北师大版高中数学必修知识点总结
北师大高一必修数学知识点

北师大高一必修数学知识点高中数学是学生们接触到的一门重要学科,它对于学生的思维能力的培养以及理论知识的掌握都有着至关重要的作用。
而北师大高一必修数学知识点则是北师大高中数学课程的核心内容,它包括了高一全年的必修数学知识。
下面将详细介绍北师大高一必修数学知识点,希望对广大高中生学习数学有所帮助。
1. 函数与方程函数是高中数学的基础,学习函数的概念以及相关的运算法则对后续的学习具有重要的意义。
在高一的数学课程中,学生将学习到函数的定义、图像与性质、初等函数以及函数的运算等内容。
此外,方程也是数学的重要部分,高一学生将接触到线性方程、一元二次方程、二元一次方程以及简单的方程组等。
2. 三角函数与解三角形三角函数是高中数学中的重要内容,也是后续学习解析几何和数学分析的基础。
高一学生将学习到三角函数的概念、性质和基本公式,了解三角函数与直角三角形、一般三角形之间的关系。
此外,学生还会学习到解三角形的相关知识,包括解三角形的条件、解三角形的方法和应用等。
3. 数列与数列的性质数列是一个有序数的列,数学上研究了数列的性质和规律。
在高一的数学课程中,学生将学习到数列的概念、常数数列、等差数列和等比数列等基本内容。
此外,还会学习到数列的通项公式、前n项和等,进而了解数列的性质以及基本求和公式。
4. 概率与统计概率与统计是数学的一个重要分支,它涉及到随机事件的概率以及数据的收集和分析。
在高一的数学课程中,学生将学习到概率的基本概念、古典概率、条件概率和事件间的独立性等内容。
此外,还会接触到统计学的基本知识,包括数据的收集、整理、图表表示和数据分析等。
5. 解析几何基础解析几何是高中数学的一门重要课程,它是代数与几何相结合的学科。
在高一的数学课程中,学生将学习到平面直角坐标系、点、直线、圆的方程和性质等基本内容。
此外,还会学习到解析几何的基本定理,如中点定理、距离公式、角的判定定理等。
总结起来,北师大高一必修数学知识点包括函数与方程、三角函数与解三角形、数列与数列的性质、概率与统计以及解析几何基础。
北师大高中数学必修四知识点非常详细

北师大高中数学必修四知识点非常详细1.函数函数是数学中非常重要的概念之一、函数是一种特殊的关系,将一个集合的每个元素映射到另一个集合的元素上。
在数学中,函数通常用公式表示,例如y=f(x)。
函数有多种形式,常见的包括线性函数、二次函数、指数函数、对数函数等。
2.直线与圆直线和圆是几何中的基本图形。
直线是由一系列点组成的,这些点在同一条直线上。
圆由一个固定点(圆心)和所有到该点距离相等的点组成。
直线和圆有许多重要的性质和定理。
3.平面向量平面向量是数学中的一种工具,用于表示空间中的有向线段。
平面向量有大小和方向,可以进行加法、减法、数乘等运算。
平面向量还可以用坐标表示,例如向量AB可以表示为AB=<x,y>。
4.三角函数三角函数是数学中的重要工具,用于研究角和周期现象。
常见的三角函数有正弦函数、余弦函数和正切函数等。
三角函数有一系列的性质和公式,可以用于求解各种数学问题。
5.导数与微分导数是微积分中的重要概念。
导数描述了函数在特定点处的变化率。
微分是导数的一种特殊情况,表示函数在特定点的小变化量。
导数和微分有许多重要的应用,例如求函数的极值、描绘函数的图像等。
6.不定积分与定积分不定积分和定积分是微积分的两个重要分支。
不定积分是导数的逆运算,可以用来求解函数的原函数。
定积分表示函数在一些区间上的面积或曲线下的定积分函数值。
不定积分和定积分有许多重要的性质和定理,可以用于求解各种数学问题。
7.数列与数学归纳法数列是数学中一个重要的概念。
数列是一系列按照一定规律排列的数的集合。
常见的数列有等差数列、等比数列和斐波那契数列等。
数学归纳法是一种证明方法,常用于证明数学命题,特别适用于证明关于数列的命题。
8.排列与组合排列和组合是数学中的一个重要分支,研究对象是从给定集合中选择元素进行排列或组合的方法。
排列是有序选择元素,组合是无序选择元素。
排列和组合有许多重要的性质和公式,可以用于解决各种计数问题。
北师大高中数学必考公式总结整理

