初三数学期末复习上4

合集下载

初三数学九年级上册期末复习试卷

初三数学九年级上册期末复习试卷

初三数学九年级上册期末复习试卷一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( )A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定 3.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠0 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐6.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC =B .AD AE AB AC = C .△ADE ∽△ABCD .:1:2ADE ABC S S =7.方程2x x =的解是( ) A .x=0 B .x=1 C .x=0或x=1D .x=0或x=-1 8.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是A .相交B .相切C .相离D .无法判断 9.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A.B.C.D.10.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233π-B.233π-C.3π-D.3π-11.二次函数y=()21x++2的顶点是( )A.(1,2)B.(1,−2)C.(−1,2)D.(−1,−2)12.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点13.2的相反数是()A.12-B.12C.2D.2-14.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0 15.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题16.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC 的面积之比为______.17.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.18.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).19.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣3m+2010的值为_____.20.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)21.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.22.如图,已知△ABC是面积为3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_____(结果保留根号).23.数据1、2、3、2、4的众数是______.24.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).25.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)26.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.27.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.28.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.29.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.30.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.三、解答题31.解方程:(1)3x2-6x-2=0;(2)(x-2)2=(2x+1)2.32.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;33.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB 在两棵同样高度的树苗CE 和DF 之间,树苗高2 m ,两棵树苗之间的距离CD 为16 m ,在路灯的照射下,树苗CE 的影长CG 为1 m ,树苗DF 的影长DH 为3 m ,点G 、C 、B 、D 、H 在一条直线上.求路灯AB 的高度.34.解方程:(1)(x +1)2﹣9=0(2)x 2﹣4x ﹣45=035.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b =+的表达式;()2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论; (2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°.①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.38.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.39.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.40.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、⊥.FC,且EC EF∽;(1)求证:AEF BCEAC=AB的长;(2)若23△的外接圆圆心之间的距离?(3)在(2)的条件下,求出ABC的外接圆圆心与CEF【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.3.D解析:D【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,∴△=b 2﹣4ac=4+4k >0,且k≠0.解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.4.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.7.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.8.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r时,直线和圆相离,当d<r时,直线和圆相交.9.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.10.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π 故选B . 11.C解析:C【解析】【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 12.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC 的长度,即可解题.【详解】解:如下图,连接AC,∵圆A 的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D 在圆A 内,B 在圆上,C 在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.13.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.14.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB ∴∠=︒22226511BD AB AD ∴=-=-∵弦AD 平分BAC ∠11CD BD ∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DB DB AD∴= 11511= 解得115DE = 115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD :AB )2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.17.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.18.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分解析:12【解析】【分析】 直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为:12. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.19.2019【解析】【分析】根据m 是方程5x2﹣3x ﹣1=0的一个根代入得到5m2﹣3m ﹣1=0,进一步得到5m2﹣1=3m ,两边同时除以m 得:5m ﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m 是方程5x 2﹣3x ﹣1=0的一个根代入得到5m 2﹣3m ﹣1=0,进一步得到5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3,然后整体代入即可求得答案. 【详解】解:∵m 是方程5x 2﹣3x ﹣1=0的一个根,∴5m 2﹣3m ﹣1=0,∴5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3, ∴15m ﹣3m +2010=3(5m ﹣1m)+2010=9+2010=2019, 故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键. 20.60π【解析】 试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 21.25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25% 【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.22.【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH =HF =x ,则EH =xtan30°x . ∵AB=2AD ,AD=AE ,∴AE =12AB =1,∴x+33x=1,解得x=33233-=+.∴S△AEF=12×1×33-=33-.故答案为:33 -.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.23.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.24.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).25.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.26..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.27.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.28.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.29.80∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.30.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣2×32x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题31.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.32.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4【解析】【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为 y =a (x -1)2-4把(0,-3)代入y =a (x -1)2-4得,a =1∴y =(x -1)2-4或y =x 2-2x -3(2)解:∵y= y =(x -1)2-4,∴原函数图象的顶点坐标为(1,-4),∵描出的抛物线与抛物线y =x 2-2x -3关于x 轴对称,∴新抛物线顶点坐标为(1,4),∴这条抛物线的解析式为y =-(x -1)2+4,故答案为:y =-(x -1)2+4.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x 轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.33.m【解析】【分析】设BC 的长度为x ,根据题意得出△GCE ∽△GBA ,△HDF ∽△HBA ,进而利用相似三角形的性质列出关于x 的方程.【详解】解:设BC 的长度为x m由题意可知CE ∥AB ∥DF∵CE ∥AB∴△GCE ∽△GBA ,△HDF ∽△HBA ∴GC CE GB AB =,即11x +=2AB HD HB =FD AB ,即()3316x +- =2AB∴11x +=()3316x +- ∴x =4∴AB =10答:路灯AB 的高度为10 m.【点睛】此题主要考查了相似三角形的应用,得出△GCE ∽△GBA ,△HDF ∽△HBA 是解题关键.34.(1)12x =,24x =-;(2)19x =,25x =-.【解析】【分析】(1)先移项,再利用直接开平方法即可求出答案;(2)根据因式分解法即可求出答案.【详解】(1)(x+1)2﹣9=0(x+1)2=9x+1=±3x 1=2或x 2=﹣4.(2)x 2﹣4x ﹣45=0(x ﹣9)(x+5)=0x =9或x =﹣5.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.35.(1)120y x =-+;(2)销售单价定为87元时,商场可获得最大利润,最大利润是891元.【解析】【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.【详解】解:()1根据题意得65557545k b k b +=⎧⎨+=⎩, 解得1120k b =-⎧⎨=⎩. 所求一次函数的表达式为y x 120=-+.(2)()()w x 60x 120=--+2x 180x 7200=-+-2(x 90)900=--+,∵抛物线的开口向下,∴当x 90<时,w 随x 的增大而增大,又因为获利不得高于45%,60 1.4587⨯=,所以60x 87≤≤,∴当x 87=时,2w (8790)900891=--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.【点睛】本题考查了二次函数的实际应用,中等难度,表示出二次函数的解析式是解题关键.四、压轴题36.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB ,OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:oNOP NOQ QOR180∠+∠+∠=,NOQ90O∴∠=NOQ OCA180O∴∠+∠= .AB//ON∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.37.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414710【解析】【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE =BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=2,再将AD+BD=14,CD=2代入22AD BD⎛⎫⋅+⎪⎪⎝⎭,化简得出﹣(AD﹣212)2+4414,进而求出AD,最后用勾股定理求出AB即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=故答案为72;②∵AD+BD=14,∴CD=72,∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,22AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=7104.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.38.(1)∠DPC是直径AB的回旋角,理由见解析;(2)“回旋角”∠CPD的度数=CD的度数,证明见解析;(3)3或23.【解析】【分析】(1)由∠BPC=∠DPC=60°结合平角=180°,即可求出∠APD=60°=∠BPC,进而可说明∠DPC是直径AB的回旋角;(2)延长CP交圆O于点E,连接OD,OC,OE,由“回旋角”的定义结合对顶角相等,可得出∠APE=∠APD,由圆的对称性可得出∠E=∠D,由等腰三角形的性质可得出∠E=∠C,进而可得出∠D=∠C,利用三角形内角和定理可得出∠COD=∠CPD,即“回旋角”∠CPD的度数=CD的度数;(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC,利用(2)的方法可得出点P,D,F在同一条直线上,由直径AB的“回旋角”为120°,可得出∠APD=∠BPC=30°,进而可得出∠CPF=60°,即△PFC是等边三角形,根据等边三角形的性质可得出∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,根据等腰三角形的性质可得出CD=2DG,∠DOG=12∠COD=60°,结合圆的直径为26可得出CD=133,由△PCD的周长为24+133,可得出DF=24,过点O作OH⊥DF于点H,在Rt△OHD和在Rt△OHD中,通过解直角三角形可得出OH,OP的值,再根据AP=OA﹣OP可求出AP的值;②当点P在半径OB上时,用①的方法,可得:BP=3,再根据AP=AB﹣BP可求出AP的值.综上即可得出结论.【详解】(1)∵∠BPC=∠DPC=60°,∴∠APD=180°﹣∠BPC﹣∠DPC=180°﹣60°﹣60°=60°,∴∠APD=∠BPC,∴∠DPC是直径AB的回旋角.(2)“回旋角”∠CPD的度数=CD的度数,理由如下:如图2,延长CP交圆O于点E,连接OD,OC,OE.∵∠CPB=∠APE,∠APD=∠CPB,∴∠APE=∠APD.∵圆是轴对称图形,∴∠E=∠D.∵OE=OC,∴∠E=∠C,∴∠D=∠C.由三角形内角和定理,可知:∠COD=∠CPD,∴“回旋角”∠CPD的度数=CD的度数.(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,。

