09—2010学年第二学期期中考试八年级数学试题

合集下载

2010学年第二学期闸北八中八年级期中考试数学试卷

2010学年第二学期闸北八中八年级期中考试数学试卷

八年级数学试卷 一、选择题。

(每小题3分,共24分) 1、使分式42-x x 有意义的x 的取值范围为( ) A 、2=x B 、2≠x C 、2-=x D 、2-≠x 2、某气球内充满了一定质量的气体,当温度不变时, 气球内气体的气压P (kpa )是气体体积V(m 3)的反比 例函数,其图象如图所示当气球内的气压大于120kpa 时,气球将爆炸,为了安全起见, 气球的体积应( ) A 、不大于354m B 、大于354m C 、不小于354m D 、小于354m 3、如图所示,在ABC Rt ∆中,∠C=90°, D 为AC 上的一点,且DA=DB=5,ADB ∆的 面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.5 4、如图所示,沿虚线将平行四边形ABCD 剪开, 则得到的四边形ABFE 为( ) A 、梯形 B 、平行四边形 C 、矩形 D 、菱形 5、已知一组数据15、5、75、45、25、75、45、35、45、35,那么40是这一组数据的( ) A 、平均数但不是中位数 B 、平均数也是中位数 C 、众数 D 、中位数但不是平均数 6、已知点M (-2,3)在双曲线x k y =上,则下列各点一定在该双曲线上的是( ) A 、(3,-2) B 、(-2,-3) C 、(2,3) D 、(3,2) 7、下列不是轴对称图形的是( ) A 、正方形 B 、矩形 C 、菱形 D 、平行四边形 8、如图所示,在平行四边形ABCD 中,已知AD=8cm , AB=6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A 、2cm B 、4cm C 、6cm D 、8cm二、填空题。

(每小题3分,共24分)9、5个数据a 、2、4、1、5的平均数是3,则a=______________。

10、一个反比例函数的图象如图所示,若P 是图象上任一点,PM ⊥x 轴于M ,O 为原点,如果POM ∆的面积为3,那么这个反比例函数的解析式为_____________________。

2010年平川二中八年级第二学期期中数学试卷

2010年平川二中八年级第二学期期中数学试卷

3 „„ 1.若方程
( x 2 1)( x 1) x 2 1 “今天的作业要算得很久啊! ” 1 的值,雯雯一看,感慨道: x2 x 2x
你能找到简单的方法帮雯雯快速解决这个问题吗?请写出你的求解
„„
a 1 b= 1 (a b) 的解是 x1 6, x2 10 ,则 a = x xb 个方程。 (3 分) 2.请直接写出这列方程中第 n 个方程是 它的解
D、a≥-4
2 1 1 2 B 2 C 2 D x x 1 x x 1 8、在一段坡路,小明骑自行车上坡的速度为每小时 V1 千米,下坡时的速度为每 小时 V2 千米,则他在这段路上、下坡的平均速度是每小时( ) 。
三、解答题
2 x-1>0, 21、解不等式组 1 并把解集在数轴上表示出来. (6 分) ( x+4)<3. 2
序号 1 2
方程 6 1 1 x x2
8 1 1 x x3 10 1 1 x x4
方程的解 x1 3, x2 4
x1 4, x2 6 x1 5, x2 8
„„ 该方程是第
25、 (6 分)下课了,老师给大家布置了一道作业题:当 X=2008 时,求代数式
2 x y 6 23、若 x 和 y 满足方程组 ,求 7 y( x 3 y) 2 2(3 y x) 3 的值。 (6 分) x 3 y 1
24、解方程:
1 2 4 (5 分) x 1 x 1 x2 1
28 如表:方程 1、方程 2、方程 3„„是按照一定规律排列的一列方程:
ab 中的 a、b 都扩大 2 倍,那么分式的值一定( ab
v1 v 2 千米; 2
(B)