北师大高中数学必考公式总结整理以下是北师大高中数学必考公式的总结整理:1. 二次函数:- 顶点坐标:(h, k)- 平移变换:y = a(x-h)^2 + k- 开口方向:a>0 开口向上;a<0 开口向下- 判别式:Δ = b^2 - 4ac- 根的关系:- 当Δ>0,有两个不相等的实根- 当Δ=0,有两个相等的实根- 当Δ<0,无实根2. 三角函数:- sin(A±B) = sin(A)cos(B) ± cos(A)sin(B)- cos(A±B) = cos(A)cos(B) ∓ sin(A)sin(B)- tan(A±B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))3. 平面几何:- 两点间距离公式:AB = √[(x2-x1)^2 + (y2-y1)^2]- 点到直线的距离公式:d = |Ax1 + By1 + C| / √[A^2 + B^2]- 两直线夹角公式:tanθ = |k1-k2| / (1 + k1k2) (其中k1和k2分别是两直线的斜率) 4. 概率统计:- 排列公式:P(n,r) = n! / (n-r)!- 组合公式:C(n,r) = n! / [r!(n-r)!]- 期望公式:E(X) = ∑[xP(X=x)] (其中x为X的取值,P(X=x)为X取值为x的概率) - 方差公式:Var(X) = E(X^2) - [E(X)]^25. 导数与积分:- 导数四则运算法则:(cf)' = cf';(f±g)' = f'±g';(f·g)' = f'·g+g'·f;(f/g)' = (f'·g-g'·f) / g^2- 积分四则运算法则:∫(cf)dx = c∫fdx;∫(f±g)dx = ∫fdx±∫gdx;∫(f·g)dx = ∫fdx·∫gdx;∫(f/g)dx = ∫fdx / ∫gdx注意:这只是一部分北师大高中数学必考的公式总结,具体要根据教材和学校课程要求来确定。
北师大版高中数学必修知识点总结

北师大版高中数学必修知识点总结高中数学是高中学生必修的一门学科,是培养学生数学素养的基础。
下面是北师大版高中数学必修的知识点总结:一、数与式1.实数的性质:数轴、有理数和无理数2.因式分解与分式运算:最大公因数、最小公倍数、整式和分式的加减乘除运算3.整式的乘法公式:平方差公式、完全平方公式、立方和差公式4.代数式的化简与展开:加减法公式的推导、积的乘法公式的推导5.立方根、四则运算等基本计算:化简算术表达式、解实际问题二、函数与分析1.函数与映射:函数的定义与性质、反函数及其性质、复合函数、函数的图像与性质2.一次函数:直线的方程、点斜式与两点式直线方程、斜率和截距的含义、函数表示及其性质3.二次函数:抛物线的图像特征、顶点、轴、对称性、开口方向、零点、极值点4.两类基本函数:复合函数、反函数、方程的解、图像的移动5.幂函数和指数函数:整数幂函数、指数函数、对数函数三、三角函数1.三角函数的基本关系式:正弦、余弦、正切、余切的定义与性质、和差化积公式、倍角公式2.三角函数的图像与变换:图像的平移、图像的伸缩、常用函数图像及其性质3.逆三角函数:定义与性质、幂指函数与对数函数4.解三角形:正弦定理、余弦定理、正切定理、海伦公式、解直角三角形、解一般三角形四、空间几何与向量1.向量的基本概念和运算:向量的定义、向量之间的加法与减法、平行向量与共线向量、数量积与数量积的性质2.平面向量的坐标表示与运算:平面向量的坐标表示、平面向量之间的加法与减法、数量积的坐标表示3.平面解析几何:直线的方程、曲线的方程、圆的方程4.空间向量及其坐标表示:空间向量的表示、空间向量之间的加法与减法、数量积与数量积的性质5.立体几何:几何体的表面积和体积的计算、二面角、三面角、切割法五、数列与数学归纳法1.数列与数列的极限:数列与数列的极限的定义、等差数列的通项公式、等比数列的通项公式2.数学归纳法:数学归纳法的基本原理、证明方法、应用题3.等差数列与等差数列的和:公差、通项公式、求和公式、应用题4.等比数列与等比数列的和:公比、通项公式、求和公式、应用题以上是北师大版高中数学必修的知识点总结。
北师大版高中数学必修知识点总结

北师大版高中数学必修知识点总结高中数学是高中阶段的一门重要学科,对学生的思维逻辑能力、数学分析能力以及解决实际问题的能力有很大的帮助。
下面是北师大版高中数学必修的知识点总结。
一、函数与方程1.函数的定义与性质:定义域、值域、奇偶性、单调性、周期性等。
2.初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数等。
3.函数的图像与性质:函数图像的平移、翻折和缩放等。
4.方程与不等式:一元一次方程、一元一次不等式、二次方程、二次不等式等。
二、数列与数学归纳法1.数列的概念与表示:等差数列、等比数列、等差数列与等比数列的相互转化。
2.数列的通项公式:求通项公式、求和公式等。
3.数列的前n项和与无限项和:有限等差数列求和、有限等比数列求和、无限等差数列求和、无限等比数列求和等。
4.数学归纳法的基本思想与应用。
三、平面向量1.向量的概念与运算:向量的表示、向量的加法、向量的数乘、数量积、向量积等。
2.向量的模、方向角、坐标与坐标运算:向量的模、方向角与坐标之间的关系、向量的坐标运算等。
