2016-2017学年高中数学第1章常用逻辑用语1命题课后演练提升北师大版选修1-1资料
北师大版高中数学选修1-1第一章常用逻辑用语.docx

高中数学学习材料鼎尚图文*整理制作第一章常用逻辑用语(北京师大版选修1-1)一、选择题(本题共12小题,每小题5分,共60分)1.下列说法中,不正确的是( )A.“若则”与“若则”是互逆命题B.“若﹁则﹁”与“若则”是互否命题C.“若﹁则﹁”与“若则”是互否命题D.“若﹁则﹁”与“若则”互为逆否命题2.以下说法错误的是( )A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题3.若命题“使得”是假命题,则实数的取值范围是()A.[-1,3]B.(-1,3)C.(]D.4.若集合A={1,},B={3,4},则“m=2”是“A∩B={4}”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设::,若﹁是﹁的必要不充分条件,则实数的取值范围是()A.B.C.D.6.命题:将函数的图像向右平移个单位长度得到函数的图像;命题:函数的最小正周期是,则命题“或”“且”“非”中真命题的个数是()A.0B.1C.2D.37.已知命题:“”,命题:,,若命题“”是真命题,则实数的取值范围是()A.或B. 或C.D.8.给出下列命题:①若“或”是假命题,则“﹁且﹁”是真命题;②;③若关于的实系数一元二次不等式的解集为,则必有且;④,其中真命题的个数是()A.1B.2C.3D.49.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是()A.①③B.①④C.②④D.②③10.下列判断正确的是( )A.设x是实数,则“x>1”是“|x|>1”的充分不必要条件B.p:“x∈R,≤0”则有﹁p:不存在x∈R,>0C.命题“若=1,则x=1”的否命题为:“若=1,则x≠1”D.x∈(0,+∞),>为真命题11.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是,其中正确的命题个数是()A.0B.1C.2D.312.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“﹁”是假命题;③命题“﹁”是真命题;④命题“﹁﹁”是假命题,其中正确的是()A.②④B.②③C.③④D.①②③二、填空题(本题共4小题,每小题4分,共16分)13.若为定义在D上的函数,则“存在D,使得”是“函数为非奇非偶函数”的________条件. 14.已知与整数的差为的数;整数的,则是的________条件.15.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的取值范围是____________.16.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“>-”是“一元二次不等式a +bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题(本题共6小题,共74分)17.(本小题满分12分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.18.(本小题满分12分)已知命题:任意,,如果命题﹁是真命题,求实数的取值范围.19.(本小题满分12分)已知P={x|-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围.20.(本小题满分12分)设p:实数x满足-4ax+3<0,其中a>0;q:实数x满足--->(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若﹁p是﹁q的充分不必要条件,求实数a 的取值范围.21.(本小题满分12分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?22.(本小题满分14分)设命题p:函数是R上的减函数,命题q:函数在上的值域为.若“”为假命题,“”为真命题,求的取值范围.第一章常用逻辑用语(北京师大版选修1-1)答题纸得分:________ 一、选择题二、填空题13. 14. 15. 16.三、解答题17.解:18.解:19.解:20.解:21.解:22.解:第一章常用逻辑用语(北京师大版选修1-1)参考答案一、选择题1.B 解析:“若﹁则﹁”与“若则”互为逆否命题,B不正确,故选B.2.B 解析:两个命题互为逆否命题,它们之间有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.故B错误.3.A 解析:已知命题是假命题,则它的否定为真命题,命题的否定为:使得若为真命题,需方程的判别式解得4.A解析:若m=2,A={1,4},则A∩B={4};反之,若A∩B={4},则需=4,即m=±2.故“m=2”是“A∩B={4}”的充分不必要条件.5.A 解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以,所以.6.C 解析:将函数y=的图像向右平移个单位长度得到函数y==的图像,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个,选C.7. A 解析:若p成立,对有.因为所以即若q成立,则方程的判别式解得或因为命题“”是真命题,所以p真q真,故的取值范围为或8.B 解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若,则,若,则,所以②是真命题;数形结合可得,若一元二次不等式的解集是,则必有且,所以③是假命题;当时,必有但当,y=5时,满足但,所以④是假命题.综上共有2个真命题.9. A 解析:对于命题①,若==成立,必须是整数,所以命题①是假命题;对于函数f,当时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.所以选A.10. A解析:A中x>1|x|>1,|x|>1x>1或x<,所以正确;B中﹁p:x∈R,>0;C中否命题为:“若≠1,则x≠1”;D中x=时是错误的.11.C 解析:,即集合和集合没有公共元素,①正确;,即集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.所以选C.12.B 解析:因为,所以命题p是假命题,﹁是真命题;由函数y=的图像可得,命题q是真命题,﹁是假命题.所以命题“”是假命题, 命题“﹁”是假命题,命题“﹁”是真命题,命题“﹁﹁”是真命题.所以②③正确.二、填空题13.充分不必要解析:存在D,使得 –则函数为非奇非偶函数;若函数为非奇非偶函数,可能定义域不关于原点对称,所以“存在D,使得”是“函数为非奇非偶函数”的充分不必要条件.14.充分不必要解析:,可分别用集合表示,集合表示奇数的 ,集合表示整数的,因为Ü,所以是的充分不必要条件.15.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则,,,或,,,解得.16.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件,故○1正确.由函数与一元二次不等式的关系可知○2正确.x≠1≠1,反例:x=-1=1,∴○3错误.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件. ∴○4错误.三、解答题17.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程根的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.18.解:因为命题﹁是真命题,所以是假命题.又当是真命题,即恒成立时,应有,,解得,所以当是假命题时,.所以实数的取值范围是.19.解:(1)由-8x-20≤0可解得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的充要条件,∴P=S,∴--∴∴这样的m不存在.(2)由题意知,x∈P是x∈S的必要不充分条件,则S P.于是有--<或>∴或∴m≤3.∴当m≤3时,x∈P是x∈S的必要不充分条件.20.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由--->得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若﹁p是﹁q的充分不必要条件,即﹁﹁q,且﹁﹁p.设A={x|﹁p},B={x|﹁q},则A B.又A={x|﹁p}={x|x≤a或x≥3a},B={x|﹁q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.21.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.22.解:由得.因为在上的值域为,所以.又因为“”为假命题,“”为真命题,所以,一真一假.若真假,则;若假真,则.综上可得,的取值范围是或.。
高中数学 第一章 常用逻辑用语 1.1 命题作业2 北师大版选修1-1

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题1.1 命题[A.基础达标]1.“若x>1,则p”为真命题,那么p不能是( )A.x>-1 B.x>0C.x>1 D.x>2解析:选D. x>1⇒/ x>2,故选D.2.命题“若x>a2+b2,则x>2ab”的逆命题是( )A.“若x<a2+b2,则x<2ab”B.“若x>a2+b2,则x≥2ab”C.“若x≥a2+b2,则x≥2ab”D.“若x>2ab,则x>a2+b2”解析:选D.把命题“若x>a2+b2,则x>2ab”的条件和结论互换得其逆命题为“若x>2ab,则x>a2+b2”.3.如果一个命题的逆命题是真命题,那么这个命题的否命题是( )A.真命题B.假命题C.与所给的命题有关D.无法判断解析:选A.因为一个命题的逆命题、否命题是互为逆否命题,它们的真假性相同.由于逆命题是真命题,所以否命题也是真命题.4.已知命题“非空集合M中的元素都是集合P中的元素”是假命题,那么下列命题中真命题的个数为( )①M中的元素都不是P的元素;②M中有不属于P的元素;③M中有属于P的元素;④M中的元素不都是P的元素.A.1 B.2C.3 D.4解析:选C.因为“非空集合M中的元素都是集合P中的元素”是假命题,所以在M中存在不属于集合P的元素,故②③④正确,①不正确,故选C.5.若命题p的等价命题是q,q的逆命题是r,则p与r是( )A.互逆命题B.互否命题C.互逆否命题D.不确定解析:选B.因为p与q互为逆否命题,又因为q的逆命题是r,则p与r为互否命题.6.命题“对顶角相等”的等价命题是________________.解析:因为原命题和逆否命题是等价命题,所以该原命题的等价命题为“若两个角不相等,则这两个角不是对顶角”.答案:若两个角不相等,则这两个角不是对顶角7.命题“若x∈R,则x2+(a-1)x+1≥0恒成立”是真命题,则实数a的取值范围为________.解析:由题意得:Δ≤0,即:(a-1)2-4×1×1≤0,解得:a∈[-1,3].答案:[-1,3]8.命题“若∠C =90°,则△ABC 是直角三角形”的否命题的真假性为________. 解析:该命题的否命题为“若∠C ≠90°,则△ABC 不是直角三角形”.因为∠A 、∠B 可能等于90°,所以该命题的否命题为假命题.答案:假9.已知命题“若a ≥0,则x 2+x -a =0有实根”.写出命题的逆否命题并判断其真假.解:逆否命题为“若x 2+x -a =0无实根,则a <0”.因为a ≥0,所以4a ≥0,所以方程x 2+x -a =0的判别式Δ=4a +1>0,所以方程x 2+x -a =0有实根.故原命题“若a ≥0,则x 2+x -a =0有实根”为真命题.又因原命题与其逆否命题等价,所以“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真.10.