师大附中星城实验中学第二学期八年级数学期中考试含答案

师大附中星城实验中学第二学期八年级数学期中考试含答案

(2)若小王6月份上网25小时,他应付多少元的上网费
月份上网50小时又应付多少元呢?
(3)若小王8月份上网费用为100元,则他在该月份的上
间是多少?
解:(1)
y
40,; 0
2x
ቤተ መጻሕፍቲ ባይዱ
20,
x 30 x 30.
()当时,元;=. 2
,则这两点
之间的距离为 5 .
14.在 ABC 中,点 D 、 E 分别是边 AB 、 AC 的中点,已知 DE 6,则 BC 12 .
15.菱形的面积是24 cm2,一对角线长为6cm,则另一对角线长为 8cm .
16.函数 y 3x 6 ,当函数值 y 18 时,自变量 x 的值是 8 .
C.100,n是常量,W是变量 D.无法确定
8.下列函数:① y
3x ;② y
3
y
x ;③
3 x2
y
2 ;④
x 3
1
.其中是一次函数的
是(D)
A.①② B.①③
C.②③
D.①④
9.已知一次函数 y 2x 3 经过哪几个象限(B)
A.一、二、三 B.一、三、四 C.一、二、四 D.二、三、四
10.方程 x 1 0 得解就是函数 y x 1的图像与(A)
A. a B. a 1 C. 5 2a D. a2
2.分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17; (4)4,5,6.其中能构成直角三角形的有(B) A.4组 B.3组 C.2组 D.1组
3.已知平行四边形 ABCD 中, A C 200o,则 B 的度数是(C)
A.100o B.160o C. 80o D. 60o

2010-2011学年苏科版八年级数学下期中考试试卷

2010-2011学年苏科版八年级数学下期中考试试卷

2010–2011学年第二学期期中考试试卷八年级数学(满分:150;考试时间:120分钟)说明:1.答题前,考生务必将本人的姓名、准考证号填涂在答题卡相应的位置上。

2.选择题每小题选出答案后,请用2B 铅笔在答题卡指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。

非选择题请用0.5毫米的黑色签字笔在答题卡指定区域作答,在试卷或草稿纸上作答一律无效。

考试结束后,请将答题卡交回。

3.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。

一.选择题(每题3分,共30分)1.已知反比例函数xk y =的图象经过点P(一l ,2),则这个函数的图象位于A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列各式:()ax y x x 5 ,1,2 ,15122--其中分式共有( )个。

A. 1B. 2C. 3D. 43. 计算mn nm n m m 222+-++的结果是 A . m n n m 2+- B .m n n m 2++ C . m n nm 23+- D .mn n m 23++4. 下列线段中,能成比例的是A. 3cm 、6cm 、8cm 、9cmB. 3cm 、5cm 、6cm 、9cmC. 3cm 、6cm 、7cm 、9cmD. 3cm 、6cm 、18cm 、9cm 5.矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为6. 下列命题中正确的是A. 所有的等腰三角形都相似B.所有的菱形都相似C.所有的矩形都相似D.所有的等腰直角三角形都相似7.如图,已知关于x 的函数y=k(x-1)和y=-k(k ≠0),它们在同一坐标系内的图象大致是yxOC BA 8.如图,给出下列条件,不能判断△ACD ∽△ABC 的是 A .∠ACD=∠B B .∠ADC=∠ACBC .CB CD AB AC = D .AC 2=AD·AB 9.已知反比例函数x y 5-=的图象上有两点),(11y x A ,),(22y x B ,且210x x <<,则21y y -的值是A. 正数 B . 负数 C. 非正数 D. 不能确定 10.下列条件能判定△ABC 与△A ’B ’C ’相似的有 (1)∠A=45°,∠B=55°,∠A ’=45°,∠C ’=100°(2)AB=12,AC=15,∠A=100°,A ’B ’=16, A ’C ’=20, ∠A ’=100° (3)AB=3,BC=5,AC=7,A ’B ’=14,B ’C ’=10,A ’C ’=6 (4)∠C=∠C ’=90°,AB=5,AC=3,A ’B ’=10,B ’C ’=8A .1个B .2个C .3个D .4个 二.填空题(每题3分,共24分)11.当x 时,分式2124x x +-有意义.12. 如果反比例函数22-=m mx y 在每个象限内,y 随x 的增大而增大,则m 。