3.平面向量的应用:向量的共线性、向量的法则等。
四、三角函数与解三角形1.角度与弧度制:角度与弧度的转化、正角和负角等。
2.三角函数:正弦函数、余弦函数、正切函数、余切函数等。
3.三角函数的诱导公式:和角公式、差角公式、倍角公式、半角公式等。
4.三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像、最小正周期与变换等。
5.解三角形:海伦公式、正弦定理、余弦定理等。
6.三角函数的应用:三角函数的模型求解等。
五、平面几何和立体几何1.平面几何基本概念:点、直线、线段、射线、角的概念与性质等。
2.平面几何的证明方法:直接证明、间接证明、反证法等。
3.圆的性质与判定:圆的定义、弧、弦、切线、正切、割线、弓形与线段的关系等。
4.圆锥曲线:椭圆、双曲线的定义与性质。
5.空间几何基本概念:点、直线、平面、直线与平面的位置关系等。
6.空间几何的投影:点到线的距离、点到平面的距离、线到平面的距离等。
北师大版《数学》知识点总结

北师大版《数学》知识点总结
一、整数与有理数
1.整数的概念、运算规则以及性质
2.有理数的概念、运算规则以及性质
3.整数与有理数的比较与排序
4.循环小数与无限不循环小数的性质
5.整数的混合运算
二、代数与方程
1.代数式的概念与基本操作
2.一元一次方程及其问题
3.求解简单的一元一次方程
4.值的范围与数值的优劣比较
5.正比例与反比例关系
6.图像与函数的关系
三、几何与运动的描述
1.几何图形的分类与性质
2.直角三角形的性质与应用
3.平行线与平行线之间的关系
4.三角形的性质与分类
5.平行四边形的性质与判定
6.直角坐标系与平面坐标运动
四、统计与概率
1.统计调查的设计与实施
2.统计图形的绘制与分析
3.概率的概念与计算
4.几何概率与条件概率
5.数据的中心趋势与离散程度
五、数与应用
1.道路交通图的制作与解读
2.比例尺的运用
3.资料的收集与整理
4.财务问题的解决
5.排列组合的应用
六、数论与证明
1.素数的性质与判定
2.最大公约数与最小公倍数的计算
3.证明一些简单的数论问题
4.推理与证明方法的运用
以上是北师大版《数学》的主要知识点总结,它包括整数与有理数、代数与方程、几何与运动的描述、统计与概率、数与应用、数论与证明等方面的内容。
掌握这些知识点将有助于学生在数学学科中有较好的理论基础和实际运用能力,培养学生的逻辑思维和解决问题的能力。
希望对您的学习有所帮助。
高中数学北师大版必修1 全册 知识点总结

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{|x x x ∈A A =∅=∅ B A ⊆AB B ⊆B{|x x x ∈A A =A ∅=B A ⊇B B ⊇( )⑼ 集合的运算律:交换律:结合律:分配律: 0-1律:等幂律:求补律:A ∩ A ∪ =U 反演律: (A ∩B)=( A)∪( B) (A ∪B)=( A)∩( B)第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射,那么和A 中的元素a 对应的.;A B B A A B B A ==)()();()(C B A C B A C B A C B A ==)()()();()()(C A B A C B A C A B A C B A ==,,,A A A UA A UA U Φ=ΦΦ===.,A A A A A A ==叫做象, 叫做原象。
高中数学常用公式及知识点北师大必修必修及选修

北师大版教材高中数学常用公式及知识点记忆检测(必修1必修5及选修2-1)目录必修1……………………………………………………3 必修2……………………………………………………7 必修3……………………………………………………10 必修4……………………………………………………13 必修5……………………………………………………18 选秀2-1………………………………………………22 后记 (28)必修1§ 集 合1.集合的基本运算;;2. .集合的包含关系:;;3.识记重要结论: AB A =⇔A B ⊆;A B A A B =⇔⊇;()U U U A B C C A C B =;()U U U A B C C A C B =4.对常用集合的元素的认识①{}2340A x x x =+-=中的元素是方程2340x x +-=的解,A 即方程的解集;②{}260B x x x =+-≤中的元素是不等式260x x +-≤的解,B 即不等式的解集;③{}221,05C y y x x x ==+-≤≤中的元素是函数221,05y x x x =+-≤≤的函数值,C 即函数的值域; ④(){}22log 21D x y xx ==+-中的元素是函数()22log 21y x x =+-的自变量,D 即函数的定义域;⑤(){},23Mx y y x ==-中的元素可看成是关于,x y 的方程的解集,也可看成以方程23y x =-的解为坐标的点,M 为点的集合,是一条直线。
