142有理数的乘法--教学设计二
(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。
1.4.1有理数的乘法2教案

1.4.1有理数的乘法2教案1.4.1有理数的乘法(2)石锦东一、教学目标(一)、知识与技能使学生掌握多个有理数相乘的积的符号规律。
(二)、过程与方法通过学生亲身探索、归纳和验证,体验多个有理数相乘时积的符号的确定方法,培养实践能力和交流能力。
(三)、情感态度与价值观1、通过观察、思考、探究、发现,激发学生的好奇心和求知欲,让学生获得成功的喜悦。
2、通过探究和思考问题,使学生养成积极自觉的学习习惯。
二、教学重难点教学重点:乘法的符号规律教学难点:积的符号的确定三、教学方法和课型1、教学方法:合作探究法、讲练结合法2、课型:新授课四、教具准备多媒体五、教学过程(一)、创设情境,引入新知问题1:有理数乘法法则的内容是什么?教师提出问题,学生思考回答。
教师根据学生的回答情况加以补充。
问题2:计算:(1)、﹙-2﹚×3 ;(2)、﹙-2﹚×﹙-3﹚;(3)、4×﹙-?﹚;(4)、﹙-4﹚×﹙-?﹚.教师提出问题,学生思考回答。
教师根据学生的回答的情况加以订正,并提出问题:上节课主要学的是两个有理数相乘,那多个有理数相乘,积的符号又与什么有关?设计意图:通过复习有理数的乘法法则,为学习多个有理数相乘的积的符号规律做铺垫。
(二)、观察探究,形成新知问题3:观察下列各式,它们的积是正的还是负的?(1)、2×3×4×﹙-5﹚;(2)、2×3×﹙-4﹚×﹙-5﹚;(3)、2×﹙-3﹚×﹙-4﹚×﹙-5﹚;(4)、﹙-2﹚×﹙-3﹚×﹙-4﹚×﹙-5﹚.思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?学生思考,发表见解。
教师巡视,引导学生观察上面各题的计算结果,找一找积的符号与什么有关?师生共同归纳得出:几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。
有理数的乘法(二)教学设计

第二章有理数及其运算7. 有理数的乘法(二)一、学生起点分析学生的知识技能基础:学生在小学已经学习过四则运行简便运算的意识和技能。
在本章的第四节的第二课时又熟悉了有理数的加法交换律与加法的结合律,并经历了它们的探索活动过程,具有了探索学习有理数的乘法交换律、乘法结合律、乘法对加法的分配律的基本技能基础,尤其是上节课有理数的乘法法则更是重要的知识基础。
学生的活动经验基础:学生在探究有理数加法的交换律、结合律的活动过程中,已经有了切身的体验,积累了经验,丰富了阅历,并体会到了运算律对有理数加法的简化作用,这不仅在探索方法上提供了经验基础,而且从情趣意识、求知欲望上也为本节可增添了兴趣基础。
另外上节课学生在有理数乘法法则的训练过程中曾经出现的问题和解决修正的过程,也是本节课学习的有用经验。
二、学习任务分析教科书在学生已掌握了有理数加法、减法、乘法运算的基础上,提出了本节课的具体学习任务:探索发现有理数长法的运算律,会运用运算律简化运算过程。
本节课的教学目标是:1、经历探索有理数的乘法运算律的过程,发展观察、归纳、猜想、验证等能力。
2、学会运用乘法运算律简化计算的方法,并会用文字语言和符号语言表述乘法运算律。
3、在合作学习过程中,发展合作能力和交流能力。
三、教学策略对于认知的主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用诱思探究式教学法并采用多媒体等现代教学手段。
以学生为中心,使其在“生动活泼、民主开放、自主探索、合作交流、动手实践”的氛围中愉快地学习,让学生从“学会”到“会学”,使学生真正成为学习的主人.四、教学过程设计本节课设计了六个环节:第一环节:创设问题,情景导入;第二环节:符号表达,知识升华;第三环节:整体感知,双边互动;第四环节:课堂小结,知识归纳;第五环节:布置作业,课外延伸。
第一环节:创设问题,情景导入活动1(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算结果:□×○和○×□,有什么发现?(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算结果:(□×○)×◇和□×(○×◇),又有什么发现?(3)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算结果:□×(○+◇)和□×○+□×◇),又有什么发现?(4)通过计算积的比较,猜想乘法运算律在有理数范围内是否适用。
有理数的乘法教案(第二课时) 人教版数学