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

2023~2024学年度第二学期期中检测八年级数学试题(本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每题3分,共24分)1.徐州剪纸是一种江苏省的传统民俗工艺品,鱼与“余”同音,寓意生活富裕、年年有余.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是A .B .C .D .2.牛奶中含有蛋白质、脂肪、碳水化合物等多种营养成分,下列统计图,最能清楚地表示出牛奶中各种营养成分所占百分比的是A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图3.下列事件中,是不可能事件的是A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环C .没有水分,种子发芽D .3天内将下雨4.平行四边形的一边长为6,另一边长为12,则对角线的长可能是A .6B .5C .22D .105.今年某市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析,下列说法正确的是A .近5万名考生是总体B .这1500名考生是总体的一个样本C .每位考生的数学成绩是个体D .1500名考生是样本容量6.在复习特殊的平行四边形时,某小组同学画出了如下关系图,组内一名同学在箭头处填写了它们之间转换的条件,其中填写错误的是A .①对角相等B .③有一组邻边相等C .②对角线互相垂直D .④有一个角是直角7.如图,点E 在矩形纸片的边上,将纸片沿折叠,点C 的对应点F 恰好在线段上.若,,则的长是ABCD CD BE AE 5=AB 1=CE BCA .2B .3C .4D .1.58.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(本大题有8个小题,每题4分,共32分)9.小明在农贸市场购买葡萄时,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”).10.一个不透明袋中装有5个红球、3个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出________球的可能性最大(填“红”、“黑”或“白”).11.“永不言弃”的英语翻译是 Never give up ,短语中“e ”出现的频率为________.12.在平行四边形中,,则的度数为________.13.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度较大的组是________组.(填“一”或“二”)14.如图,,分别以A ,B 为圆心,5长为半径画弧,两弧相交于M ,N 两点.连接,,,,则四边形的面积为________.15.数学家笛卡尔在《几何》一书中阐述了坐标几何思想,主张取代数和几何中最好的东西,互相以长补短.如图,在平面直角坐标系中,矩形的顶点B 的坐标是,则的长是________.ABCD 130∠+∠=︒A C ∠B ︒8cm =AB cm AM BM AN BN AMBN 2cm OABC (1,3)AC16.如图,正方形的边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在上,且点D 的坐标为,点P 是上的一个动点,则的最小值是________.三、解答题(本大题有9个小题,共84分)17.(本题8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”、“无人机”、“创客”、“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占________%,所对应的圆心角度数为________;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?18.(本题8分)下表是某校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 10001500200030004000发芽的种子粒数m 9461425189828533812发芽频率0.946x0.949y0.953(1)表中________,________;OABC OA (1,0)OB +PD PA ︒mn=x =y(2)任取一粒这种植物的种子,它能发芽的概率的估计值是________(精确到0.01);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组需要准备多少粒种子进行发芽培育.19.(本题10分)正方形网格中(网格中的每个小正方形边长是1,小正方形的顶点叫做格点),的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出绕点A 顺时针旋转的,并写出点C 的对应点的坐标为________;(2)画出关于点O 成中心对称的;(3)点D 为平面内一点,若以点A 、B 、C 、D 为顶点的四边形为平行四边形,则所有满足条件的点D 的坐标为________.20.(本题8分)已知:如图,在平行四边形中,点E 、F 在上,且.求证:四边形是平行四边形.21.(本题8分)如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:四边形是菱形.22.(本题10分)如图,在中,,点D 是边的中点,以、为邻边作平行四边形,连接、.(1)求证:四边形是矩形;(2)要使四边形是正方形,则需要满足的条件是________.ABC △ABC △90︒111A B C △1C ABC △222A B C △ABCD AC =AE CF EBFD ABCD ∠BAD BC ∠ABC AD ABEF ABC △=AB AC BC AB BD ABDE AD CE ADCE ADCE ABC △23.(本题10分)如图,在四边形中,,,M 、N 分别是、的中点,连接、、.(1)求证:;(2)若,平分,,求的长.24.