(1)如图,证明命题“a 是平面π内的一条直线,b 是平面π外的一条直线(b 不垂直于π),c 是直线b 在平面π上的投影,若a ⊥b ,则a ⊥c ”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明).解:(1)证明:如图,设c ∩b =A ,P 为直线b 上异于点A 的任意一点,作PO ⊥π,垂足为O ,则O ∈c ,因为PO ⊥π,a π,所以PO ⊥a ,又a ⊥b ,b 平面PAO ,PO ∩b =P ,所以a ⊥平面PAO ,又c 平面PAO ,所以a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是平面π外的一条直线(b 不垂直于π),c 是直线b 在平面π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.[B.能力提升]1.有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④解析:选B.对于①:原命题为真命题,故逆否命题也为真命题.对于②:该命题的否命题为“不全等的三角形的面积不相等”,显然为假命题.对于③:该命题的逆否命题为“若x 2+2x +q =0无实根,则q >1”,即Δ=4-4q <0⇒q >1,故③为真命题.对于④:该命题的逆命题为“对角线相等的四边形为矩形”.反例:等腰梯形,故为假命题.2.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假解析:选A.a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列. 原命题与其逆命题都是真命题,其否命题和逆否命题也都是真命题,故选A.3.已知命题p :lg(x 2-2x -2)≥0;命题q :1-x +x 24<1,若命题p 是真命题,命题q 是假命题,则实数x 的取值范围是________.解析:由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0,解得x ≤-1或x ≥3.由1-x +x 24<1, 得x 2-4x <0,解得0<x <4.因为命题p 为真命题,命题q 为假命题,所以⎩⎪⎨⎪⎧x ≤-1或x ≥3x ≤0或x ≥4,解得x ≤-1或x ≥4. 所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).答案:(-∞,-1]∪[4,+∞)4.设p :平面向量a ,b ,c 互不共线,q 表示下列不同的结论:①|a +b |<|a |+|b |.②a·b =|a |·|b |.③(a·b )c -(a·c )b 与a 垂直.④(a·b )c =a (b·c ).其中,使命题“若p ,则q ”为真命题的所有序号是________.解析:由于p :平面向量a ,b ,c 互不共线,则必有|a +b |<|a |+|b |,①正确;由于a·b =|a ||b |cos θ<|a ||b |,②不正确;由于[(a·b )c -(a·c )b ]·a =(a·b )(c·a )-(a·c )(b·a )=0,所以(a·b )c -(a·c )b 与a 垂直,③正确;由于平面向量的数量积不满足结合律,且a ,b ,c 互不共线,故(a·b )c ≠a (b·c ),④不正确.综上可知真命题的序号是①③.答案:①③5.求证:若p 2+q 2=2,则p +q ≤2.证明:该命题的逆否命题为:若p +q >2,则p 2+q 2≠2.p 2+q 2=12[(p +q )2+(p -q )2]≥12(p +q )2. 因为p +q >2,所以(p +q )2>4,所以p 2+q 2>2.即p +q >2时,p 2+q 2≠2成立.所以若p 2+q 2=2,则p +q ≤2.6.(选做题)在公比为q 的等比数列{a n }中,前n 项的和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1)写出这个命题的逆命题;(2)判断公比q 为何值时,逆命题为真?公比q 为何值时,逆命题为假?解:(1)逆命题:在公比为q 的等比数列{a n }中,前n 项和为S n ,若a m ,a m +2,a m +1成等差数列,则S m ,S m +2,S m +1成等差数列.(2)因为{a n }为等比数列,所以a n ≠0,q ≠0.由a m ,a m +2,a m +1成等差数列.得2a m +2=a m +a m +1,所以2a m ·q 2=a m +a m ·q ,所以2q 2-q -1=0.解得q =-12或q =1. 当q =1时,a n =a 1(n =1,2,…),所以S m +2=(m +2)a 1,S m =ma 1,S m +1=(m +1)a 1,因为2(m +2)a 1≠ma 1+(m +1)a 1,即2S m +2≠S m +S m +1,所以S m ,S m +2,S m +1不成等差数列.即q =1时,原命题的逆命题为假命题.当q =-12时,2S m +2=2·a 1(1-q m +2)1-q, S m +1=a 1(1-q m +1)1-q ,S m =a 1(1-q m )1-q, 所以2S m +2=S m +1+S m ,所以S m ,S m +2,S m +1成等差数列.即q =-12时,原命题的逆命题为真命题.。
高中数学第一章常用逻辑用语1命题课时跟踪训练北师大版选修1

高中数学第一章常用逻辑用语1命题课时跟踪训练北师大版选修1[A 组 基础巩固]1.下列语句是命题的是( )A .x -1=0B .2+3=8C .你会说英语吗?D .这是一棵大树解析:A 中x 不确定,无法判断x -1=0的真假.B 中2+3=8是命题,且是假命题.C 不是陈述句,故不是命题.D 大树的标准不确定,无法判断其真假.答案:B2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”解析:原命题的逆命题是若一个数的平方是正数,则它是负数.答案:B3.下列命题是真命题的为( ) A .若1x =1y,则x =y B .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:若x 2=1,则x =±1,排除B ;若x =y ,x 与y 不一定存在,排除C ;若x <y ,且x =-3,y =-2,则x 2>y 2,排除D.答案:A4.下列命题为真命题的是( )A .命题“若x >1,则x 2>1”的逆命题B .命题“若x =1,则x 2+x -2=0”的否命题C .命题“若x 2>0,则x >-1”的逆否命题D .命题“若x >y ,则x >|y |”的逆命题解析:命题“若x >1,则x 2>1”的逆命题是“若x 2>1,则x >1”,为假命题;命题“若x =1,则x 2+x -2=0”的否命题是“若x ≠1,则x 2+x -2≠0”,为假命题;命题“若x 2>0,则x >-1”的逆否命题是“若x ≤-1,则x 2≤0”,为假命题;命题“若x >y ,则x >|y |”的逆命题是“若x >|y |,则x >y ”,为真命题,选D.答案:D5.已知命题“若ab ≤0,则a ≤0或b ≤0”,则下列结论正确的是( )A .真命题,否命题:“若ab >0,则a >0或b >0”B .真命题,否命题:“若ab >0,则a >0且b >0”C .假命题,否命题:“若ab >0,则a >0且b >0”D .假命题,否命题:“若ab >0,则a >0或b >0”解析:逆否命题“若a >0且b >0,则ab >0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab >0,则a >0且b >0”,故选B.答案:B6.命题“若c >0,则函数f (x )=x 2+x -c 有两个零点”的逆否命题是________.解析:原命题的条件c >0的否定为c ≤0,结论函数f (x )=x 2+x -c 有两个零点的否定为“函数f (x )=x 2+x -c 没有两个零点”,因此逆否命题为:若函数f (x )=x 2+x -c 没有两个零点,则c ≤0.答案:若函数f (x )=x 2+x -c 没有两个零点,则c ≤07.给定下列命题:①“若k >0,则方程x 2+2x -k =0有实数根”;②“若a >b ,则a +c >b +c ”的否命题;③“矩形的对角线相等”的逆命题;④“若xy =0,则x 、y 中至少有一个为0”的否命题.其中真命题的序号是________.解析:①∵k >0,∴Δ=4+4k >0,是真命题.②否命题为“若a ≤b ,则a +c ≤b +c ”,是真命题.③逆命题为“对角线相等的四边形是矩形”,是假命题.④否命题为“若xy ≠0,则x 、y 都不为零”,是真命题.答案:①②④8.下列命题是真命题的是__________(填序号).①空集是任何一个集合的真子集;②函数y =2x (x ∈N )的图像是一条直线;③若f (x )>M (M 为常数),则函数y =f (x )的最小值为M ;④若函数f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域为[0,1).解析:空集是任何一个非空集合的真子集,故①是假命题;函数y =2x (x ∈N )的图像是一群孤立的点,故②是假命题;若f (x )>M (M 为常数),则函数y =f (x )的最小值一定不为M ,故③是假命题;若函数f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1中的x 应满足⎩⎪⎨⎪⎧ 0≤2x ≤2x -1≠0,解得0≤x <1,则g (x )的定义域为[0,1),故④是真命题.答案:④9.判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,同时判断这些命题的真假.(1)若a >b ,则ac 2>bc 2;(2)若在二次函数y =ax 2+bx +c 中,b 2-4ac <0,则该二次函数图像与x 轴有公共点. 解析:(1)该命题为假.当c =0时,ac 2=bc 2.逆命题:若ac 2>bc 2,则a >b ,为真.否命题:若a ≤b ,则ac 2≤bc 2,为真.逆否命题:若ac 2≤bc 2,则a ≤b ,为假.(2)该命题为假.当b 2-4ac <0时,二次方程ax 2+bx +c =0没有实数根,因此二次函数y =ax 2+bx +c 的图像与x 轴无公共点.逆命题:若二次函数y =ax 2+bx +c 的图像与x 轴有公共点,则b 2-4ac <0,为假.否命题:若在二次函数y =ax 2+bx +c 中,b 2-4ac ≥0,则该二次函数的图像与x 轴没有公共点,为假.逆否命题:若二次函数y =ax 2+bx +c 的图像与x 轴没有公共点,则b 2-4ac ≥0,为假.10.函数f ()x 的定义域为A ,若x 1,x 2∈A 且f ()x 1=f ()x 2时总有x 1=x 2,则称f ()x 为单函数.例如,函数f ()x =2x +1()x ∈R 是单函数.下列命题:①函数f ()x =x 2()x ∈R 是单函数; ②若f ()x 为单函数,x 1,x 2∈A 且x 1≠x 2,则f ()x 1≠f ()x 2;③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象;④函数f ()x 在某区间上具有单调性,则f ()x 一定是单函数.试判断各命题的真假.解析:当f ()x =x 2时,不妨设f ()x 1=f ()x 2=4,有x 1=2,x 2=-2,此时x 1≠x 2,故①不正确;由f ()x 1=f (x 2)时总有x 1=x 2可知,当x 1≠x 2时,f ()x 1≠f (x 2),故②正确;若b ∈B ,b 有两个原象时,不妨设为a 1,a 2,可知a 1≠a 2,但f ()a 1=f ()a 2,与题中条件矛盾,故③正确;函数f ()x 在某区间上具有单调性时在整个定义域上不一定单调,因而f ()x 不一定是单函数,故④不正确.综上可得命题②③为真命题,①④为假命题.[B 组 能力提升]1.给出下列四个命题:①在△ABC 中,若sin A >22,则A >π4;②若1≤x <2,则(x -1)(x -2)≤0;③若α=π4,则tan α=1;④已知a ,b ,c 为向量,若a ·b =a ·c (a ≠0),则b =c .则以下判断正确的为( )A .①的逆否命题为真B .②的否命题为真C .