有理数的乘法教案〔第二课时〕人教版数学一、知识与技能(1)能确定多个因数相乘时 ,积的符号 ,•并能用法那么进行多个因数的乘积运算。
(2)能利用计算器进行有理数的乘法运算。
二、过程与方法经历探索几个不为0的数相乘 ,积的符号问题的过程 ,开展观察、归纳•验证等能力。
三、情感态度与价值观培养学生主动探索 ,积极思考的学习兴趣。
教学重、难点与关键1.重点:能用法那么进行多个因数的乘积运算。
2.难点:积的符号确实定。
3.关键:让学生观察实例 ,发现规律。
教具准备投影仪。
四、教学过程1.请表达有理数的乘法法那么。
2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授1.多个有理数相乘 ,可以把它们按顺序依次相乘。
例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;又如:(+2)[(-78)]=(+2)(-26)=-52.我们知道计算有理数的乘法 ,关键是确定积的符号。
观察:以下各式的积是正的还是负的?(1)234 (2)234(-4)(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式积为负 ,(2)、(4)式积为正 ,积的符号与负因数的个数有关。
教师问:几个不是0的数相乘 ,积的符号与负因数的个数之间有什么关系?学生完成思考后 ,教师指出:几个不是0的数相乘 ,积的符号由负因数的个数决定 ,与正因数的个数无关 ,当负因数的个数为负数时 ,积为负数;当负因数的个数为偶数时 ,积为正数。
2.多个不是0的有理数相乘 ,先由负因数的个数确定积的符号再求各个绝对值的积。
1.4.1.2有理数的乘法(教案)

1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,它是……(解释概念)。有理数乘法在解决实际问题时非常重要,可以帮助我们简化计算步骤。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数乘法在实际中的应用,以ห้องสมุดไป่ตู้它如何帮助我们解决问题。
1.4.1.2有理数的乘法(教案)
一、教学内容
本节课选自七年级数学教材《数学》第1册,第4章“有理数及其运算”中的1.4.1.2节“有理数的乘法”。教学内容主要包括以下两个方面:
1.有理数乘法的定义:让学生理解两个有理数相乘的意义,掌握乘法法则,并能够运用乘法法则进行计算。
-乘法法则:同号得正,异号得负;任何数与0相乘得0。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.理解与运用:使学生理解有理数乘法的概念和法则,能够运用乘法运算律对有理数进行乘法计算,提高解决问题的能力。
2.思维与发展:通过有理数乘法的学习,培养学生逻辑思维能力和抽象思维能力,提高对数学符号的理解和运用水平。
3.情感与态度:激发学生对数学学习的兴趣,增强他们在解决问题时的自信心,培养严谨、合作、探究的学习态度。
实践活动环节,学生们的参与度很高,分组讨论和实验操作让他们能够将理论知识与实际操作相结合。但从成果展示来看,有些小组在解决问题时仍然存在一定的难度,这说明在今后的教学中,我需要更多地关注学生解决问题的能力培养。
有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。
在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。
由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
有理数的乘法教案【6篇】

有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。
2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。
重点、难点:1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。
2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。
《有理数的乘法》第二课时教学设计