(本题10分)如图,点O 是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点(要求:用无刻度的直尺和圆规作图,保留作图痕迹).小亮的作法如下:作,交于点T ,在射线上截取,在上截取,使得,连接,延长交于点P ,线段即为所求.(1)请证明小亮作法的正确性;(2)请你再设计另一种尺规作图的方法(保留作图痕迹,不写作法).25.(本题12分)【阅读理解】如图1,在矩形中,若,,则________(用含a 、b 的式子表示);【探究发现】如图2,小华发现在平行四边形中,若,,则上述结论依然成立,请你跟随小华的思路,帮他继续完成证明过程.证明:如图3,延长,过点B 、点C 分别作于点E ,于点F .在中,且,,..设,.……ABCD 90∠=︒ABC =AC AD AC CD BM MN BN =BM MN 60∠=︒BAD AC ∠BAD 2=AC BN ∠MAN PQ AM AN PQ ∥OT AN AM TO =OE OT AN AQ =AQ TE QO QO AM PQ ABCD =AB a =BC b 22+=AC BD ABCD =AB a =BC b DA ⊥BE AD ⊥CF AD ABCD =AB CD ∥AB CD ∴∠=∠BAE CDF ∴≌ABE DCF △△∴=AE DF ==AE DF d ==BE CF h________(请继续完成以上证明)【拓展提升】如图4,已知为的一条中线,,,.求证:.【尝试应用】如图5,在矩形中,若,,点P 在边上,则的取值范围为________.2023—2024学年度第二学期期中检测八年级数学试题参考答案及评分标准题号12345678选项DBCDCABC9.抽样调查 10.红 11.12.115 13.一14.24151617.(1)(2)20,72BO ABC △=AB a =BC b =AC c 222224+=-a b c BO ABCD 4=AB 6=BC AD 22+PB PC 311(3)名答:估计选择“航模”课程的学生有100名.18.(1)0.95,0.951(2)0.95(3),答:估算需要准备8000粒种子进行发芽培育.19.(1)如图为所画的三角形(字母标错或未标扣1分)的坐标为(2)如图为所画的三角形(字母标错或未标扣1分)(3)或或.20.证明:如图,连接,交于点O .四边形是平行四边形,∴,.∵,∴,即,∴四边形是平行四边形.21.证明:∵四边形是平行四边形,∴AD //BC ,∴∠DAE =∠AEB .∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB=BE .同理可得AB=AF ,∴AF=BE ,∵AF //BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形.22.(1)证明:∵四边形ABDE 是平行四边形,∴BD ∥AE .∵点D 是BC 中点,∴BD =CD ,∴AE ∥CD ,AE =CD ,∴四边形ADCE 是平行四边形.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形.(2)∠BAC =90°23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN //AD ,MN=.5100010050⨯=76000.958000÷=111A B C △1C (2,3)-222A B C △(5,3)--(3,1)-(1,1)-BD BD AC ABCD OA OC =OB OD =AE CF =OA AE OC CF -=-OE OF =EBFD ABCD 12AD 第20题在Rt△ABC中,∵M是AC中点,∠ABC=90°,∴BM=.∵AC=AD,∴BM=MN.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC==30°.由(1)可知,BM=AM=MC=,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN//AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,.由(1)可知MN=BM==1,∴BN.24.(1)证明:连接EQ,∵OT//AN,TE=AQ,∴四边形ATEQ是平行四边形,∴AT//QE,∴∠QEO=∠PTO.∵OE=OT,∠QOE=∠POT,∴△QOE≌△POT(ASA),∴QO=PO,即点O是PQ的中点.(2)方法一:连接AO,延长AO到T,使得OT=OA,作TP//AN交AM于点P,连接PO,延长PO交AN于点Q,线段PQ即为所求.方法二:连接AO,作OR//AN,交AM于点R,在射线AM上截取RP=RA,连接PO,延长PO交AN于点Q,线段PQ即为所求.(画出其中一种即可)25.【阅读理解】【探究发现】在Rt△BED中,,即.同理.∴,整理得.在Rt△AEB中,,即.∴.【拓展提升】(法一)如图25-1,延长BO至点D,使BO=OD.∵BO为△ABC的中线,∴AO=CO.∴四边形ABCD为平行四边形.依上述结论,得.∴,即.12AC12BAD∠12AC222=∴+BN BM MN12AC2222a b+222BD BE DE=+222()BD h b d=++222()AC h b d=+-222222()()AC BD h b d h b d+=+-+++222222()2AC BD h d b+=++222AB AE BE=+222a h d=+222222AC BD a b+=+22222()AC BD AB BC+=+2222(2)2()c BO a b+=+222224a b cBO+=-(法二)如图25-2,过点B 作BE ⊥AC ,垂足于点E .设OE =d ,则,.在Rt △ABE 中,依勾股定理,得,∴,即①.同理②,③.①+②,得:④.④-③×2,得,∴.【尝试应用】.图25-1图25-212AE AC d =-12CE AC d =+222AB BE AE =+222()2ACAB BE OE =+-22212a BE c d ⎛⎫=+- ⎪⎝⎭22212b BE c d ⎛⎫=++ ⎪⎝⎭222BO BE d =+22222222c a b BEd +=++222222c a b BO +-=222224a b c BO +=-225068PB PC ≤+≤。