苏科版九年级数学上册初三期末综合复习卷四.docx

苏科版九年级数学上册初三期末综合复习卷四.docx

C D E F A B O x y 4 4 A . O x y 4 4 B . O x y 4 4 C . O x y 4 4 D .初中数学试卷 马鸣风萧萧宜兴外国语学校初三期末综合复习卷(四)班级 姓名一、选择题1.已知关于x 的一元二次方程x 2﹣3x+2=0两实数根为x 1、x 2,则x 1+x 2=( )A . 3B . ﹣3C . 1D . ﹣1 2.若=,则的值为() A.B . C. D .3.若二次函数y=(a+1)x 2+3x+a 2﹣1的图象经过原点,则a 的值必为( )A . 1或﹣1B . 1C . ﹣1D . 04.已知圆锥的底面的半径为3cm ,高为4cm ,则它的侧面积为( )A . 15πcm 2B . 16πcm 2C . 19πcm 2D . 24πcm 25.下列语句中正确的是( )A . 长度相等的两条弧是等弧B . 平分弦的直径垂直于弦C . 相等的圆心角所对的弧相等D . 经过圆心的每一条直线都是圆的对称轴6.某洗衣机经过连续两次降价,每台售价由原来的1500元降到了990元.设平均每次降价的百分率为x ,则下列方程中正确的是( )A .1500(1+x )2=990B .990(1+x )2=1500C .1500(1﹣x )2=990D .990(1﹣x )2=15007.现定义运算“★”,对于任意实数a 、b ,都有a ★b =23a a b -+,如:3★5=32-3×3+5,若x★2=6,则实数x 的值是( )A .4-或1-B .4或1-C .4或2-D .-4或28.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB=4,点E 、F 分别是线段CD ,AB 上的动点,设AF=x , AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二、填空题9.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有 个.10.若A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)为二次函数y=x 2+4x ﹣5的图象上的三点,则y 1,y 2,y 3的大小关系是 .11.已知一组数据1,2,x ,5的平均数是4,则x 是 .这组数据的方差是 .12.关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,则k 的取值范围是 .13.圆弧的半径为3,弧所对的圆心角为60°,则该弧的长度为 .14.如图,⊙O 是△ABC 的外接圆,已知∠OAB=40°,则∠ACB 为 .15.如图,有一圆锥形粮堆,其主视图是边长为6m的正三角形ABC ,母线AC 的中点P 处有一老鼠正在偷吃粮食,小猫从B 处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是 m.(结果不取近似数)16.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 .17.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.18.如图是一块学生用直角三角板,其中∠A ′=30°,三角板的边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).将直径为4cm 的⊙O 移向三角板,三角板的内△ABC 的斜边AB 恰好等于⊙O 的直径,它的外△A ′B ′C ′的直角边A ′C ′恰好与⊙O 相切(如图2),则边B ′C ′的长为 cm .三、解答题19.解方程:(1)x 2=2x (2)2x 2﹣4x ﹣1=0 (3)y y y 22)1(3-=-A第20题20.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定△BEC是等腰三角形吗?说说你的理由;(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC不能构成等腰三角形的概率.21.工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图所示的工件槽,其中工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图所示的A,B,E三个接触点,该球的大小就符合要求.右图是过球心O及A,B,E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD,BD⊥CD.请你结合图中的数据,计算这种铁球的直径.22. 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和成本进行了调研,结果如下:每件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1),每件商品的成本Q(元)与时间t(月)的关系可用一条抛物线的一部分上的点来表示(如图2).(说明:图1,图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本.)请你根据图象提供的信息回答:(1)每件商品在3月份出售时的利润(利润=售价-成本)是多少元?(2)求图2中表示的每件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出三月份至七月份每件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司共有此种商品30000件,准备在一个月内全部售完,请你计算一下至少可获利多少元?23.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.24.如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,求它的解析式;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.。