③的否命题为真D .④为真解析:对于①,在△ABC 中,0<A <π,由sin A >22,得π4<A <3π4,所以原命题为真命题,故其逆否命题为真命题.对于②,命题的否命题:若x ≥2或x <1,则(x -1)(x -2)>0.当x =2时,(x -1)(x -2)=0,故否命题为假命题.对于③,命题的否命题:若α≠π4,则tan α≠1.当x =5π4时,tan α=1,故否命题为假命题.对于④,向量是有方向的,若b ,c 方向相反,a 垂直于b ,c ,则b =c 不成立,所以为假命题.故选A.答案:A2.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析:命题的否命题既否定条件又否定结论,且“是”的否定是“不是”,故选B. 答案:B3.下列语句中是命题的为____________,其中是真命题的为________.(写出序号) ①垂直于同一条直线的两条直线必平行吗?②一个数不是正数就是负数;③大角所对的边大于小角所对的边;④△ABC 中,若∠A =∠B ,则sin A =sin B ;⑤求证x ∈R ,方程x 2+x +1=0无实根.解析:①是疑问句不是命题;②是假命题,0既不是正数也不是负数;③是假命题,没有考虑在同一个三角形中;④是真命题;⑤是祈使句不是命题.答案:②③④ ④4.已知集合A ={x |x 2-4x +3≤0},B ={y |y =x 2-2x +a },C ={x |x 2-ax -4≤0}.命题p :A ∩B ≠∅,命题q :A ⊆C .(1)若命题p 为假命题,求实数a 的取值范围;(2)若命题p ,q 都为真命题,求实数a 的取值范围.解析:(1)A ={x |1≤x ≤3},B ={y |y =(x -1)2+a -1}={y |y ≥a -1}.由p 为假命题,知A ∩B =∅,∴a -1>3,∴a >4,故实数a 的取值范围是(4,+∞).(2)∵p ,q 都为真命题,∴A ∩B ≠∅且A ⊆C , ∴⎩⎪⎨⎪⎧ a -1≤31-a -4≤09-3a -4≤0,解得53≤a ≤4,即实数a 的取值范围为⎣⎢⎡⎦⎥⎤53,4. 5.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 的年龄不是最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄的大小顺序是否能确定?请说明理由.解析:显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它的逆否命题来看. 由命题A 为真可知,b 不是最大时,则a 是最小,∴c 最大,即c >b >a ;而它的逆否命题也为真,即“a 不是最小,则b 是最大”为真,即b >a >c .同理由命题B 为真可得:a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c .∴a ,b ,c 三人的年龄的大小顺序是:b 最大,a 次之,c 最小.。
(常考题)北师大版高中数学选修1-1第一章《常用逻辑用语》测试(有答案解析)(4)

一、选择题1.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +-> 2.已知命题:p 对任意1x >,有ln 1x x x >-成立,则p ⌝为( )A .存在01x ,使000ln 1x x x -成立B .存在01x >,使000ln 1x x x -成立C .对任意01x ,有000ln 1x x x ≤-成立D .对任意01x >,有000ln 1x x x -成立 3.“0m >”是“方程22112x y m m+=+表示焦点在x 轴的椭圆”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件 4.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 5.“ 1.5x >-”是“10x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 7.“a b >”是“||||a a b b >”的( )A .充分不必要条件B .必要不充分条件C .既不充分又不必要条件D .充要条件 8.已知直线l ,m 和平面α,直线l α⊄,直线m α⊂,则“//l m ”是“//l α”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.“2x <”是“22320x x --<”的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要10.设直线l 的方向向量是a ,平面α的法向量是n ,则“//l α”是“a n ⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( )A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭ B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭ C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭12.命题“,sin 0x x R x e ∃∈+>”的否定为( ) A .,sin 0x x R x e ∀∈+< B .,sin 0x x R x e ∀∈+≤C .,sin 0x x R x e ∃∈+<D .,sin 0x x R x e ∃∈+≤ 二、填空题13.若命题p ;“2,210x x mx ∀∈-+≥R ”,则p ⌝是________.14.命题“2,0x R x x ∀∈+>”的否定是___________.15.命题“R x ∃∈,sin 1x ≤”的否定是___________.16.已知命题p :“[1,2]x ∀∈,20x a -≥”,命题q :“∃x ∈R ,2220x ax a ++-=”,若命题“p q ⌝∧”是真命题,则实数a 的取值范围是_______. 17.命题“若对于任意x ∈R 都有()()f x f x -=,则函数()f x 是偶函数”的逆否命题是“若函数()f x 不是偶函数,则_______________”.18.已知函数()f x 的定义域为R .若存在常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()cos f x x =;②()x f x e =;③3()f x x x =-.其中,具有性质P 的函数的序号是__________.19.给出下列命题:①命题“x R ∃∈,20x x -≤”的非命题是“x R ∃∈,20x x ->”;②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”的逆否命题是真命题; ③命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题是真命题; ④命题“p q ∨为真”是命题“p q ∧为真”的充分不必要条件;⑤若n 组数据()11,x y ,,(),n n x y 的散点都在21y x =-+上,则相关系数1γ=-; 其中是真命题的有______.(把你认为正确的命题序号都填上)20.写出命题“若0a ≥且0b ≥,则0ab ≥”的逆否命题:________.三、解答题21.已知0a >,设命题p :当(],1x ∈-∞]时,函数()2f x x ax =-+单调递增,命题q :双曲线22218x y a -=的离心率[)3,e ∈+∞. (1)若命题p 为真命题,求正数a 的取值范围;(2)若命题p 和q 中有且只有一个真命题,求正数a 的取值范围.22.已知p :[]1,2x ∀∈-,2210x x m -+->,q :x ∃∈R ,()212102x m x +-+=.若______为真命题,求实数m 的取值范围. 请在①p q ⌝∧,②p q ∧⌝,③p q ⌝∨⌝这三个条件中选一个填在横线上,并解答问题.注:如果选择多个条件分别解答,按第一个解答计分.23.写出命题“若2x ≥,3y ≥,则5x y +≥”的逆命题、否命题和逆否命题,并判断这四种命题的真假.24.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+-在[-3,-1]上存在零点时的a 的取值集合B .(1)求A B ;(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围. 25.已知集合3{}3|A x a x a =-≤≤+,{|0B x x =≤或4}x ≥.(1)当2a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.26.已知0m >,p :(2)(6)0x x +-≤,q :22m x m -≤≤+ .(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据全称命题的否定是特称命题即可得正确答案.【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥故选:B2.B解析:B【分析】根据全称命题的否定形式可求p ⌝.【详解】命题:p 对任意1x >,有ln 1x x x >-,其否定为:存在01x >,使000ln 1x x x -成立, 故选:B.3.B解析:B【分析】根据椭圆的定义及标准方程的形式,以及充分条件、必要条件的判定方法,即可求解.【详解】 由题意,方程22112x y m m+=+表示焦点在x 轴上的椭圆, 则满足120m m +>>,解得01m <<;又由当01m <<则必有0m >,但若0m >则不一定有01m <<成立,所以“0m >”是“方程22112x y m m+=+表示焦点在x 轴上的椭圆”的必要非充分条件. 故选:B .4.C解析:C【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.【详解】充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立; 必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件.故选:C.5.B解析:B【分析】用集合法判断,即可.【详解】10x +>,得1x >-,所以“ 1.5x >-是“1x >-”的必要不充分条件.故选B .【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.6.B解析:B【分析】先求出两条直线垂直的充要条件,再根据所得条件和已知条件的关系可得两者的条件关系.【详解】直线0x y +=和直线0x ay -=的充要条件为()1110a ⨯+⨯-=即1a =,1a =可以推出21a =,但21a =推不出1a =,故“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的必要而不充分条件, 故选:B.7.D解析:D【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件.故选:D.【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题. 8.A解析:A【分析】根据两者之间的推出关系可得两者之间的条件关系.【详解】由线面平行的判定定理可得:若//l m ,结合直线l α⊄,直线m α⊂可得//l α, 故“//l m ”能推出“//l α”.但//l α推不出//l m (如图所示),故“//l m ”是“//l α”的充分不必要条件,故选:A.9.B解析:B【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论.【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件.故选:B. 10.A解析:A【分析】分别从充分性和必要性两方面判断.【详解】由//l α,得a n ⊥,则“//l α”是“a n ⊥”的充分条件,而a n ⊥不一定有//l α,也可能l α⊂,则“//l α”不是“a n ⊥”的必要条件.