5. 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+. 7.闭区间上的二次函数的最值问题:二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,①若[]q p a bx ,2∈-=,则{}min max ()(),()max (),()2b f x f f x f p f q a=-=;②[]q p abx ,2∉-=,{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.(2)当a<0时,①若[]q p abx ,2∈-=,则min ()f x =②若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.8.()()max a f x a f x ≥⇔≥⎡⎤⎣⎦;()()min a f x a f x ≤⇔≤⎡⎤⎣⎦ 9. 由不等导相等的有效方法:若a b ≥且a b ≤,则a b =.§ 函 数1.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.⑶单调性性质:①增函数+增函数=增函数;②减函数+减函数=减函数;③增函数-减函数=增函数;④减函数-增函数=减函数; 注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版高中数学必修
知识点总结
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
北师大版高中数学必修3知识与题型归纳
第一章《统计》知识与题型归纳复习
(一)、抽样方法 1、简单随机抽样
(1)、相关概念:总体、个体、样本、样本容量。
(2)、基本思想:用样本估计总体。
(3)、简单随机抽查概念。
一般的,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本)(N n ,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
其特点:①总体个数有限;②逐个抽取;③不放回抽样;④等可能抽样。
(4)、抽样方法:①抽签法;②随机数表。
2、系统抽样
(1)、定义:当总体元素个数很大时,样本容量不宜太小,这时可将总体分为均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本(等距抽样)。
(2)、步骤:①编号;②分段;③不确定起始个体编号;④按规则抽取。
3、分层抽样
(1)、定义:当总体由差异明显的几部分组成时,为了使抽取的样本更好的反应总体情况,我们经常将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样。
适用特征①总体由差异明显的几部分组成;②分成的各层互不重叠;③各层抽取的比例等于样本客样在总体中的比例,即
N
n。
(二)、用样本的频率分布估计总体的分布(统计图表) 1、列频率分布表,画频率分布直方图:
(1)计算极差(2)决定组数和组距(3)决定分点(4)列频率分布表(5)画频率分布直方图
2、茎叶图;
3、扇形图;
4、条形图;
5、折线图;
6、散点图。
(三)、用样本的数字特征估计总体的数字特征 1、有关概念
(1)、众数:频率分布最大值所对应的样本数据(或出现最多的那个数据)。
(2)、中位数:累积频率为0.5时,所对应的样本数据。
(3)、平均数:)(121n x x x n
x +++=
(4)、三个概念的区别:①都是描述一组数据集中趋势的量,平均数较重要。
②平均数的大小与每个数相关。
③众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,众数更能反映问题,中位数仅与排列有关。
2、样本方差与样本标准差
1样本方差:(
)()(
)[]2
22212
1
x
x x x x x n
S n -++-+-= 样本方差大说明样本差异和波
动性大。
(2)、样本标准差:方差的算术平方根(
)()(
)[]2
22211
x x x x x x n
S n -++-+-=
(3)、要有单位,方差的单位是原数据的单位的平方,标准差的单位与原数据单位同。
(四)、变量的相关性:
1、变量与变量之间存在着的两种关系①函数关系:确定性关系。