初三数学九年级上册期末试题及答案知识讲解

初三数学九年级上册期末试题及答案知识讲解

初三数学九年级上册期末试题及答案知识讲解一、选择题1.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个2.方程 x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-4 3.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧BC上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º4.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A.B.C.D.5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,43BMCN,当∠CAN与△CMB中的一个角相等时,则BM的值为()A .3或4B .83或4C .83或6D .4或67.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+48.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x9.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >10.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根11.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 12.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4513.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°14.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+- D .23(1)3y x =-++15.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .18.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.19.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 20.数据2,3,5,5,4的众数是____.21.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.22.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).23.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.24.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 25.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.26.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.27.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.28.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.29.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.30.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB 的面积能否等于27cm ?请说明理由.33.(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P ,求证:DP EP BQ CQ=; (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .34.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次. (1)用树状图列出所有可能出现的结果; (2)求3次摸到的球颜色相同的概率.35.如图,已知△ABC 中,∠ACB =90°,AC =4,BC =3,点M 、N 分别是边AC 、AB 上的动点,连接MN ,将△AMN 沿MN 所在直线翻折,翻折后点A 的对应点为A ′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当35ANAB=且67AMAC=时,求CP的长.四、压轴题36.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.37.如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、FC,且EC EF⊥.(1)求证:AEF BCE∽;(2)若23AC=AB的长;(3)在(2)的条件下,求出ABC的外接圆圆心与CEF△的外接圆圆心之间的距离?38.如图,AB是⊙O的直径,AF是⊙O的弦,AE平分BAF∠,交⊙O于点E,过点E作直线ED AF⊥,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.2.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa,当a、c异号时,可利用直接开平方法求解.3.B解析:B【解析】 【分析】根据垂径定理可得AB AC =,根据圆周角定理可得∠AOB=2∠ADC ,进而可得答案. 【详解】解:∵OA 是⊙O 的半径,弦BC ⊥OA , ∴AB AC =, ∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.C解析:C 【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.5.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.D 解析:D 【解析】 【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB =, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽,∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y =2(x ﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y =2(x+1)2+4,故选:A .【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 8.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意;故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.9.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 10.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.11.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.12.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=22326525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.13.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO , ∴1252A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.故选C .【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.14.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.18.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.19.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.20.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.21.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.22.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分解析:12 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为:12. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键. 23.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即222272OA AB ===∴236OA=,OA>6OA∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.24.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.25.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°26.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两 解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】 解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD =32, ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π∵S△ABC=12×6×33=93∴纸片能接触到的最大面积为:93﹣33+π=63+π.故答案为63+π.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式. 27.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.28.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.30.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题31.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.32.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(22252x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于;(2)设t 秒后,5PB t =-,2QB t =,又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.33.(1)证明见解析;(2)①9;②证明见解析. 【解析】【分析】(1)易证明△ADP ∽△ABQ ,△ACQ ∽△ADP ,从而得出DP EP BQ CQ=;(2)①根据等腰直角三角形的性质和勾股定理,求出BC ,根据△ADE ∽△ABC ,求出正方形DEFG 的边长3.从而,由△AMN ∽△AGF 和△AMN 的MN边上高6,△AGF 的GF ,GF=3,根据 MN :GF 等于高之比即可求出MN ; ②可得出△BGD ∽△EFC ,则DG•EF=CF•BG ;又DG=GF=EF ,得GF 2=CF•BG ,再根据(1)DM MN EN BG GF CF==,从而得出结论. 【详解】解:(1)在△ABQ 和△ADP 中,∵DP ∥BQ ,∴△ADP ∽△ABQ , ∴DP AP BQ AQ=, 同理在△ACQ 和△APE 中,EP AP CQ AQ =, ∴DP PE BQ QC=; (2)①作AQ ⊥BC 于点Q .∵BC 边上的高AQ=2, ∵DE=DG=GF=EF=BG=CF∴DE :BC=1:3又∵DE ∥BC∴AD :AB=1:3,∴AD=13,∵DE 边上的高为6,MN :GF=6:2,∴MN :3=6:2,∴.故答案为:29.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF , 又∵∠BGD=∠EFC ,∴△BGD ∽△EFC ,∴DG BG CF EF=, ∴DG•EF=CF•BG , 又∵DG=GF=EF ,∴GF 2=CF•BG ,由(1)得DM MN EN BG GF FC ==, ∴MN MN DM EN GF GF BG CF=, ∴2()MN DM EN GF BG CF=, ∵GF 2=CF•BG ,∴MN 2=DM•EN .【点睛】 本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.34.(1)见解析;(2)14【解析】【分析】(1)根据题意画树状图,求得所有等可能的结果;(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【详解】(1)画树状图为:。

九年级上册期末数学试卷4

九年级上册期末数学试卷4

..1. 已知mB . A初三数学第一学期期末试卷附参考答案一、选择题 (本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个选项是符合题意的.n= ,那么下列式子中一定成立的是3 4A . 4m = 3nB . 3m = 4nC . m = 4nD . mn = 122.如图,△ ABC 中, DE ∥ BC ,AD 1= , AE = 2cm , AB 3则 AC 的长是A . 2cmB . 4cmC . 6cmD . 8cm3. 如图,⊙ O 是 ∆ABC 的外接圆, ∠A = 50︒ ,则 ∠BOC 的度数为A . 40 ︒B . 50 ︒C . 80 ︒D .100︒AO CB4. 将抛物线 y = 2x 2 向右平移 1 个单位,再向上平移 3 个单位,得到的抛物线是A . y = 2( x + 1)2 + 3B . y = 2( x - 1)2 + 3C . y = 2( x + 1)2 - 3D . y = 2( x - 1)2 - 35.如图,在 Rt ∆ABC , ∠C = 90︒ , AC = 8 , BC = 6 ,则 sin B 的值等于A . 3 44 3B4 3 C . D .5 5C6. 如图, AB 是 O 的直径, C 、D 是圆上两点, ∠CBA = 70︒ ,则 ∠D 的度数为CA .10︒B . 20︒ AOBC . 70︒D . 90︒7. 在平面直角坐标系 xOy 中,以 M (3,4) 为圆心,半径为 5 的圆与x 轴的位置关系是A .相离B .相交C .相切D .无法确定8. 如图, ∆ABC 中, AB = AC = 4 , ∠BAC = 120︒ .D点 O 是 BC 中点,点 D 沿 B →A →C 方向从 B 运动A到 C .设点 D 经过的路径长为 x , OD 长为 y .则函数D y 的图象大致为BO C最新试卷 word 电子文档-可编辑y y y yO x O x O x O xA B C D二、填空题(本题共16分,每小题4分)9.若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是.10.若反比例函数y=m-1x的图象分布在第二、四象限,则m的取值范围是______.11.若扇形的圆心角为120°,半径为3cm,那么扇形的面积是____cm2.12.如图,边长为1的正方形ABCD放置在平面直角坐标系中,顶点A与坐标原点O重合,点B在x轴上.将正方形ABCD沿x轴正方向作无滑动滚动,当点D第一次落在x轴上时,D点的坐标是________,D点经过的路径的总长度是________;当点D第2014次落在x轴上时,D点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分)13.计算:sin60︒c os30︒+2sin45︒-tan45︒yDCAO B x14.如图,在∆ABC中,点D在边AB上,∠ACD=∠ABC,AD=1,AB=3.求AC的长.15.已知二次函数y=x2-4x+3.(1)求二次函数与x轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y随x增大而减小时自变量x的取值范围.ADB C16.如图,在∆DEF中,EF=2,DE=4,∠DEF=120︒,求DF的长.FD E最新试卷word电子文档-可编辑1017. 如 图 , AB是⊙ O 的 弦 , CD 是⊙ O 的直径,CD ⊥ AB ,垂足为 E . CE = 1, ED = 3 ,求 AB 长.CAEOBD18. 如图,某数学兴趣小组想测量一棵树 CD 的高度,他们先在点 A 处测得树顶 C 的仰角为 30 ︒ ,然后沿 AD 方向前行 10m ,到达 B 点,在 B 处测得树顶 C 的仰角高度为 60 ︒ ( A 、 B 、 D 三点在同一直线上)。

浙教版-学年初中数学九年级上学期期末复习专题4 旋转 解析版

浙教版-学年初中数学九年级上学期期末复习专题4 旋转 解析版

浙教版2019-2020学年初中数学九年级上学期期末复习专题4 旋转一、单选题1.下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A. B. C. D.2.如图,将△ABC绕顶点C旋转得到△A′B′C,且点B刚好落在A′B′上,若∠A=35°,∠BCA'=40°,则∠A′BA 等于()A. 30°B. 35°C. 40°D. 45°3.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. D. 44.如图,点P为正△ABC内一点,∠APC=150°,AP=3,CP=1,则BP长为()A. B. C. D.5.如图,将△ABC绕点A旋转后得到△ADE,则旋转方式是()A. 逆时针旋转90°B. 顺时针旋转90°C. 顺时针旋转45°D. 逆吋针旋转45°6.如图,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它绕点C旋转一定角度,扶起平放在地面上(如图),则灰斗柄AB绕点C转动的角度为()A. 75°B. 25°C. 115°D. 105°7.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是().A. (-4,3)B. (-3,4)C. (3,-4)D. (4,-3)8.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为()A. B. C. D.9.已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点M在图中直角坐标系中的纵坐标可能是()A. 2.2B. -2.2C. 2.3D. -2.310.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A2 017OB2 017.则点B2 017的坐标()A. (22 017,-22 017)B. (22 016,-22 016)C. (22 017,22 017)D. (22 016,22 016)二、填空题11.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.12.如图,三角形ABC绕点A逆时针旋转90°到三角形AB'C'的位置.已知∠BAC=36°,则∠B'AC=________ 度。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

