤sin θ<32”求α的取值范围. [解] 由三角函数线可知sin π3=sin 2π3=32,sin 7π6=sin ⎝ ⎛⎭⎪⎫-π6=-12,且-12≤sin θ<32,故θ的取值集合是⎣⎢⎡⎭⎪⎫2k π-π6,2k π+π3∪⎝ ⎛⎦⎥⎤2k π+2π3,2k π+7π6(k ∈Z ). 利用三角函数线比较大小(1)已知cos α>cos β,那么下列结论成立的是( )A .若α、β是第一象限角,则sin α>sin βB .若α、β是第二象限角,则tan α>tan βC .若α、β是第三象限角,则sin α>sin βD .若α、β是第四象限角,则tan α>tan β(2)利用三角函数线比较sin 2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小. [思路探究] (1)在规定象限内画出α、β的余弦线满足cos α>cos β→观察正弦线或正切线判断大小 (2) →观察图形,比较大小(1)D [由图(1)可知,cos α>cos β时,sin α<sin β,故A 错误;图(1)由图(2)可知,cos α>cos β时,tan α<tan β,故B 错误;图(2)由图(3)可知,cos α>cos β时,sin α<sin β,C 错误;图(3)由图(4)可知,cos α>cos β时,tan α>tan β,D 正确.]图(4)(2)如图,sin 2π3=MP ,cos 2π3=OM ,tan 2π3=AT ,sin 4π5=M ′P ′,cos 4π5=OM ′,tan 4π5=AT ′. 显然|MP |>|M ′P ′|,符号皆正,∴sin 2π3>sin 4π5; |OM |<|OM ′|,符号皆负,∴cos 2π3>cos 4π5;|AT |>|AT ′|,符号皆负,∴tan 2π3<tan 4π5.[规律方法] 1利用三角函数线比较大小的步骤:①角的位置要“对号入座”;②比较三角函数线的长度; ③确定有向线段的正负.2利用三角函数线比较函数值大小的关键及注意点:①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向.[跟踪训练] 2.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <cD [由如图的三角函数线知:MP <AT ,因为2π7>2π8=π4,所以MP >OM ,所以cos 2π7<sin 2π7<tan 2π7,所以b <a <c .][当 堂 达 标·固 双 基]1.如果OM ,MP 分别是角α=π5余弦线和正弦线,那么下列结论正确的是() A .MP <OM <0 B .MP <0<OMC .MP >OM >0D .OM >MP >0D [角β=π4的余弦线正弦线相等,结合图象可知角α=π5的余弦线和正弦线满足OM >MP >0.]2.若角α的余弦线是单位长度的有向线段,那么角α终边在( )A .y 轴上B .x 轴上C .直线y =x 上D .直线y =-x 上B [由已知得,角α的终边与单位圆的交点坐标为(-1,0)或(1,0),在x 轴上.]3.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.5C [如图,画出已知三个角的正弦线,观察可知sin 1.5>sin 1.2>sin 1.]4.若a =sin 4,b =cos 4,则a ,b 的大小关系为________.a <b [因为5π4<4<3π2, 画出4弧度角的正弦线和余弦弦(如图),观察可知sin 4<cos 4,即a <b .]5.在单位圆中画出适合下列条件的角α的终边范围,并由此写出角α的集合.(1)sin α≥32;(2)cos α≤-12.[解] (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则角α的终边在如图①所示的阴影区域内(含边界),角α的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ π3+2k π≤α≤23π+2k π,k ∈Z .图① 图②(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则角α的终边在如图②所示的阴影区域内(含边界),角α的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ 23π+2k π≤α≤43π+2k π,k ∈Z .。