故选:A【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.11.C解析:C【分析】根据命题否定的定义写出命题的否定,然后判断.【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥, 故选:C .12.B解析:B【分析】根据特称命题的否定变换形式即可得出结果.【详解】特称命题的否定为全称命题,故“,sin 0x x R x e ∃∈+>”的否定为“,sin 0x x R x e ∀∈+≤”,故选:B .二、填空题13.【分析】根据全称命题的否定变换形式即可得出答案【详解】由命题:则为:故答案为:解析:2,210x R x mx ∃∈-+<【分析】根据全称命题的否定变换形式即可得出答案.【详解】由命题p :“2,210x x mx ∀∈-+≥R ”,则p ⌝为:2,210x R x mx ∃∈-+<. 故答案为:2,210x R x mx ∃∈-+< 14.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可.【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤”故答案为:2,0x R x x ∃∈+≤ 15.【分析】由特称命题的否定为全称命题即可得解【详解】命题为特称命题由特称命题的否定为全称命题所以命题的否定是:故答案为:解析:x R ∀∈,sin 1x >【分析】由特称命题的否定为全称命题,即可得解.【详解】命题“R x ∃∈,sin 1x ≤”为特称命题,由特称命题的否定为全称命题所以命题“R x ∃∈,sin 1x ≤”的否定是:x R ∀∈,sin 1x >故答案为:x R ∀∈,sin 1x >16.【分析】分别求出为真命题时的范围然后可得答案【详解】若命题为真则即若命题为真则解得或所以若命题是真命题则有所以故答案为:解析:1+, 【分析】分别求出,p q 为真命题时的范围,然后可得答案.【详解】若命题p 为真,则10a -≥,即1a ≤若命题q 为真,则24840a a ∆=-+≥,解得1a ≥或2a ≤-所以若命题“p q ⌝∧”是真命题,则有112a a a >⎧⎨≥≤-⎩或,所以1a > 故答案为:1+,17.存在使得【分析】根据逆否命题的定义进行求解即可【详解】解:若对于任意都有则函数是偶函数的逆否命题是若函数不是偶函数则存在使得故答案为:存在使得解析:存在x ∈R ,使得()()f x f x -≠【分析】根据逆否命题的定义进行求解即可.【详解】解:若对于任意x ∈R 都有()()f x f x -=,则函数()f x 是偶函数”的逆否命题是“若函数()f x 不是偶函数,则存在x ∈R ,使得()()f x f x -≠.故答案为:存在x ∈R ,使得()()f x f x -≠.18.②③【分析】由新定义结合三角恒等变换指数函数的单调性及一元二次不等式的知识代入计算即可得解【详解】对于①若则所以即因为为常数所以不恒成立所以不恒成立故①错误;对于②因为函数单调递增所以所以恒成立故②解析:②③【分析】由新定义,结合三角恒等变换、指数函数的单调性及一元二次不等式的知识,代入计算即可得解.【详解】对于①,若()()f x c f x c +>-,则()()cos cos x c x c +>-,所以cos cos sin sin cos cos sin sin x c x c x c x c ->+,即sin sin 0x c <,因为sin c 为常数,所以sin sin 0x c <不恒成立,所以()()f x c f x c +>-不恒成立, 故①错误;对于②,因为0c >,函数()x f x e =单调递增,所以x c x c +>-,所以()()f x c f x c +>-恒成立,故②正确;对于③,若()()f x c f x c +>-,则33()()()()x c x c x c x c +-+>---,化简可得2330cx c c +->,当30c c ->即1c >时,2330cx c c +->恒成立,即()()f x c f x c +>-恒成立, 故③正确.故答案为:②③.【点睛】本题以全称命题为依托,综合考查了三角恒等变换、指数函数的单调性及一元二次不等式的知识,属于中档题.19.②④⑤【分析】根据四种命题的相互转化即可判断②③真假判断利用特称命题的否定即可判断①利用充分必要条件的定义即可判断④利用相关系数的概念即可判断⑤【详解】①命题的非命题是;不正确②命题已知x 若则或的逆解析:②④⑤【分析】根据四种命题的相互转化即可判断②、③真假判断.利用特称命题的否定,即可判断①,利用充分必要条件的定义即可判断④,利用相关系数的概念即可判断⑤.【详解】①命题“x ∃∈R ,20x x -≤”的非命题是“x ∀∈R ,20x x ->”;不正确②命题“已知x ,y ∈R ,若3x y +≠,则2x ≠或7y ≠”的逆否命题是“已知x ,y ∈R ,若2x =且7y =,则3x y +=”正确③命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题是“若函数()221f x ax x =+-只有一个零点,则1a =-”a 有可能是零,不正确④命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,正确⑤若n 组数据()11,x y ,…,(),n n x y 的散点都在21y x =-+上,则x ,y 成负相关相关系数1r =-,正确故答案为:②④⑤【点睛】本题主要考查了四大命题的转化,以及特称命题的否定,考查了充分必要条件的判断,以及相关系数的判断,属于综合类题目,属于中档题.20.若则或【分析】根据命题若p 则q 的逆否命题是若则直接写出即可【详解】因为命题若且则所以它的逆否命题是若则或【点睛】该题考查的是有关四种命题的问题需要注意在确定原命题的基础上明确其逆否命题的形式从而求得 解析:若0ab <,则0a <或0b <【分析】根据命题“若p ,则q”的逆否命题是“若q ⌝,则p ⌝”,直接写出即可.【详解】因为命题“若0a ≥且0b ≥,则0ab ≥”,所以它的逆否命题是“若0ab <,则0a <或0b <”.【点睛】该题考查的是有关四种命题的问题,需要注意在确定原命题的基础上,明确其逆否命题的形式,从而求得结果,属于简单题目.三、解答题21.(1)[)2,+∞;(2)(][)0,12,+∞. 【分析】(1)由命题为真命题,根据二次函数的性质可得12a ≥,即可求解. (2)由q 为真命题可得22819e a=+≥,解出01a <≤,结合(1)即可求解. 【详解】解:(1)命题p 为真命题时,函数()2f x x ax =-+在(],1-∞单调递增,∴12a ≥. 解得2a ≥,所以a 的取值范围是[)2,+∞.(2)由(1)可知p 为真命题时,2a ≥.当q 为真命题时,22819e a =+≥,解得01a <≤ ①当p 真q 假时,2a ≥且1a >,即2a ≥. ②当p 假q 真时,02a <<且01a <≤,即01a <≤.综上所述,正数a 的取值范围为(][)0,12,+∞.22.选①:1m ≤-;选②:23m <<;选③:3m <.【分析】首先求出p 为真命题以及q 为真命题时,实数m 的取值范围,然后再利用复合命题的真假表确定实数m 的取值范围.【详解】若p 为真命题,[]1,2x ∀∈-,2210x x m -+->,只需()2max 21m x x >-++,设()()()2222121122f x x x x x x =-++=--+=--+≤, 所以2m >,所以p 为假命题时,2m ≤若q 为真命题,x ∃∈R ,()212102x m x +-+=, 只需()2114202m ∆=--⨯⨯≥,解得3m ≥或1m ≤-, 若q 为假命题,则13m <<若选①,p q ⌝∧为真命题,则p ⌝真且q 真,, 若p ⌝为真命题,即p 为假命题时,所以2m ≤,q 为真命题,所以p q ⌝∧为真命题,实数m 的取值范围为1m ≤-;若选②,p q ∧⌝为真命题,则p 真且q ⌝真,只需p 真且q 假,22313m m m >⎧⇒<<⎨<<⎩, 若选③,p q ⌝∨⌝为真命题,不妨假设p q ⌝∨⌝为假命题,则p ⌝假且q ⌝假,即p 真且q 真,此时3m ≥,所以p q ⌝∨⌝为真命题时,3m <23.答案见解析.【分析】根据原命题与其逆命题、否命题、逆否命题的关系直接写结果,再举例说明假命题.【详解】原命题“若2x ≥,3y ≥,则5x y +≥,真;①逆命题:若5x y +≥,则2x ≥,3y ≥,当1x =时,4y =时,命题不成立,故为假命题.②否命题:若2x <或3y <,则5x y +<,当1x =,5y =时命题不成立,故为假命题,③逆否命题:若5x y +<,则2x <或3y <,为真命题.24.(1)10,33⎡⎫--⎪⎢⎣⎭;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)先分别求出集合A ,B ,由此能求出A B ;(2)求出集合{|}0{|}22C x x p x x p =+≥=≥-,由x C ∈是x A ∈充分条件,得到C A ⊆,由此能求出实数p 的取值范围.【详解】(1)∵函数()22)lg(3f x x x =+-的定义域为集合A , ∴2230|3{}{|A x x x x x =+->=<-或1}x >,∵函数1()||g x a x x =+-在[31]--,上存在零点时的a 的取值集合B , ∴()0g x =在[]3,1x ∈--有解1110,2||3a x x x x ⎡⎤⇒=-=+∈--⎢⎥⎣⎦, 即10,23B ⎡⎤=--⎢⎥⎣⎦, ∴10,33A B ⎡⎫⋂=--⎪⎢⎣⎭. (2)∵集合{|}0{|}22C x x p x x p =+≥=≥-,x C ∈是x A ∈充分条件,∴C A ⊆,∴21p ->,解得12p <-, ∴实数p 的取值范围是1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查交集、实数的取值范围的求法,考查函数性质、交集定义、充分条件等基础知识,考查运算求解能力,属于基础题.25.(1){|45}A B x x ⋂=≤≤;(2)01a <<.【分析】(1)由2a =,得到{|15}A x x =≤≤,再利用交集的运算求解.(2)根据{|0B x x =≤或4}x ≥,得到{|04}R B x x =<<,然后根据“x A ∈”是“R x B ∈”的充分不必要条件,由A 是R B 的真子集,且A ≠∅求解.【详解】(1)∵当2a =时,{|15}A x x =≤≤,{|0B x x =≤或4}x ≥,∴{|45}A B x x ⋂=≤≤;(2)∵{|0B x x =≤或4}x ≥,∴{|04}R B x x =<<,因为“x A ∈”是“R x B ∈”的充分不必要条件, 所以A 是R B 的真子集,且A ≠∅,又{|33}(0)A x a x a a =-≤≤+>,∴30,34,a a ->⎧⎨+<⎩, ∴01a <<.【点睛】本题主要考查集合的基本运算以及逻辑条件的应用,属于基础题.26.(1)[)4,+∞;(2)[)(]3,26,7-.【分析】(1)p 是q 的充分条件转化为集合的包含关系即可求解;(2)“p q ∨”为真命题,“p q ∧”为假命题转化为,p q 一真一假,分情况讨论,然后求并集即可.【详解】解:(1):26p x -≤≤,∵p 是q 的充分条件,∴[]2,6-是[]2,2m m -+的子集,022426m m m m >⎧⎪-≤-⇒≥⎨⎪+≥⎩,∴m 的取值范围是[)4,+∞.(2)由题意可知,当5m =时,,p q 一真一假, p 真q 假时,即[]2,6x ∈-且()(),37,x ∈-∞-+∞,所以x ∈∅, p 假q 真时,()(),26,x ∈-∞-+∞且[]3,7x ∈-,所以[)(]3,26,7x ∈--, 所以实数x 的取值范围是[)(]3,26,7-.【点睛】考查由充分条件确定参数的范围以及由命题的真假确定参数的范围,中档题.。
高中数学第一章常用逻辑用语1命题学案北师大版选修1_1