九年级(上)期末数学试卷(解析版) (4)

九年级(上)期末数学试卷(解析版) (4)

九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.方程x(x﹣2)=0的解是()A.x=0 B.x=2 C.x=0或x=﹣2 D.x=0或x=22.下列事件中是必然事件的是()A.实心铁球投入水中会沉入水底B.某投篮高手投篮一次就投中C.打开电视机,正在播放足球比赛D.抛掷一枚硬币,落地后正面朝上3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.若两个相似三角形的周长之比是1:2,则它们的面积之比是()A.1:2 B.1:C.2:1 D.1:46.将抛物线y=x2向左平移2个单位,再向下平移3个单位,则得到的抛物线解析式是()A.y=(x﹣2)2﹣3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x+2)2+37.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)2=256 D.256(1﹣2x)2=289 8.如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴,垂足为B,将△ABO 绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),则点A′的坐标是()A.(2,0)B.(2,﹣1)C.(﹣2,1)D.(﹣1,﹣2)9.已知m<0,则函数y=的图象大致是()A.B.C.D.10.如图,圆内接四边形ABCD,AB=3,∠C=135°,若AB⊥BD,则圆的直径是()A.6 B.5 C.3D.311.已知Rt△ABC的一条直角边AB=8cm,另一条直角边BC=6cm,以AB为轴将Rt△ABC旋转一周,所得到的圆锥的侧面积是()A.120πcm2B.60πcm2C.160πcm2D.80πcm212.已知关于x的方程只有一个实数根,则实数a的取值范围是()A.a>0 B.a<0 C.a≠0 D.a为一切实数二、填空题(共6小题,每小题4分,满分24分)13.已知一元二次方程x2﹣x﹣c=0有一个根为2,则常数c的值是.14.投掷一枚质地均匀的骰子,向上一面的点数大于4的概率是.15.点(﹣2,1)关于原点对称的点的坐标为.16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为20m,那么这根旗杆的高度是m.17.如图所示,一个半径为1的圆内切于一个圆心角为60°的扇形,则扇形的弧长是.18.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是.三、解答题(共9小题,满分90分)19.已知关于x的一元二次方程x2+x+a=0有两个相等的实数根,求a的值.20.解方程:x2﹣2x=1.21.如图,正方形的边长为2,边OA,OC分别在x轴与y轴上,反比例函数y=(k为常数,k≠0)的图象经过正方形的中心D.(1)直接写出点D的坐标;(2)求反比例函数的解析式.22.一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.23.如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.24.某商场销售一种笔记本,进价为每本10元,试营销阶段发现:当销售单价为12元时,每天可卖出100本.如调整价格,每涨价1元,每天要少卖出10本.(1)写出该商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>10);(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.25.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明DE是⊙O的切线;(2)若OA=,CE=1,求△ABC的面积.26.如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).(1)用含t的代数式表示线段PC的长是;(2)当△PCQ为等腰三角形时,求t的值;(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.27.如图,已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H.(1)求A,B两点的坐标;(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;(3)以OB为边最第四象限内作等边△OBM.设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值.2017-2018学年福建省福州市长乐市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.方程x(x﹣2)=0的解是()A.x=0 B.x=2 C.x=0或x=﹣2 D.x=0或x=2【考点】解一元二次方程-因式分解法.【分析】原方程已化为了方程左边为两个一次因式的乘积,方程的右边为0的形式;可令每一个一次因式为零,得到两个一元一次方程,从而求出原方程的解.【解答】解:由题意,得:x=0或x﹣2=0,解得x=0或x=2;故选D.【点评】在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.2.下列事件中是必然事件的是()A.实心铁球投入水中会沉入水底B.某投篮高手投篮一次就投中C.打开电视机,正在播放足球比赛D.抛掷一枚硬币,落地后正面朝上【考点】随机事件.【分析】根据理解必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:实心铁球投入水中会沉入水底是必然事件,A正确;某投篮高手投篮一次就投中是随机事件,B错误;打开电视机,正在播放足球比赛是随机事件,C错误;抛掷一枚硬币,落地后正面朝上是随机事件,D错误,故选:A.【点评】本题考查的是理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°【考点】圆周角定理.【专题】探究型.【分析】直接根据圆周角定理进行解答即可.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.【点评】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.若两个相似三角形的周长之比是1:2,则它们的面积之比是()A.1:2 B.1:C.2:1 D.1:4【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的周长之比是1:2,∴两个相似三角形的相似比是1:2,∴它们的面积之比是:1:4,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.6.将抛物线y=x2向左平移2个单位,再向下平移3个单位,则得到的抛物线解析式是()A.y=(x﹣2)2﹣3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x+2)2+3【考点】二次函数图象与几何变换.【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向下平移3个单位,所得的抛物线的顶点坐标为(﹣2,﹣3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,﹣3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2﹣3.故选:C.【点评】本题考查了二次函数图象与几何变换,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.7.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)2=256 D.256(1﹣2x)2=289 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题进行计算,如果设平均每次降价的百分率为x,可以用x表示两次降价后的售价,然后根据已知条件列出方程.【解答】解:根据题意可得两次降价后售价为289(1﹣x)2,∴方程为289(1﹣x)2=256.故选答:A.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a 是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.本题的主要错误是有部分学生没有仔细审题,把答案错看成B.8.如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴,垂足为B,将△ABO 绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),则点A′的坐标是()A.