②相关关系:自变量的取值带有一定的随机性的两个变量之间的关系。
当一个变量的值由小变大时另一个变量也由小变大叫正相关,当一个变量的值由小变大时另一个变量也由大变小叫负相关。
③异同点
2、两个变量的线性关系①回归分析对具有相关关系的两个变量进行统计分析的方法。
②散点图
3、回归直线方程
①回归直线,bx a y += ,回归直线方程,b a ,回归系数,y
为了区分y ,表示取i x 时,y 相应的观察值。
②最小二乘法 ③回归直线方程求法
1)分别计算∑∑∑===n
i i i n
i i n
i i y x y x y x 1
1
2
1
2,,,,2)分别计算x b y a x n x
y x n y
x b n
i i
n
i i
i -=--=
∑∑==
,2
1
21
3)代入bx a y +=
可得回归方程。
题型二、估计总体分布
例2、下表给出了某校500名12岁男孩中用随机抽样得出的100人的身高(单位cm)
(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比。
分析:根据样本频率分布表、频率分布直方图的一般步骤解题。
题型三、估计总体的数字特征
例3、甲、乙两位学生参加数学竞赛培训。
现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位
学生参加合适?请说明理由?
例4、某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
(1)画出数据对应的散点图;(2) 算出线性回归方程a
ˆ; (a,b精确到十
y+
bx
=
分位)
(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.
第二章《算法初步》知识与题型归纳复习
(一)、算法的概念1、算法概念:
2. 算法的特点?1)有限性;(2)确定性;(3)顺序性与正确性;(4)不唯一性;(5)普遍性;
(二)、程序框图:1、构成程序框的图形符号及其作用
2、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(1)顺序结构: A 框和B 框是依次执行的,
(2)选择结构:条件结构是依据指定条件选择执行不同指令的控制结构。
依据 条件P 是否成立而选择执行A 框或B 框。
无论P 条件是否成立,只能执行A 框或B 框之一,不可能同时执行A 框和B 框,也不可能A 框、B 框都不执行。
一个判断结构可以有多个判断框。
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,循环结构中一定包含条件结构。
(二)、赋值语句 1、赋值语句
(1)赋值语句的一般格式
(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。
赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。
(三)、条件语句:1、
1,对应
的程序框图为图2。
(四)、循环语句:循环结构是由循环语句来实现的。
一般程序设计语言中有两种语句结构。
即for 语句和Do Loop 语句。
1、Do Loop 语句
(1)Do Loop 语句的一般格式是
(2
1 2、概率的基本性质 (1)、基本概念:
①若A,B 不可能同时发生的两个事件,那么称事件A 与事件B 互斥; (2)、概率的基本性质:
①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; ②当事件A 与B 互斥时,满足加法公式:P(A+B)= P(A)+ P(B);
③若事件A 与B 为对立事件,则A+B 为必然事件,所以P(A+B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
(二)、古典概型及随机数的产生
1、古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
2、古典概型的解题步骤;
①求出总的基本事件数;②求出事件A 所包含的基本事件数,然后利用公式P
(A )=总的基本事件个数包含的基本事件数
A 。
(三)、几何概型
1、几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
2、几何概型的概率公式:P (A )
=积)的区域长度(面积或体试验的全部结果所构成积)
的区域长度(面积或体构成事件A ;
3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等。