——教学资料参考参考范本——高中数学第一章常用逻辑用语1命题学案北师大版选修1_1______年______月______日____________________部门命题的定义及形式观察下列语句的特点:①两个全等三角形的面积相等;②y=2x是一个增函数;③请把门关上!④y=tan x的定义域为全体实数吗?⑤若x>2 013,则x>2 014.问题1:上述哪几个语句能判断为真?提示:①②.问题2:上述哪几个语句能判断为假?提示:⑤.问题3:上述哪几个语句不是命题?你知道是什么原因吗?提示:③④.因为它们都不能判断真假.问题4:语句⑤的条件和结论分别是什么?提示:条件为“x>2 013”,结论为“x>2 014”.1.命题(1)可以判断真假、用文字或符号表述的语句叫作命题.(2)判断为真的语句叫作真命题;判断为假的语句叫作假命题.2.命题的形式数学中,通常把命题表示成“若p,则q”的形式,其中,p是条件,q是结论.四种命题及其关系观察下列四个命题:①若f(x)是正弦函数,则f(x)是周期函数;②若f(x)是周期函数,则f(x)是正弦函数;③若f(x)不是正弦函数,则f(x)不是周期函数;④若f(x)不是周期函数,则f(x)不是正弦函数.问题1:命题①与命题②③④的条件和结论之间分别有什么关系?提示:命题①的条件是命题②的结论,且命题①的结论是命题②的条件;对于命题①③,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定;对于命题①④,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定.问题2:命题①④的真假性相同吗?命题②③的真假性相同吗?提示:命题①④同为真,命题②③同为假.1.四种命题(1)互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么把这样的两个命题叫作互逆命题.其中一个命题叫作原命题,另一个命题叫作原命题的逆命题.(2)互否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么把这样的两个命题叫作互否命题.如果把其中的一个命题叫作原命题,那么另一个叫作原命题的否命题.(3)互为逆否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,把这样的两个命题叫作互为逆否命题.如果把其中的一个命题叫作原命题,那么另一个叫作原命题的逆否命题.(4)四种命题的条件、结论之间的关系如表所示:命题条件结论原命题p q逆命题q p否命题p的否定q的否定逆否命题q的否定p的否定2.四种命题间的关系原命题和其逆否命题为互为逆否命题,否命题与逆命题为互为逆否命题,互为逆否的两个命题真假性相同.1.判断一个语句是否为命题关键看它是否符合两个条件:一是可以判断真假,二是用文字或符号表述的语句.祈使句、疑问句、感叹句等都不是命题.2.写四种命题时,一定要先找出原命题的条件和结论,根据条件和结论的变化分别得到逆命题、否命题、逆否命题.3.互为逆否命题的两个命题真假性相同.[对应学生用书P3]命题的概念及真假判断[例1] 判断下列语句是否为命题,若是,请判断真假并改写成“若p,则q”的形式.(1)垂直于同一条直线的两条直线平行吗?(2)一个正整数不是合数就是质数;(3)三角形中,大角所对的边大于小角所对的边;(4)当x+y是有理数时,x,y都是有理数;(5)1+2+3+…+2 014;(6)这盆花长得太好了![思路点拨] 根据命题的概念进行判断.[精解详析] (1)(5)(6)未涉及真假,都不是命题.(2)是命题.因为1既不是合数也不是质数,故它是假命题.此命题可写成“若一个数为正整数,则它不是合数就是质数”.(3)是真命题.此命题可写成“在三角形中,若一条边所对的角大于另一边所对的角,则这条边大于另一边”.(4)是假命题.此命题可写成“若x+y是有理数,则x,y都是有理数”.[一点通]1.判断语句是否为命题的关键是看该语句是否能判断真假.2.在说明一个命题是真命题时,应进行严格的推理证明,而要说明命题是假命题,只需举一个反例即可.1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的诗《相思》,在这四句诗中,可以作为命题的是( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不能判断真假,不是命题,故选A.答案:A2.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x,y中至少有一个为0.其中是真命题的是( )A.①②③ B.①②④C.①③④ D.②③④解析:①中Δ=4-4(-k)=4+4k>0,所以①是真命题;②由不等式的乘法性质知命题正确,所以②是真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.答案:B3.将下列命题改写成“若p,则q”的形式,并判断真假.(1)偶数可被2整除;(2)奇函数的图像关于原点对称.解:(1)若一个数是偶数,则它可以被2整除.真命题;(2)若一个函数为奇函数,则它的图像关于原点对称.真命题.四种命题及其关系[例2] 分别写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)若q<1,则方程x2+2x+q=0有实根;(2)若ab=0,则a=0;(3)若x2+y2=0,则x,y全为零;(4)已知a,b,c为实数,若a=b,则ac=bc.[思路点拨] 找出命题的条件p和结论q.根据四种命题的条件和结论的关系写出其余三种命题.[精解详析] (1)逆命题:若方程x2+2x+q=0有实根,则q<1.假命题.否命题:若q≥1,则方程x2+2x+q=0无实根,假命题.逆否命题:若方程x2+2x+q=0无实根.则q≥1,真命题.(2)逆命题:若a=0,则ab=0,真命题.否命题:若ab≠0,则a≠0,真命题.逆否命题:若a≠0,则ab≠0,假命题.(3)逆命题:若x,y全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x,y不全为零,真命题.逆否命题:若x,y不全为零,则x2+y2≠0,真命题.(4)逆命题:已知a,b,c为实数,若ac=bc,则a=b,假命题.否命题:已知a,b,c为实数,若a≠b,则ac≠bc,假命题.逆否命题:已知a,b,c为实数,若ac≠bc,则a≠b,真命题.[一点通]1.由原命题得到逆命题、否命题、逆否命题的方法:(1)交换原命题的条件和结论,得到逆命题;(2)同时否定原命题的条件和结论,得到否命题;(3)交换原命题的条件和结论,并且同时否定,得到逆否命题.2.原命题与其逆否命题真假相同;逆命题与否命题真假相同.4.有下列四个命题,其中真命题是( )①“若xy=1,则x,y互为倒数”的逆命题;②“正方形的四条边相等”的逆命题;③“若m≥2,则x2+mx+1=0有实根”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.A.①②B.②③C.①③ D.③④解析:①逆命题:若x,y互为倒数,则xy=1.真命题.②逆命题:四条边相等的四边形是正方形.假命题.③逆否命题:若方程x2+mx+1=0无实根,则m<2.真命题.④原命题为假命题,逆否命题也为假命题.答案:C5.写出下列命题的逆命题、否命题和逆否命题:(1)若α+β=,则sin α=cos β;(2)a,b,c,d∈R,若a=c,b=d,则ab=cd.解:(1)逆命题:若sin α=cos β,则α+β=;否命题:若α+β≠,则sin α≠cos β;逆否命题:若sin α≠cos β,则α+β≠.(2)逆命题:a,b,c,d∈R,若ab=cd,则a=c,b=d;否命题:a,b,c,d∈R,若a≠c或b≠d,则ab≠cd;逆否命题:a,b,c,d∈R,若ab≠cd,则a≠c或b≠d.6.将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.解:(1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.否命题:若mn≥0,则方程mx2-x+n=0没有实数根.逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.逆否命题的应用[例3] 判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.[思路点拨] 本题可直接写出其逆否命题判断其真假,也可直接判断原命题的真假来推断其逆否命题的真假.[精解详析] 法一:其逆否命题为:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断如下:抛物线y=x2+(2a+1)x+a2+2的开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0,即Δ<0.所以抛物线y=x2+(2a+1)x+a2+2与x轴无交点,所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真命题.法二:先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,所以Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,解得a≥.∵>1,∴a≥1.∴原命题为真.又因为原命题与其逆否命题真假相同,所以逆否命题为真.[一点通]由于互为逆否命题的两个命题有相同的真假性,当一个命题的真假不易判断时,可以通过判断其逆否命题真假的方法来判断该命题的真假.7.命题“若m>0,则x2+x-m=0有实数根”的逆否命题是________(填“真”或“假”)命题.解析:当m>0时,Δ=1+4m>0,∴x2+x-m=0有实数根.∴原命题为真,故其逆否命题为真.答案:真8.证明:若a2-4b2-2a+1≠0,则a≠2b+1.证明:“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1时,a2-4b2-2a+1=(a-1)2-(2b)2=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知原命题正确.1.互逆命题、互否命题、互为逆否命题都是说两个命题的关系,是相对而言的,把其中一个命题叫作原命题时,另外三个命题分别是它的逆命题、否命题、逆否命题.2.写四种命题时,大前提应保持不变.判断四种命题的真假时,可以根据互为逆否命题的两个命题的真假性相同来判断.1.命题“若x>1,则x>-1”的否命题是( )A.若x>1,则x≤-1 B.若x≤1,则x>-1C.若x≤1,则x≤-1 D.若x<1,则x<-1解析:原命题的否命题是对条件“x>1”和结论“x>-1”同时否定,即“若x≤1,则x≤-1”,故选C.答案:C2.给出下列三个命题:( )①“全等三角形的面积相等”的否命题;②“若lg x2=0,则x=-1”的逆命题;③“若x≠y,或x≠-y,则|x|≠|y|”的逆否命题.其中真命题的个数是( )A.0 B.1C.2 D.3解析:①的否命题是“不全等的三角形面积不相等”,它是假命题;②的逆命题是“若x=-1,则lg x2=0”,它是真命题;③的逆否命题是“若|x|=|y|,则x=y且x=-y”,它是假命题,故选B.答案:B3.(湖南高考)命题“若α=,则tan α=1”的逆否命题是( )A.若α≠,则tan α≠1 B.若α=,则tan α≠1C.若tan α≠1,则α≠ D.若tan α≠1,则α=π4解析:以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.答案:C4.已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是( )A.真命题,否命题:“若ab>0,则a>0或b>0”B.真命题,否命题:“若ab>0,则a>0且b>0”C.假命题,否命题:“若ab>0,则a>0或b>0”D.假命题,否命题:“若ab>0,则a>0且b>0”解析:逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab>0,则a>0且b>0”,故选B.答案:B5.已知命题:弦的垂直平分线经过圆心,并平分弦所对的弧.若把上述命题改为“若p,则q”的形式,则p是__________________________,q是_________________________.答案:一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧.6.命题“若x2<4,则-2<x<2”的逆否命题为________________,为________(填“真、假”)命题.答案:若x≥2或x≤-2,则x2≥4真7.把命题“两条平行直线不相交”写成“若p,则q”的形式,并写出其逆命题、否命题、逆否命题.解:原命题:若直线l1与l2平行,则l1与l2不相交;逆命题:若直线l1与l2不相交,则l1与l2平行;否命题:若直线l1与l2不平行,则l1与l2相交;逆否命题:若直线l1与l2相交,则l1与l2不平行.8.证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.证明:法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.∵a+b<0,∴a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.∴原命题为真命题.法二:假设a+b<0,则a<-b,b<-a,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b).这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾.因此假设不成立,故a+b≥0.。