(2,0)B.(2,﹣1)C.(﹣2,1)D.(﹣1,﹣2)【考点】反比例函数与一次函数的交点问题;坐标与图形变化-旋转.【专题】计算题.【分析】通过解方程组可得A(1,2),则AB=2,OB=1,再根据旋转的性质得AB=A′B′=2,OB=OB′=1,∠A′B′O=∠ABO=90°,∠BOB′=90°,所以点B′在y轴的正半轴上,A′B′⊥y轴,然后利用第二象限点的坐标特征写出A′点的坐标.【解答】解:解方程组得或,则A(1,2),∵AB⊥x轴,∴B(1,0),∴AB=2,OB=1,∵△ABO绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),如图,∴AB=A′B′=2,OB=OB′=1,∠A′B′O=∠ABO=90°,∠BOB′=90°,∴点B′在y轴的正半轴上,A′B′⊥y轴,∴A′点的坐标为(﹣2,1).故选C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了旋转的性质.9.已知m<0,则函数y=的图象大致是()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数的性质,分别分析x>0和x<0时图象所在象限.【解答】解:当x>0时,y==,∵m<0,∴图象在第四象限;当x<0时,y==﹣,∵m<0,∴﹣m>0,∴图象在第三象限;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.10.如图,圆内接四边形ABCD,AB=3,∠C=135°,若AB⊥BD,则圆的直径是()A.6 B.5 C.3D.3【考点】圆内接四边形的性质;等腰直角三角形;圆周角定理.【分析】根据圆内接四边形的性质求出∠A,根据等腰直角三角形的性质和圆周角定理解得即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠C+∠A=180°,∴∠A=45°,又AB⊥BD,∴△ABC为等腰直角三角形,∴AD=AB=3,∵AB⊥BD,∴线段AD为圆的直径,∴圆的直径为3,故选:D.【点评】本题考查的是圆内接四边形的性质、等腰直角三角形的性质和圆周角定理的应用,掌握相关的定理、灵活运用性质是解题的关键.11.已知Rt△ABC的一条直角边AB=8cm,另一条直角边BC=6cm,以AB为轴将Rt△ABC旋转一周,所得到的圆锥的侧面积是()A.120πcm2B.60πcm2C.160πcm2D.80πcm2【考点】圆锥的计算.【分析】根据勾股定理求出Rt△ABC的斜边长,根据题意求出圆锥的底面周长,根据扇形的面积公式计算即可.【解答】解:∵Rt△ABC的一条直角边AB=8cm,另一条直角边BC=6cm,∴斜边AC==10cm,圆锥的底面周长为:2π×6=12πcm,则圆锥的侧面积为:×12π×10=60πcm2.故选:B.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.已知关于x的方程只有一个实数根,则实数a的取值范围是()A.a>0 B.a<0 C.a≠0 D.a为一切实数【考点】二次函数的图象;反比例函数的图象.【分析】方程只有一个实数根,则函数y=和函数y=x2﹣2x+3只有一个交点,根据二次函数所处的象限,即可确定出a的范围.【解答】解:∵方程只有一个实数根,∴函数y=和函数y=x2﹣2x+3只有一个交点,∵函数y=x2﹣2x+3=(x﹣1)2+2,开口向上,对称轴x=1,顶点为(1,2),抛物线交y轴的正半轴,∴反比例函数y=应该在一、三象限,∴a>0,故选A.【点评】本题考查了二次函数的图象和反比例函数的图象,确定二次函数的图象所处的位置是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.已知一元二次方程x2﹣x﹣c=0有一个根为2,则常数c的值是2.【考点】一元二次方程的解.【分析】把x=2代入方程x2﹣x﹣c=0,得出一个关于c的方程,求出方程的解即可.【解答】解:把x=2代入方程x2﹣x﹣c=0得:4﹣2﹣c=0,解得:c=2,故答案为:2.【点评】本题考查了解一元一次方程,一元二次方程的解得应用,能得出关于c的方程是解此题的关键.14.投掷一枚质地均匀的骰子,向上一面的点数大于4的概率是.【考点】概率公式.【分析】由于一枚质地均匀的正方体骰子,骰子向上的一面点数可能为1、2、3、4、5、6,共有6种可能,大于4的点数有5、6,则根据概率公式可计算出骰子向上的一面点数大于4的概率.【解答】解:掷一枚质地均匀的正方体骰子,骰子向上的一面点数共有6种可能,而只有出现点数为5、6才大于4,所以这个骰子向上的一面点数大于4的概率是=.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.15.点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).【考点】关于原点对称的点的坐标.【专题】计算题.【分析】根据点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b)即可得到点(﹣2,1)关于原点对称的点的坐标.【解答】解:点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).故答案为(2,﹣1).【点评】本题考查了关于原点对称的点的坐标特点:点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b).16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为20m,那么这根旗杆的高度是12m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为xm,由题意得,=,解得:x=12.故答案为:12.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.17.如图所示,一个半径为1的圆内切于一个圆心角为60°的扇形,则扇形的弧长是π.【考点】相切两圆的性质.【分析】连接OA、CB,则CB⊥OB,由切线长定理得出∠BOC=×60°=30°,由含30°角的直角三角形的性质得出OC=2CB=2,求出OA=OC+CA=3,扇形的弧长公式即可得出结果.【解答】解:如图所示:连接CB,则CB⊥OB,∴∠OBC=90°,∠BOC=×60°=30°,∵CA=CB=1,∴OC=2CB=2,∴OA=OC+CA=3,∴扇形的弧长==π.故答案为:π.【点评】本题考查了相切两圆的性质、切线长定理、含30°角的直角三角形的性质、弧长公式;熟练掌握相切两圆的性质,求出扇形的半径是解决问题的关键.18.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是4.【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(﹣a,d),代入双曲线得到k1=ab,k2=﹣ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.【解答】解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(﹣a,d),代入得:k1=ab,k2=﹣ad,∵S△AOB=2,∴(b+d)•2a﹣ab﹣ad=2,∴ab+ad=4,∴k1﹣k2=4,故选:4.【点评】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=4,4是解此题的关键.三、解答题(共9小题,满分90分)19.已知关于x的一元二次方程x2+x+a=0有两个相等的实数根,求a的值.【考点】根的判别式.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于a的等式,求出a的值即可.【解答】解:根据题意得:△=b2﹣4ac=12﹣4×1×a=1﹣4a=0,解得a=.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.解方程:x2﹣2x=1.【考点】解一元二次方程-配方法.【专题】配方法.【分析】方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:∵x2﹣2x=1∴(x﹣1)2=2∴x=1±∴x1=1+,x2=1﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,正方形的边长为2,边OA,OC分别在x轴与y轴上,反比例函数y=(k为常数,k≠0)的图象经过正方形的中心D.(1)直接写出点D的坐标;(2)求反比例函数的解析式.【考点】待定系数法求反比例函数解析式.【分析】(1)根据正方形的性质即可求得D的坐标;(2)根据待定系数法即可求得反比例函数的解析式.【解答】解:(1)∵正方形的边长为2,边OA,OC分别在x轴与y轴上,∴A(2,0),C(0,2),B(2,2),∵点D是正方形的中心,∴D(1,1);(2)设反比例函数的解析式为y=,且该函数图象过点D(1,1),∴=1,∴k=1,∴反比例函数的解析式为y=.