杏山镇中心学校七年级数学教学设计课题:1.4.1 有理数的乘法(2)备课人:关玉复核人:郑体华教学目标:1、理解并掌握多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;教学重点:多个有理数乘法运算符号的确定;教学难点:正确进行多个有理数的乘法运算;学、复习1、有理数乘法法则:学、自学教材p31页内容观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)×(-4)×(-5),(-2)×(-3)×(-4)×(-5);研、思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8×(-8.1)×0× (-19.6)师生小结:展、小组展示研究结果1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
2.几个数相乘,如果其中有一个因数为0,积等于0;计算:(1)-5×8×(-7)×(-0.25);(2)5812 ()() 121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-;练、一、选择1.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4)C. 0×(-2)(-3)D.(-7)-(-15)3.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24二、计算:1、111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;2、111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;教学反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘法教学设计(二)
教学目标:
1.知识与技能
体会有理数乘法的实际意义;
掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。
2.过程与方法
经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。
通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。
3.情感、态度与价值观
通过类比和分类的思想归纳乘法法则,发展举一反三的能力。
教学重点和难点:
重点:乘法的符号法则和乘法的运算律。
难点:积的符号的确定。
教学用具:
多媒体。
教学过程:
一、从学生原有认知结构提出问题
1.叙述有理数乘法法则。
2.计算(五分钟训练):
(1)(-2)×3; (2)(-2)×(-3);
(3)4×(-1.5); (4)(-5)×(-2.4);
(5)29×(-21); (6)(-2.5)×16;
(7) 97×0×(-6); (8)(-9.3)×(-7.8)×0;
(9)-35×2; (10)(-84)×(-86);
(11)0.2×3×(-5); (12)24×(-0.125);
(13)(-0.6)×(-1.5);
(14)1×2×3×4×(-5);
(15)1×2×3×(-4)×(-5);
(16)1×2×(-3)×(-4)×(-5);
(17)1×(-2)×(-3)×(-4)×(-5);
(18)(-1)×(-2)×(-3)×(-4)×(-5)。
二、讲授新课
.几个有理数相乘的积的符号法则1 引导学生观察上面各题的计算结果,找一找积的符号与什么有关? (17)等题积为正数,负因数个数是偶数个。
(15)(16),(18)等题积为负数,负因数的个数是奇数个;,(14),是不是规律?再做几题试试: 5); (1)3×(-;2) (2)3×(-5)×(-; (3)3×(-5)×(-2)×(-4) (4) 3×(-5)×(-2)×(-4)×(-3);。
(5) 3×(-5)×(-2)×(-4)×(-3)×(-6)
同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正。
再看两题:4); (1)(-2)×(-3)×0×(-。
(2) 2×0×(-3)×(-4) 。
结果都是0 引导学生由以上计算归纳出几个有理数相乘时积的符号法则:的数相乘,积的符号由负因数的个数决定。
当负
因数有奇数个时,积为负;当负因数有偶数个时,积为几个不等于0 正。
0,积就为0几个有理数相乘,有一个因数为继而教师强调指出,以后进行有理数乘法运算,必须先根据负因数
个数确定积的符号后,再把绝对值相乘,即先定符号后定值。
计算:例3159456);
×)1()(-3)××(-(-
注意:第一个因数是负数时,可省略括号。
1454×)(2) (-5)×6×(-4154××× =56 =6 教师小结:在有理数乘法中,首先要掌握积的符号法则,当符号确定后又归结到小学数学的乘法运算上,四3通过例
则运算顺序也同小学一样,先进行第二级运算,再进行第一级运算,若有括号先算括号里的式子。
课堂练习口答):(1)判断下列积的符号( 1);①(-2)×3×4×(- 2);②(-5)×(-6)×3×(-;③(-2)×(-2)×(-2) 。
④(-3)×(-3)×(-3)×(-3) (2)计算:①(-5)×8×(-7)×(-0.25);
计算:(3)
2);(-1)×(-8)+3×(-②。
(-1)×0×(-1)( ③1+0×(-1)--1)×(-1)- (4)
判断下列积的符号:
.乘法运算律2(-5)-0.25把(2)中①,②题分别变为[8×()]×,在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律2538152312)]即可使运算简便的多。
××和×(-7))(-]×[(-[那么有理数乘法有没有像小学学习非负数乘法的运算律呢?让我们来试一试:
计算:
(1)[8×(-0.25)]×(-5)×(-7);
(2)
; (3)5×(-6)
(4)(-6)×5;
; (5)[3×(-4)]×(-5)
;5)](6)3×[(-4)×(-
(7)5×[3+(-7)];
(8)5×3+5×(-7)。
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律。
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢? 3×(5-7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。
掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
111246)×用两种方法计算(12 -+5 例111264)×+ 解法1:12 (-326??
121212(12 =)×11212=-1
× =-
111642)×12 +:解法2 -(111462×12-×12+12
× = =3+2-6=-1
三、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题。
四、作业
1.计算:
(2)(-10)×(-8.24)×(-0.1);
.计算:2。
3.计算:
7.33);-2.07)(- (7)(-7.33)×42.07+( ;-5.02)69.3)-+(-130.7)((8)( -
53.02)(
板书设计有理数的乘法
1.有理数相乘时积的符号法则 2.乘法运算律小结
例题
课堂教学设计说明
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律。
为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。
这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力。
因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动。
只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
.。