北师大版高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.已知命题:p 对任意1x >,有ln 1x x x >-成立,则p ⌝为( ) A .存在01x ,使000ln 1x x x -成立 B .存在01x >,使000ln 1x x x -成立 C .对任意01x ,有000ln 1x x x ≤-成立D .对任意01x >,有000ln 1x x x -成立3.已知命题2:,21>0p x R x ∀∈+,则命题p 的否定是( ) A .2,210x R x ∀∈+≤ B .2,21<0x R x ∀∈+ C .2,21<0x R x ∃∈+D .2,210x R x ∃∈+≤4.设x 、y R ∈,则“0x >,0y >”是“0xy >”的( ) A .充分不必要条件 B .必要不充分分条件 C .充要条件D .既不充分也不必要条件5.命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+D .()1,x ∀∈+∞,21x e x ≥+6.方程“22ax by c +=表示双曲线”是“0ab <”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件7.已知命题:p “x R ∀∈,10x ->”,则p ⌝为( ) A .x R ∃∈,10x -≤ B .x R ∀∈,10x -< C .x R ∃∈,10x -< D .x R ∀∈,10x -≤8.设非空集合,M N 满足M N N =,则( )A .0,x N ∃∈ 有x M ∉B .,x N ∀∉有x M ∈C .0,x M ∃∉ 有0x N ∈D .,x N ∀∈有x M ∈ 9.已知直线l ,m 和平面α,直线l α⊄,直线m α⊂,则“//l m ”是“//l α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.若0a >,0b >,则“1a b +≥”是“1≥”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件11.命题“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是( ) A .0,4x π⎡⎤∃∉⎢⎥⎣⎦,cos sin x x < B .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x < C .0,4x π⎡⎤∀∉⎢⎥⎣⎦,cos sin x x < D .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x ≤ 12.已知命题p :对任意1x >,都有21x >,则p ⌝为( ) A .对任意1x >,都有21x ≤ B .不存在1x <,使得21x ≤ C .存在1x ≤,使得21x >D .存在1x >,使得21x ≤二、填空题13.命题“2,0x R x x ∀∈+>”的否定是___________.14.命题“如果22x a b <+,那么2x ab <”,请写出它的逆否命题____________. 15.命题:p x ∀∈R ,1x e x ≥+,则它的否定p ⌝为_______.16.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 17.命题“若对于任意x ∈R 都有()()f x f x -=,则函数()f x 是偶函数”的逆否命题是“若函数()f x 不是偶函数,则_______________”. 18.给出以下几个结论: ①若0a b >>,0c <,则c ca b<; ②如果b d ≠且,b d 都不为0,则111221n n nn n n nd b d db db dbb d b++----+++⋅⋅⋅++=-,*n N ∈;③若1e ,2e 是夹角为60的两个单位向量,则122ae e ,1232be e 的夹角为60;④在ABC 中,三内角,,A B C 所对的边分别为,,a b c ,则()22cos cos c a B b A a b -=-;其中正确结论的序号为______. 19.给出定义:若1122m x m -<≤+ (其中m 为整数),则m 叫做离实数x 最近的整 数,记作{}x m =.在此基础上给出下列关于函数{}()f x x x =-的四个命题: ①函数()y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数()y f x =的图象关于直线()2kx k Z =∈对称; ③函数()y f x =是周期函数,最小正周期为1;④函数()y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数. 其中正确的命题的序号是________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.设p :关于x 的不等式2420x x m -+≤有解,q :2540m m -+≤. (1)若p 为真命题,求实数m 的取值范围;(2)若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.22.已知:1p x >或2x <-,:q x a >,若q 是p 的充分不必要条件,求a 的取值范围.23.已知p :x 2-(3+a )x +3a <0,其中a <3;q :x 2+4x -5>0. (1)若p 是¬q 的必要不充分条件,求实数a 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.24.已知0c >,p :函数x y c =在R 上单调递减,q :不等式20x c -≥在[]2,3x ∈上恒成立.(Ⅰ)若q 为真,求c 的取值范围;(Ⅱ)若“p q ∨”为真,“p q ∧”为假,求c 的取值范围. 25.已知0,a >给出下列两个命题::p 函数()()ln 1ln2af x x x=+--小于零恒成立; :q 关于x 的方程()2110x a x +-+=一根在0,1上,另一根在1,2上.若p q ∨为真命题, p q ∧为假命题,求实数a 的取值范围.26.设a R ∈,命题p :∃[]1,2x ∈,满足()11>0a x --,命题q :∀x R ∈,2++1>0ax x .(1)若命题p q ∧是真命题,求a 的范围;(2)()p q ⌝∧为假,()p q ⌝∨为真,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.B解析:B 【分析】根据全称命题的否定形式可求p ⌝. 【详解】命题:p 对任意1x >,有ln 1x x x >-,其否定为:存在01x >,使000ln 1x x x -成立, 故选:B.3.D解析:D 【分析】根据命题的否定的定义写出命题的否定,再判断. 【详解】命题2:,21>0p x R x ∀∈+的否定是2,210x R x ∃∈+≤. 故选:D .4.A解析:A 【分析】利用充分条件、必要条件的定义判断可得出结论. 【详解】充分性:若0x >且0y >,则0xy >,充分性成立; 必要性:若0xy >,则00x y >⎧⎨>⎩或00x y <⎧⎨<⎩,必要性不成立. 因此,“0x >,0y >”是“0xy >”的充分不必要条件. 故选:A.5.C解析:C 【分析】利用全称命题的否定可得出结论. 【详解】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”.故选:C.6.A解析:A 【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果. 【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠; 若0ab <,当0c时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件. 故选:A7.A解析:A 【分析】对全称量词的否定用特称量词,直接写出p ⌝ 【详解】∵:p “x R ∀∈,10x ->”, ∴p ⌝:x R ∃∈,10x -≤ 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.8.D解析:D 【分析】根据交集的结果可得N M ⊆,分析选项,即可得答案. 【详解】 因为MN N =,所以N M ⊆,所以,x N ∀∈有x M ∈. 故选:D9.A解析:A 【分析】根据两者之间的推出关系可得两者之间的条件关系. 【详解】由线面平行的判定定理可得:若//l m ,结合直线l α⊄,直线m α⊂可得//l α, 故“//l m ”能推出“//l α”.但//l α推不出//l m (如图所示),故“//l m ”是“//l α”的充分不必要条件, 故选:A.10.A解析:A 【分析】根据充分必要条件的定义判断,注意基本不等式的应用即在0,0a b >>的情况下,判断两个命题121a b ab +≥⇒≥和211ab a b ≥⇒+≥..【详解】 解:取1a =,19b =,满足1a b +≥,但2213ab =<,充分性不满足;反过来,21a b ab +≥≥成立,故必要性成立.故选:A .11.B解析:B 【分析】由全称命题的否定是特称命题可得选项. 【详解】由全称命题的否定是特称命题得:“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是“0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <”,故选:B.12.D解析:D 【分析】根据全称量词命题的否定是存在量词命题,写出结果即可. 【详解】因为全称量词命题的否定时存在量词命题,所以命题“对任意1x >,都有21x >”的否定是:“存在1x >,使21x ≤”, 故选:D.二、填空题13.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤” 故答案为:2,0x R x x ∃∈+≤14.如果那么【分析】根据逆否命题的概念即可写出它的逆否命题【详解】原命题的逆否命题为:如果那么解析:如果2x ab ≥,那么22x a b ≥+. 【分析】根据逆否命题的概念,即可写出它的逆否命题 【详解】原命题的逆否命题为:如果2x ab ≥,那么22x a b ≥+.15.【分析】根据全称命题的否定是特称命题变量词否结论即可求解【详解】命题否定为:故答案为:解析:0x R ∃∈,1x e x <+. 【分析】根据全称命题的否定是特称命题,变量词否结论即可求解. 【详解】命题:p x ∀∈R ,1x e x ≥+,否定p ⌝为:0x R ∃∈,1x e x <+, 故答案为:0x R ∃∈,1x e x <+.16.