【点评】本题考查了正方形的性质和待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.22.一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字积为奇数有4种情况,再利用概率公式即可求得答案【解答】解:(1)根据题意,可以画如下的树状图:由树状图可以看出,所有可能的结果共有9种,这些结果出现的可能性相等;(2)由(1)得:其中两次摸出的球上的数字积为奇数的有4种情况,场P(两次摸出的球上的数字积为奇数)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.【考点】旋转的性质.【分析】根据旋转的性质可得△ABC≌△AB′C′,根据全等三角形的性质可得AC=AC′,∠B=∠AB′C′,则△ACC′是等腰直角三角形,然后根据三角形的外角的性质求得∠AB′C′即可.【解答】解:由旋转的性质可得:△ABC≌△AB′C′,点B′在AC上,∴AC=AC′,∠B=∠AB′C′.又∵∠BAC=∠CAC′=90°,∴∠ACC′=∠AC′C=45°.∴∠AB′C′=∠ACC′+∠CC′B′=45°+30°=75°,∴∠B=∠AB′C′=75°.【点评】本题考查了旋转的性质以及全等三角形的性质和三角形的外角的性质,注意到△ACC′是等腰直角三角形是关键.24.某商场销售一种笔记本,进价为每本10元,试营销阶段发现:当销售单价为12元时,每天可卖出100本.如调整价格,每涨价1元,每天要少卖出10本.(1)写出该商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>10);(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据题意列方程即可得到结论;(2)把y=﹣10x2+320x﹣2200化为y=﹣10(x﹣16)2+360,根据二次函数的性质即可得到结论.【解答】解:(1)y=(x﹣10)[100﹣10(x﹣12)=(x﹣10)(100﹣10x+120)=﹣10x2+320x﹣2200;(2)y=﹣10x2+320x﹣2200=﹣10(x﹣16)2+360,由题意可得:10<x≤15,∵a=﹣10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y随x的增大而增大,∴当x=15时,y取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.25.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明DE是⊙O的切线;(2)若OA=,CE=1,求△ABC的面积.【考点】切线的判定与性质.【分析】(1)连接AE,OE,∠AEB=90°,∠BAC=90°,在Rt△ACE中,D为AC的中点,则DE=AD=CD=AC,得出∠DEA=∠DAE,由OA=OE,得出∠OAE=∠OEA,则∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,即可得出结论;(2)AB=2AO=2,由△BCA∽△BAE,得出=,求出BE=3,BC=4,由勾股定理得AC==2,则S△ABC=AB•AC代入即可得出结果.【解答】(1)证明:连接AE,OE,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵AC是⊙O的切线,∴∠BAC=90°,∵在Rt△ACE中,D为AC的中点,∴DE=AD=CD=AC,∴∠DEA=∠DAE,∵OA=OE,∴∠OAE=∠OEA,∴∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,∴OE⊥DE,∵OE为半径,∴DE是⊙O的切线;(2)解:∵AO=,∴AB=2AO=2,∵∠CAB=∠AEB=90°,∠B=∠B,∴△BCA∽△BAE,∴=,即AB2=BE•BC=BE(BE+EC),∴(2)2=BE2+BE,解得:BE=3或BE=﹣4(不合题意,舍去),∴BE=3,∴BC=BE+CE=3+1=4,∴在Rt△ABC中,AC===2,∴S△ABC=AB•AC=×2×2=2.【点评】本题考查了切线的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的性质、圆周角定理等知识;本题综合性强,有一定难度.26.如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).(1)用含t的代数式表示线段PC的长是5﹣t;(2)当△PCQ为等腰三角形时,求t的值;(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.【考点】四边形综合题.【分析】(1)根据勾股定理求出AC,根据题意用t表示出AP,结合图形计算即可;(2)分CP=CQ、QP=QC、PQ=PC三种情况,根据等腰三角形的性质和相似三角形的判定和性质计算即可;(3)连接BP、BM,根据直径所对的圆周角是直角、等腰三角形的三线合一得到BP=BQ,根据勾股定理用t表示出BP、BQ,列出方程,解方程即可.【解答】解:(1)∵∠B=90°,AB=3,BC=4,∴AC=5,∵点P的速度是每秒一个单位,移动时间为t秒,∴AP=t,则PC=AC﹣AP=5﹣t,故答案为:5﹣t;(2)当CP=CQ时,t=5﹣t,解得t=,当QP=QC时,过点Q作QH⊥AC于H,如图1,则PH=HC=PC=(5﹣t),QC=t,∵QH⊥AC,∠B=90°,∴△CHQ∽△CBA,∴=,即=,解得t=,当PQ=PC时,如图2,过点P作PN⊥QC于N,则NC=NQ=QC=t,∵△CPN∽△CAB,得=,即=,解得t=,综上所述,当t=或t=或t=时,△PCQ为等腰三角形;(3)连接BP、BM,如图3,则∠BMQ=90°,∵M为PQ的中点,∴BP=BQ,过点P作PK⊥AB于K,∵AP=t,∴PK=t,AK=t,∴BK=3﹣t,在Rt△BPK中,PB2=PK2+BK2=(3﹣t)2+(t)2,又BQ=4﹣t,∴(4﹣t)2=(3﹣t)2+(t)2,解得t=.∴以BQ为直径的圆交PQ于点M,当M为PQ的中点时,t的值为.【点评】本题考查的是矩形的性质、等腰三角形的判定和性质、相似三角形的判定和性质,掌握相关的性质定理、灵活运用数形结合思想、正确作出辅助线是解题的关键.27.如图,已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H.(1)求A,B两点的坐标;(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;(3)以OB为边最第四象限内作等边△OBM.设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值.【考点】二次函数综合题.【分析】(1)令y=0,求得关于x的方程x2﹣2x﹣3=0的解即为点A、B的横坐标;(2)设P(x,x2﹣2x﹣3),根据抛物线解析式求得点D的坐标为D(1,﹣4);结合坐标与图形的性质求得线段CD=,CB=3,BD=2;所以根据勾股定理的逆定理推知∠BCD=90°,则易推知相似三角形△BCD∽△PNB,由该相似三角形的对应边成比例来求x的值,易得点P的坐标;(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.构建全等三角形:△EOM≌△FBM,由该全等三角形的性质和图形中相关角间的和差关系得到:∠OBF=120°为定值,即BF所在直线为定直线.过D点作DK⊥BF,K为垂足线段DF的长的最小值即为DK的长度.【解答】解:(1)令y=0,得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0)(2)设P(x,x2﹣2x﹣3),如图1,过点P作PN⊥x轴,垂足为N.连接BP,设∠NBP=∠CDB.令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).由勾股定理,得CD=,CB=3,BD=2.∴BD2=BC2+CD2,∴∠BCD=90°.∵∠BCD=∠PNB=90°,∠NBP=∠CDB.∴△BCD∽△PNB.∴=,=,即x2﹣5x+6=0,解得x1=2,x2=3(不合题意,舍去).∴当x=2时,y=﹣3∴P(2,﹣3);(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.由题意可得:,∴△EOM≌△FBM,∴∠MBF=∠MOB=60°.∵∠OBF=∠OBM+∠MBF=60°+60°=120°为定值,∴BF所在直线为定直线.过D点作DK⊥BF,K为垂足.在Rt△BGH中,∠HBG=180°﹣120°=60°,∴∠HGB=30°.∵HB=3,∴BG=4,HG=2.∵D(1,﹣4),∴DH=4,∴DG=2+4.在Rt△DGK中,∠DGK=30°.∴DK=DG=2+.∵当点E与点H重合时,这时BF=OH=1,则GF=4+1=5.而GK=DK=3+2>5,即点K在点F运动的路径上,所以线段DF的长的最小值存在,最小值是2+.。