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为: 解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案. 【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a . 故答案为:1a >.17.存在使得【分析】根据逆否命题的定义进行求解即可【详解】解:若对于任意都有则函数是偶函数的逆否命题是若函数不是偶函数则存在使得故答案为:存在使得解析:存在x ∈R ,使得()()f x f x -≠ 【分析】根据逆否命题的定义进行求解即可. 【详解】解:若对于任意x ∈R 都有()()f x f x -=,则函数()f x 是偶函数” 的逆否命题是“若函数()f x 不是偶函数,则存在x ∈R ,使得()()f x f x -≠. 故答案为:存在x ∈R ,使得()()f x f x -≠.18.②④【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确【详解】对于①由知:又①错误;对于②数列是以为公比的等比数列②正确;解析:②④ 【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确. 【详解】对于①,由0a b >>知:11a b <,又0c <,c c a b∴>,①错误; 对于②,数列1221,,,,,n n n n n d d b d b db b ---⋅⋅⋅是以1b b d d ⎛⎫≠ ⎪⎝⎭为公比的等比数列, 111112211n n nnn n n n n n n b d b d b d b d d d d b d b db b b d b d b d d++++-----⋅-+++⋅⋅⋅++===-∴--,②正确;对于③,121cos 602e e ⋅==, ()()221212112217232626222a b e e e e e e e e ∴⋅=+⋅-+=-+⋅+=-++=-,()22212112224442a e e e e e e =+=+⋅+=+=(22111223912496b e e e e e =-=-⋅+=-1cos ,2a ba b a b⋅∴<>==-⋅,,120a b ∴<>=,③错误;对于④,由余弦定理得:22222222222222222a c b b c a a c b b c a c a b a b ac bc ⎛⎫+-+-+---+⋅-⋅==- ⎪⎝⎭,④正确. 故答案为:②④. 【点睛】本题考查命题真假性的判断,涉及到不等式的性质、等比数列求和、平面向量夹角的计算、余弦定理化简等知识,考查学生对于上述四个部分知识的掌握的熟练程度,属于综合型考题.19.①②③【分析】根据函数的基本性质结合题中条件逐项判断即可得出结果【详解】①由定义知:所以即的值域为;故①对;②因为所以函数的图象关于直线对称;故②对;③因为所以函数是周期函数最小正周期为;故③对;④解析:①②③ 【分析】根据函数的基本性质,结合题中条件,逐项判断,即可得出结果. 【详解】 ① 由定义知:{}1122x x -<-≤,所以{}102x x ≤-≤,即{}()f x x x =-的值域为10,2⎡⎤⎢⎥⎣⎦;故①对; ② 因为{}{}()()f k x k x k x x x f x -=---=---=-,所以函数()y f x =的图象关于直线()2kx k Z =∈对称;故② 对; ③ 因为{}{}(1)11()f x x x x x f x +=+-+=-=,所以函数()y f x =是周期函数,最小正周期为1;故③ 对;④ 当12x =-时,1m =-,1122f ⎛⎫-= ⎪⎝⎭;当12x =时,0m =,1122f ⎛⎫= ⎪⎝⎭,此时1122⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭f f ,故④ 错. 故答案为:①②③ 【点睛】本题主要考查命题真假的判定,熟记函数的基本性质即可,属于常考题型.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(,2]-∞;(2)(),1(2,4]-∞⋃. 【分析】(1)根据一元二次不等式的解的情况,由0∆≥可得; (2)求出q 为真时,m 的范围,然后由,p q 一真一假求解可得. 【详解】(1)p 为真命题时,1680m ∆=-≥,解得2m ≤ 所以m 的取值范围是(,2]-∞(2)q 为真命题时,即()()140m m --≤,解得14m ≤≤ 所以q 为假命题时4m >或1m < 由(1)知,p 为假时2m >因为p q ∧为假命题,p q ∨为真命题,所以,p q 为一真一假, ①p 真q 假,即412m m m ><⎧⎨≤⎩或,解得1m <②p 假q 真,即142m m ≤≤⎧⎨>⎩,解得24m <≤综上:m 的取值范围是(),1(2,4]-∞⋃. 【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:22.[)1,+∞【分析】由题意知:命题q 对应的集合是p 对应集合的真子集,借助于数轴即可求解.【详解】设{|2A x x =<-或}1x >,{}|=>B x x a ,若有q 是p 的充分不必要条件,则B 是A 的真子集,所以1a ≥,所以a 的取值范围是[)1,+∞.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1) a ∈(-∞,-5) (2) a ∈[1,3)【分析】(1)先求解不等式,记p 的解集为A,q 的解集为B,再根据p 是¬q 的必要不充分条件,转化为集合的包含关系R B ⫋A,求解即可; (2)由p 是q 的充分不必要条件,可得A ⫋B ,从而可得解. 【详解】(1)因为x 2-(3+a)x+3a <0,a <3,所以a <x <3,记A =(a ,3), 又因为x 2+4x-5>0,所以x <-5或x >1,记()()51B -∞-⋃+∞=,,, 又p 是¬q 的必要不充分条件,所以有¬q ⇒p ,且p 推不出¬q , 所以R B ⫋A ,即[-5,1]⫋(a ,3),所以实数a 的取值范围是()5a ∈-∞-,. (2)因为p 是q 的充分不必要条件,则有p ⇒q ,且q 推不出p , 所以A ⫋B ,所以有()()()351a -∞-⋃+∞,,,,即a≥1, 所以实数a 的取值范围是[)13a ,∈.【点睛】根据充分必要条件求参数的取值时,可转化为集合间的包含关系进行处理,然后把包含关系转为不等式求解,属于基础题.24.(Ⅰ){}04c c <≤;(Ⅱ){}14c c ≤≤.【分析】(Ⅰ)利用()2min c x ≤ ,[]2,3x ∈即可得c 的取值范围.(Ⅱ)由题意可知:p ,q 一真一假, 求出p 为真命题时c 的取值范围,分情况讨论即可.【详解】(Ⅰ)若q 为真,则2c x ≤在[]2,3x ∈上恒成立,∴2min 4c x ≤=,所以c 的取值范围是{}04c c <≤;(Ⅱ)∵“p q ∨”为真,“p q ∧”为假,∴p ,q 一真一假; p 为真命题时,01c <<所以当p 真q 假时, 014c c <<⎧⎨>⎩无解;当p 假q 真时, 104c c ≥⎧⎨<≤⎩,即 14c ≤≤, 综上,c 的取值范围是{}14c c ≤≤.【点睛】本题主要考查了复合命题的真假性求参数的取值范围,主要是两个命题为真命题时,参数的取值范围,属于基础题.25.][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【分析】由()0f x <恒成立,采用分离参数法求得a 的取值范围,再由方程根的存在定理求出a 的范围,而p q ∨为真命题, p q ∧为假命题,则,p q 一真一假,结合集合的运算,由此可得a 的范围.【详解】由已知得()12a ln x ln x +<-恒成立,即010{0212a x a x a x x>+>>-+<-恒成立,即 21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2x ∈-恒成立;函数21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2-上的最大值为94;9;4a ∴>即9:4p a >; 设()()211,f x x a x =+-+则由命题()()()010:{1302720f q f a f a =>=-<=->,解得: 73;2a <<即7:3;2q a << 若p q ∨为真命题, p q ∧为假命题,则,p q 一真一假.①若p 真q 假,则: 9{403a a ><≤或994{,3,742a a a >∴<≤≥或7;2a ≥ ②若p 假q 真,则: 904{,;732a a a <≤∴∈∅<< ∴实数a 的取值范围为][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【点睛】由“p 或q”为真,“p 且q”为假判断出p 和q 一真一假后,再根据命题与集合之间的对应关系求m 的范围.逻辑联结词与集合的运算具有一致性,逻辑联结词中“且”“或”“非”恰好分别对应集合运算的“交”“并”“补”.26.(1)322a <<;(2)3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭. 【分析】(1)由命题p q ∧是真命题,则需命题p 为真命题且q 为真命题,建立关于a 的不等式组,可得答案;(2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,分p 假q 假和p 真q 真,建立关于a 的不等式组,可得a 的取值范围;【详解】 (1)命题p 真时,则()1>0211>0a a -⎧⎨--⎩或()10111>0a a -<⎧⎨⨯--⎩, 得3>2a ; q 真,则240a -<,得22a -<<,所以p q ∧真,322a <<; (2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,若p 假q 假,则3222a a a ⎧≤-⎪⎨⎪≤-≥⎩或,得2a ≤-, 若p 真q 真,则3>222a a ⎧⎪⎨⎪-<<⎩,所以,322a <<, 综上2a ≤-或322a <<. 故a 的取值范围是3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭.【点睛】本题考查根据复合命题的真假求参数的范围的问题,属于基础题.。
2017年高中数学 第一章 常用逻辑用语 1.1 命题教案 北师大版选修1-1

命题教学目标: 1. 了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式2..熟练四种命题之间的关系,及四种命题的真假性之间的关系,并能利用四种命题真假性之间的内在联系进行推理论证3.培养学生简单推理的思维能力.教学重点: 1. 命题的改写2.四种命题之间的相互关系即真假性之间的联系教学难点: 1.命题概念的理解.2.利用真假性之间的内在联系进行推理论证.授课类型:新授课教具准备:多媒体课件.教学过程:一、导入新课(用ppt给出)思考:请判断下列语句的真假,能否看出这些语句的表达形式有什么特点?(1)若直线a∥b,则直线a和直线b无公共点;(2) 2 + 4 = 7;(3)垂直于同一条直线的两个平面平行;(4)若 x2 = 1 , 则 x = 1 ;(5)两个全等的三角形面积相等;(6)3能被2整除.引导学生归纳以上语句特点:1 都是陈述句2 可以判断真假,其中,(2)(4)(6)判断为假,其它3个判断为真。
二.新课教授1. 教学命题的概念:①命题:我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题(proposition). 强调,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(3)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)(4)(6)是假命题,其它3个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?、(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)对数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行(52 =-(6)x>15(学生自练→个别回答→教师点评)分析加固对命题概念的理解2. 将一个命题改写成“若p,则q”的形式:①具体分析例1中的(2)(4)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论. (这种命题也可写成“如果p,那么q”“只要p,就有q”等形式例2 指出下列命题的条件p和结论q:(会区分条件p和结论q)(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.②数学中有一些命题虽然表面上不是“若p,则q”的形式,例如“垂直于同一条直线的两个平面平行”,但是把它的形式作适当改变,就可以写成“若p,则q”的形式:若两个平面垂直于同一条直线,则这两个平面平行.这样,它的条件和结论就很清楚了.也便于我们判断真假。
高中数学 第1章 常用逻辑用语 1 命题课后演练提升 北师大版选修11

2016-2017学年高中数学 第1章 常用逻辑用语 1 命题课后演练提升 北师大版选修1-1一、选择题(每小题5分,共20分)1.下列语句:①3>2;②π是有理数吗?③sin 30°=12;④x 2-1=0有一个根是x =-1;⑤x >2.其中是命题的是( ) A .①②③ B .①③④ C .③D .②⑤解析: ②是一般疑问句不是命题;⑤无法判断真假,不是命题. 答案: B2.下列命题中真命题的个数为( ) ①面积相等的两个三角形是全等三角形; ②若xy =0,则|x |+|y |=0; ③若a >b ,则a +c >b +c ; ④矩形的对角线互相垂直. A .1 B .2 C .3D .4解析: ①错.②错,若xy =0则x ,y 至少一个为0,而未必|x |+|y |=0.③对,同向不等式,两边加上同一个常数.不等号不变.④错.答案: A3.命题“当AB =AC 时,△ABC 为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是( )A .4B .3C .2D .1解析: 原命题与逆否命题为真,逆命题:“△ABC 为等腰三角形,则AB =AC ”是假命题,因为还可以是AB =BC ,所以否命题也是假命题.答案: C4.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题;③“若b ≤0,则方程x 2-2bx +b 2+b =0有实根”的逆否命题; ④若“A ∪B =B ,则A ⊇B ”的逆否命题.其中是真命题的是( ) A .①② B .②③ C .①③D .③④解析: ①逆命题:若x 、y 互为倒数,则xy =1是真命题. ②否命题:不相似的三角形周长不相等是假命题. ③方程x 2-2bx +b 2+b =0无实根,则b >0是真命题. ④若A ⊉B ,则A ∪B ≠B 是假命题. 答案: C二、填空题(每小题5分,共10分) 5.给出下列命题 ①若ac =bc ,则a =b ;②方程x 2-x +1=0有两个实根; ③对于实数x ,若x -2=0,则x -2≤0; ④若p >0,则p 2>p ; ⑤正方形不是菱形.其中真命题是________,假命题是________. 解析: ①c =0时,a 不一定等于b ,假命题. ②此方程无实根,假命题. ③结论成立,真命题.④0<p ≤1时结论不成立,假命题. ⑤不成立,假命题. 答案: ③ ①②④⑤6.将“偶函数的图像关于y 轴对称”,写成“若p ,则q ”的形式,则p :________,q :________.解析: 弄清命题的条件和结论.答案: 一个函数是偶函数 其图像关于y 轴对称 三、解答题(每小题10分,共20分)7.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)当m <14时,方程mx 2-x +1=0有实根;(2)实数的平方是非负实数;(3)互相垂直的两直线斜率乘积等于-1.解析: (1)若m <14,则方程mx 2-x +1=0有实根,真命题.因为方程mx 2-x +1=0有无实根取决于判别式Δ=1-4m ,当m <14时,Δ>0,故当m <14时,方程mx 2-x +1=0有实根为真命题;(2)若x ∈R ,则x 2≥0,真命题.(3)若两条直线互相垂直,则这两条直线的斜率乘积等于-1.假命题.当一条直线斜率为0,另一条直线斜率不存在时两条直线垂直,而斜率乘积不等于-1.8.分别写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若q ≤1,则方程x 2+2x +q =0有实根; (2)若ab =1,则a =1且b =1.解析: (1)逆命题:若方程x 2+2x +q =0有实根,则q ≤1,为真命题. 否命题:若q >1,则方程x 2+2x +q =0无实根,真命题. 逆否命题:若方程x 2+2x +q =0无实根,则q >1,真命题. (2)逆命题:若a =1且b =1,则ab =1,真命题. 否命题:若ab ≠1,则a ≠1或b ≠1,真命题. 逆否命题:若a ≠1或b ≠1,则ab ≠1,假命题. 尖子生题库☆☆☆9.(10分)在公比为q 的等比数列{a n }中前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1)写出上述命题的逆命题;(2)判断公比q 为何值时,逆命题为真?公比q 为何值时,逆命题为假?解析: (1)逆命题:在公比为q 的等比数列{a n }中前n 项和为S n ,若a m ,a m +2,a m +1成等差数列,则S m ,S m +2,S m +1成等差数列.(2)由{a n }为等比数列知a n ≠0,q ≠0,由a m ,a m +2,a m +1成等差数列得2a m +2=a m +a m +1, 即2a m ·q 2=a m +a m ·q .整理得2q 2-q -1=0解得q =-12或q =1.当q =1时a n =a 1(n =1,2,…)则S m +2=(m +2)a 1,S m =ma 1,S m +1=(m +1)a 1, 又2(m +2)a 1≠ma 1+(m +1)a 1, 即2S m +2≠S m +S m +1,所以S m ,S m +2,S m +1不成等差数列. 故当q =1时原命题的逆命题为假命题. 当q =-12时,2S m +2=2·a 1-q m +21-q=a 1⎣⎢⎡⎦⎥⎤4-⎝ ⎛⎭⎪⎫-12m 3,S m +1=a 1-q m +11-q=a 1⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫-12m 3,又S m =a 1⎣⎢⎡⎦⎥⎤2-2×⎝ ⎛⎭⎪⎫-12m 3,∴S m +S m +1=a 1⎣⎢⎡⎦⎥⎤4-⎝ ⎛⎭⎪⎫-12m 3,则有2S m +2=S m +1+S m ,所以S m ,S m +2,S m +1成等差数列,故当q =-12时原命题的逆命题为真命题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年高中数学 第1章 常用逻辑用语 1命题课后演练提升 北师大版选修1-1
一、选择题(每小题5分,共20分)
1.下列语句:①3>2;②π是有理数吗?③sin 30°=;④x2-1=0有一个根是x=-1;⑤x>2.
其中是命题的是( )
A.①②③ B.①③④
C.③ D.②⑤
解析: ②是一般疑问句不是命题;⑤无法判断真假,不是命题.答案: B
2.下列命题中真命题的个数为( )
①面积相等的两个三角形是全等三角形;
②若xy=0,则|x|+|y|=0;
③若a>b,则a+c>b+c;
④矩形的对角线互相垂直.
A.1 B.2
C.3 D.4
解析: ①错.②错,若xy=0则x,y至少一个为0,而未必|x|+|y|=0.③对,同向不等式,两边加上同一个常数.不等号不变.④错.答案: A
3.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是( )
A.4 B.3
C.2 D.1
解析: 原命题与逆否命题为真,逆命题:“△ABC为等腰三角形,则AB=AC”是假命题,因为还可以是AB=BC,所以否命题也是假命题.
答案: C
4.有下列四个命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题;
③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;
④若“A∪B=B,则A⊇B”的逆否命题.
其中是真命题的是( )
A.①② B.②③
C.①③ D.③④
解析: ①逆命题:若x、y互为倒数,则xy=1是真命题.
②否命题:不相似的三角形周长不相等是假命题.
③方程x2-2bx+b2+b=0无实根,则b>0是真命题.
④若A⊉B,则A∪B≠B是假命题.
答案: C
二、填空题(每小题5分,共10分)
5.给出下列命题
①若ac=bc,则a=b;
②方程x2-x+1=0有两个实根;
③对于实数x,若x-2=0,则x-2≤0;
④若p>0,则p2>p;
⑤正方形不是菱形.
其中真命题是________,假命题是________.
解析: ①c=0时,a不一定等于b,假命题.
②此方程无实根,假命题.
③结论成立,真命题.
④0<p≤1时结论不成立,假命题.
⑤不成立,假命题.
答案: ③ ①②④⑤
6.将“偶函数的图像关于y轴对称”,写成“若p,则q”的形式,
则p:________,q:________.
解析: 弄清命题的条件和结论.
答案: 一个函数是偶函数 其图像关于y轴对称
三、解答题(每小题10分,共20分)
7.把下列命题改写成“若p,则q”的形式,并判断命题的真假.
(1)当m<时,方程mx2-x+1=0有实根;
(2)实数的平方是非负实数;
(3)互相垂直的两直线斜率乘积等于-1.
解析: (1)若m<,则方程mx2-x+1=0有实根,真命题.因为方程mx2-x+1=0有无实根取决于判别式Δ=1-4m,
当m<时,Δ>0,
故当m<时,方程mx2-x+1=0有实根为真命题;
(2)若x∈R,则x2≥0,真命题.
(3)若两条直线互相垂直,则这两条直线的斜率乘积等于-1.假命题.当一条直线斜率为0,另一条直线斜率不存在时两条直线垂直,而斜率乘积不等于-1.
8.分别写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.
(1)若q≤1,则方程x2+2x+q=0有实根;
(2)若ab=1,则a=1且b=1.
解析: (1)逆命题:若方程x2+2x+q=0有实根,则q≤1,为真命题.
否命题:若q>1,则方程x2+2x+q=0无实根,真命题.
逆否命题:若方程x2+2x+q=0无实根,则q>1,真命题.
(2)逆命题:若a=1且b=1,则ab=1,真命题.
否命题:若ab≠1,则a≠1或b≠1,真命题.
逆否命题:若a≠1或b≠1,则ab≠1,假命题.
☆☆☆
9.(10分)在公比为q的等比数列{a n}中前n项和为S n,若S m,S m+
,S m+1成等差数列,则a m,a m+2,a m+1成等差数列.
2
(1)写出上述命题的逆命题;
(2)判断公比q为何值时,逆命题为真?公比q为何值时,逆命题为假?
解析: (1)逆命题:在公比为q的等比数列{a n}中前n项和为S n,若
a m,a m+2,a m+1成等差数列,则S m,S m+2,S m+1成等差数列.
(2)由{a n}为等比数列知a n≠0,q≠0,
由a m,a m+2,a m+1成等差数列得2a m+2=a m+a m+1,
即2a m·q2=a m+a m·q.
整理得2q2-q-1=0解得q=-或q=1.
当q=1时a n=a1(n=1,2,…)则S m+2=(m+2)a1,S m=ma1,S m+1=(m+1)a1,
又2(m+2)a1≠ma1+(m+1)a1,
即2S m+2≠S m+S m+1,
所以S m,S m+2,S m+1不成等差数列.
故当q=1时原命题的逆命题为假命题.
当q=-时,
2S m+2=2·
=,
S m+1=
=,
又S m=,
∴S m+S m+1=,
则有2S m+2=S m+1+S m,
所以S m,S m+2,S m+1成等差数列,
故当q=-时原命题的逆命题为真命题.。