最新2022-2023学年人教版九年级上册数学期末复习试卷(含答案)

最新2022-2023学年人教版九年级上册数学期末复习试卷(含答案)

一、选择题(每小题4分,共40分)题1 2 3 4 5 6 7 8 9 10号答案1.方程x2-2x=0的根是( )A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-22.下列图形中是中心对称图形的有( )个.A.1 B.2 C.3 D.43.抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=2 4.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为( )A.18°B.36°C.60°D.54°第4题图第6题图5.下列一元二次方程中有两个相等实数根的是( )A .2x 2-6x +1=0B .3x 2-x -5=0C .x 2+x =0D .x 2-4x +4=06.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的大小为( )A .42°B .48°C .52°D .58°7.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( )A .12B .23C .25D .358.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .πcmB .2πcmC .3πcmD .5πcm9.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .23-23πB .43-23πC .23-43πD .23π第8题图第9题图第10题图10.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④二、填空题(每小题4分,共32分)11.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.12.若一个圆锥的底面圆半径为3 cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.13.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为________.14.如右图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______.15.若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.16.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.17.已知当x 1=a ,x 2=b ,x 3=c 时,二次函数y =12x 2+mx 对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是________.18.如右图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB于点P ,Q ,连接AC ,关于下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心,其中结论正确的是________(只需填写序号).三、解答题(共78分)19.(8分)用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0; (2)(y +2)2-(3y -1)2=0.20.(10分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.21.(8分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.22.(8分)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.23.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数解析式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.24.(10分)如图,AB是⊙O的直径,ED︵=BD︵,连接ED,BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=22,求阴影部分的面积;(2)求证:DE=DM.25.(10分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.人教版九年级数学上册期末复习试卷1答案1.C 2.B 3.B 4.D 5.D 6.A 7.C 8.C 9.A10.C 11.1212.9 13.1414.54π15.-4 16.6 17.m>-52点拨:方法一:∵正整数a ,b ,c 恰好是一个三角形的三边长,且a <b <c ,∴a 最小是2,∵y 1<y 2<y 3,∴-m2×12<2.5,解得m >-2.5.方法二:当a <b <c 时,都有y 1<y 2<y 3,即⎩⎨⎧y 1<y 2,y 2<y 3.∴⎩⎪⎨⎪⎧12a 2+ma <12b 2+mb ,12b 2+mb <12c 2+mc , ∴⎩⎪⎨⎪⎧m >-12(a +b ),m >-12(b +c ).∵a ,b ,c 恰好是一个三角形的三边长,a <b <c ,∴a +b <b +c ,∴m >-12(a +b),∵a ,b ,c 为正整数,∴a ,b ,c 的最小值分别为2,3,4,∴m >-12(a +b)≥-12(2+3)=-52,∴m >-52,故答案为m >-52. 18.②③ 19.(1)x 1=-1+62,x 2=-1-62.(2)y 1=-14,y 2=32. 20.(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°,∵AB ⊥BC ,∴∠ABC =90°,∴∠DBE =∠CBE =30°,在△BDE 和△BCE 中,∵⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE.(2)四边形ABED 为菱形.理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA =BE ,AD =EC =ED ,又∵BE =CE ,∴BE =ED ,∴四边形ABED 为菱形. 21.(1)画树状图为:共有6种等可能的结果数,它们为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1).(2)点Q 在x 轴上的结果数为2,所以点Q 在x 轴上的概率为26=13. 22.(1)∵原方程有两个实数根,∴[-(2k +1)]2-4(k 2+2k)≥0,∴k ≤14,∴当k ≤14时,原方程有两个实数根.(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立.理由如下:假设存在实数k ,使得x 1·x 2-x 12-x 22≥0成立.∵x 1,x 2是原方程的两根,∴x 1+x 2=2k +1,x 1·x 2=k 2+2k.由x 1·x 2-x 12-x 22≥0,得3x 1·x 2-(x 1+x 2)2≥0,∴3(k 2+2k)-(2k +1)2≥0,整理得-(k -1)2≥0,∴只有当k =1时,不等式才能成立.又∵由(1)知k ≤14,∴不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立. 23.(1)设围成的矩形一边长为x 米,则矩形的另一边长为(16-x)米.依题意得y =x(16-x)=-x 2+16x ,故y 关于x 的函数解析式是y =-x 2+16x.(2)由(1)知,y =-x 2+16x.当y =60时,-x 2+16x =60,解得x 1=6,x 2=10,即当x 是6或10时,围成的养鸡场面积为60平方米.(3)不能围成面积为70平方米的养鸡场.理由如下:由(1)知,y =-x 2+16x.当y =70时,-x 2+16x =70,即x 2-16x +70=0,因为Δ=(-16)2-4×1×70=-24<0,所以该方程无实数解.故不能围成面积为70平方米的养鸡场.24.(1)如图,连接OD ,∵CD 是⊙O 切线,∴OD ⊥CD ,∵OA =CD =22,OA =OD ,∴OD =CD =22,∴△OCD 为等腰直角三角形,∴∠DOC =∠C =45°,∴S 阴影=S △OCD -S 扇形OBD =12×22×22-45π×(22)2360=4-π.(2)证明:如图,连接AD ,∵AB 是⊙O 直径,∴∠ADB =∠ADM =90°,又∵ED ︵=BD ︵,∴ED =BD ,∠MAD =∠BAD ,在△AMD 和△ABD 中,⎩⎪⎨⎪⎧∠ADM =∠ADB ,AD =AD ,∠MAD =∠BAD ,∴△AMD ≌△ABD ,∴DM =BD ,∴DE =DM. 25.(1)设y 与x 的函数解析式为y =kx +b ,根据题意,得⎩⎨⎧20k +b =300,30k +b =280,解得⎩⎨⎧k =-2,b =340,∴y 与x 的函数解析式为y =-2x +340(20≤x ≤40).(2)由已知得W =(x -20)(-2x +340)=-2x 2+380x -6 800=-2(x -95)2+11 250,∵-2<0,∴当x ≤95时,W 随x 的增大而增大,∵20≤x ≤40,∴当x =40时,W 最大,最大值为-2(40-95)2+11 250=5 200(元). 26.(1)设抛物线解析式为y =a(x -2)2+9,∵抛物线与y 轴交于点A(0,5),∴4a +9=5,∴a =-1,y =-(x -2)2+9=-x 2+4x +5.(2)当y =0时,-x 2+4x +5=0,∴x 1=-1,x 2=5,∴E(-1,0),B(5,0),设直线AB 的解析式为y =mx +n ,∵A(0,5),B(5,0),∴m =-1,n =5,∴直线AB 的解析式为y =-x +5.设P(x ,-x 2+4x +5),∴D(x ,-x +5),∴PD =-x 2+4x +5+x -5=-x 2+5x ,∵AC =4,∴S四边形APCD =12×AC ×PD =2(-x 2+5x)=-2x 2+10x ,∴当x =-102×(-2)=52时,∴即点P(52,354)时,S 四边形APCD 最大=252.(3)如图,过点M 作MH 垂直于对称轴,垂足为点H ,∵四边形AENM 是平行四边形,∴MN ∥AE ,MN =AE ,∴△HMN ≌△AOE ,∴HM =OE =1.∴M 点的横坐标为x =3或x =1.当x =1时,M 点纵坐标为8,当x =3时,M 点纵坐标为8,∴M 点的坐标为M 1(1,8)或M 2(3,8),∵A(0,5),E(-1,0),∴直线AE 解析式为y =5x +5,∵MN ∥AE ,∴可设直线MN 的解析式为y =5x +b ,∵点N 在抛物线对称轴x =2上,∴N(2,10+b),∵AE 2=OA 2+OE 2=26,∵MN =AE ,∴MN 2=AE 2,∵M 点的坐标为M 1(1,8)或M 2(3,8),∴点M 1,M 2关于抛物线对称轴x =2对称,∵点N 在抛物线对称轴上,∴M 1N =M 2N ,∴MN 2=(1-2)2+[8-(10+b)]2=1+(b +2)2=26,∴b =3或b =-7,∴10+b =13或10+b =3.∴当M 点的坐标为(1,8)时,N 点坐标为(2,13),当M 点的坐标为(3,8)时,N 点坐标为(2,3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三上册数学期末考试试题一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.16的平方根是( )A .4B .±4C .2D .±22.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51 B .31C .85D .83 3.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切4.现有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻的硬币相外切,则这枚硬币周围最多可摆放( )A .4枚硬币B .5枚硬币C .6枚硬币D .8枚硬币 5.下列一元二次方程中没有实数根的是( )A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6x 的取值范围是 .7.圆锥的母线长是3,底面半径是18.如图,圆形转盘中,A ,B ,C 三个扇形区域的圆心角分别为150°,120°和则转动圆盘一次,指针停在B 区域的概率是 .9.已知P 是⊙O 外一点,P A 切⊙O 于A ,PB 切⊙O 于B .若P A =6,则PB = .10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△1D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2F 2,如图(3)中阴影部分;如此下去,则正六角星形A 4F 4B 4D 4C 4E 4F 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:2)836(⨯+÷.12.先化简,再求值:111231322+++-+÷-+x x x x x x ,其中x =2.13.解方程组:⎩⎨⎧=+=-450222y x y x14.如图,在ABC △中,AB 是⊙O 的直径,⊙O 与AC 交于点D,60,75AB B C =∠=︒∠=︒,求AD的长和∠BOD .15.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上.A D C BO(1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.四、解答题(二)(本大题4小题,每小题7分,共28分) 16.已知关于x 的方程0)1(22122=++-a x a x 有实根. (1)求a 的值;(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值.17.据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次。

若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?18.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E .(1)求半圆O 的半径;(2)求图中阴影部分的面积.19.如图,O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于M . (1)求证:CD 与⊙O 相切; (2)若⊙O 的半径为1,求正方形ABCD 的边长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如图一,AB 是⊙O 的直径,AC 是弦,直线EF 和⊙O 相切与点C ,AD EF ⊥,垂足为D . (1)求证CAD BAC ∠=∠;(2)如图二,若把直线EF 向上移动,使得EF 与⊙O 相交于G ,C 两点(点C 在点G 的右侧),连结AC ,AG ,若题中其他条件不变,这时图中是否存在与CAD ∠相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.A O图一21.观察下列等式:第1个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=311213111a ; 第2个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=5131215312a ; 第3个等式:⎪⎭⎫⎝⎛-⨯=⨯=7151217513a ; 第4个等式:⎪⎭⎫⎝⎛-⨯=⨯=9171219714a ; ………………………………请解答下列问题:(1)按以上规律列出第5个等式:a 5 = = ;(2)用含n 的代数式表示第n 个等式:a n = = (n 为正整数);(3)求a 1 + a 2 + a 3 + a 4 + … + a 100的值.22.以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是⊙O 的切线,连接OQ . 求QOP ∠的大小;(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被⊙O 截得的弦长.人教版九年级上册数学期末考试参考答案、评分标准及解析一、选择题(本大题5小题,每小题3分,共15分) 1.D .提示:16=4,4的平方根±2.图一A BO xy图二(备用图)P2.C .提示:共有8种可能出现的结果,其中抽到红球的有5种. 3.B .提示:圆心距R =r 1+r 2时,两圆为外切. 4.C .提示:如图.5.D .提示:2340x x ++=,Δ=—7<0.二、填空题(本大题5小题,每小题4分,共20分) 6.x >21.提示:a ≥0且a 1中a 不能为0.7.120°.提示:根据公式3602r n rl S ππ==代入得3603312⋅=⋅⋅ππn ,解得n =120°.8.31.提示:31360120=︒︒. 9.6.提示:根据切线长定理.10.2561.提示:将正六边形看成由两个正三角形组成,根据三角形中位线定理得S 阴影=41S 原三角形,即第n个图形的阴影部分面积为n 41.三、解答题(一)(本大题5小题,每小题6分,共30分) 11. 2)836(⨯+÷.解:原式 …………2分 …………4分…………6分12.先化简,再求值:11129613222+++-++÷-+x x x x x x x ,其中x =2. 解:原式…………3分…………6分(未化简扣1分)13.解方程组:解:由①得:x =2y ③ …………1分将③代入②得:(2y )²+y ²=45 …………2分第4题图y 1=3,y 2=—3 …………3分将y 1=3代入③得:x 1=6 …………4分 将y 2=—3代入③得:x 2=—6 …………5分∴⎩⎨⎧-=-=⎩⎨⎧==36362211y x y x …………6分14.如图,在ABC △中,AB 是⊙O 的直径,⊙O 与AC 交于点D,60,75AB B C =∠=︒∠=︒,求AD的长和∠BOD .解:∵AB 是⊙O 的直径,AB=22, ∴AO =OD =2. …………1分 ∴在Rt △AOD 中,AD =22)2()2(+=2. …………3分 ∵∠B =60°,∠C =75°, ∴在△ABC 中,∠A =45°. …………4分∵AO =OD ,∴∠ADO =∠A =45°, …………5分 ∴在△AOD 中,∠BOD =∠ADO +∠A =90° …………6分 答:AD 的长为2,∠BOD =90°.15.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上. (1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.四、解答题(二)(本大题4小题,每小题7分,共28分) 16.已知关于x 的方程0)1(22122=++-a x a x 有实根. (1)求a 的值;(2)若关于x 的方程2(1)0mx m x a+--=的所有根均为整数,求整数m 的值.AD C B O…………2分…………4分 …………5分…………6分 …………2分17.据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次。

若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次? 解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x ,依题意,得 5000 ( 1 + x )2 =7200,…………3分 解得:x 1 = 0.2 = 20% , x 2 = —2.2(不合题意,舍去), …………5分答:这两年我国公民出境旅游总人数的年平均增长率为20% 。

(2)∵ 7200×(1+20%) = 8640,…………7分 ∴ 预测2012年我国公民出境旅游总人数约8640万人次。

18.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E . (1)求半圆O 的半径;(2)求图中阴影部分的面积.…………3分…………4分 …………7分 …………6分19.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.…………4分…………1分…………2分…………3分…………2分…………3分…………4分…………5分…………7分…………2分…………3分五、解答题(三)(本大题3小题,每小题9分,共27分)20.如图一,AB 是⊙O 的直径,AC 是弦,直线EF 和⊙O 相切与点C ,AD EF ⊥,垂足为D .(1)求证CAD BAC ∠=∠;(2)如图二,若把直线EF 向上移动,使得EF 与⊙O 相交于G ,C 两点(点C 在点G 的右侧),连结AC ,AG ,若题中其他条件不变,这时图中是否存在与CAD ∠相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.A B O图一图二…………4分…………5分…………7分 …………1分 …………4分 …………5分 …………6分…………7分 …………3分21.观察下列等式:第1个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=311213111a ;第2个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=5131215312a ; 第3个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=7151217513a ;第4个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=9171219714a ; ………………………………请解答下列问题:(1)按以上规律列出第5个等式:a 5 = = ;(2)用含n 的代数式表示第n 个等式:a n = = (n 为正整数);(3)求a 1 + a 2 + a 3 + a 4 + … + a 100的值.解:(1)1191⨯,⎪⎭⎫ ⎝⎛-1119121;…………2分 (2))12)(12(1+-n n ,⎪⎭⎫ ⎝⎛+--12112121n n ;…………4分 (3)a 1 + a 2 + a 3 + a 4 + … + a 100+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=91712171512151312131121…⎪⎭⎫ ⎝⎛-+2011199121…………6分 ⎪⎭⎫ ⎝⎛-=2011121…………8分 201100=.…………9分22.以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是⊙O 的切线,连接OQ . 求QOP ∠的大小;图一…………8分 …………9分 …………1分(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被⊙O 截得的弦长.图二(备用图)…………2分 …………3分 …………4分 …………6分 …………7分 …………8分…………9分。

相关文档
最新文档