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。

2011-2012学年度第二学期八年级期中考试数学试题及参考答案

2011-2012学年度第二学期八年级期中考试数学试题及参考答案

2011-2012学年第二学期期中考试八 年 级 数 学 试 卷(满分:100分 时间:100分钟 )一、选择题(每题3分,共30分)1.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知在□ABCD 中,AD =3cm ,AB =2 cm ,则□ABCD 的周长等于 ( ) A .10cm B .6cm C .5cm D .4cm3. 函数21-=x y 的自变量x 的取值范围是 ( ) A.x >-2 B.x <2 C.x ≠2 D.x ≠-2。

4. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是 ( ) A . 1.5,2,3a b c === B . 7,24,25a b c === C . 6,8,10a b c === D. 3,4,5a b c ===5. 反比例函数)0(≠=k xky 的图象经过点(2-,3),则它还经过点 ( )A. (6,1-)B.(1-,6-) C. (3,2) D.(2,3)6.下面正确的命题中,其逆命题不成立的是 ( ) A .旁内角互补,两直线平行 B.三角形的对应边相等C .对顶角相等 D.角平分线上的点到这个角的两边的距离相等 7.如图所示:数轴上点A 所表示的数为a ,则a 的值是A .+1 C 学校 班级 姓名: 学号AMNCB 8. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

设B 型包装箱每个可以装x 件文具,根据题意列方程为 ( ) A .1080x =1080x -15+12 B .1080x =1080x -15-12C .1080x =1080x +15-12D .1080x =1080x +15+129.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 阴影部分的面积为10π,则反比例函数的解析式为 ( A .y =3x B .y =5x C .y =10x D .y =12x10. 如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于 ( ) A.65 B. 95 C. 125 D. 165二、细心填一填:(每题3分,共30分)11. 根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么5级地震所释放出的相对能量相当于9级地震所释放出的相对能量的 .(用科学记数法表示) 12. 解方程:xx x -=+--23123的结果是 。

建阳市2009-2010八年级下数学期未试卷

建阳市2009-2010八年级下数学期未试卷

建阳市2009-2010学年第二学期八年级期中考试数 学 试 题(满分:100分;考试时间:120分钟;版本:人教版)②未注明精确度、保留有效数字等的计算问题不得采取近似计算.一、选择题(本大题共9小题,每小题2分,共18分)1、在式子a 1,πxy2,2334a b c ,x+ 65, 7x +8y ,9x +y10 ,中,分式的个数是( )A 、5B 、4C 、3D 、22、下列公式中是最简分式的是 ( ) A .21227b aB .22()a b b a-- C .22x y x y-- D .22x y x y++3、已知点A (-1,5)在反比例函数(0)k y k x=≠的图象上,则该函数的解析式为( )A :1y x=B :25y x=C :5y x=- D :5y x =4、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )5、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=5,BC=3,则EC 的长…………………………………………( )A 、2B 、1C 、1.5D 、36、两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A. 50cmB. 100cmC. 140cmD. 80cm7、下列命题中,真命题是……………………………………………………………( )A 、有两边相等的平行四边形是菱形B 、有一个角是直角的四边形是直角梯形C 、四个角相等的菱形是正方形D 、两条对角线相等的四边形是矩形8、六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,•这六个数的中位数是( )A :3B :4C :5D :69、如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF,AE 、BF相交于点O,下列结论①AE=BF ;②AE ⊥BF;③AO=OE;④S △AOB =S 四边形DEOF 中,错误的有………………………………………………………………………( ) A.1个 B.2个 C.3个 D.4个二、填空题(本大题共9小题,每小题2分,共18分)10、用科学计数法表示下列各数:0.000 04=________ 11、计算:=++-+3131a a a __________.12、函数2yx=-的图象,在每一象限内,y 随x 的增大而 (填“增大”或“减小”);13、反比例函数3k y x+=的图象在二、四象限,则k 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东营市胜利55中学2009—2010学年第一学期期中考试
八年级数学试题
(试卷满分:120分 考试时间100分钟)
一、选择题(30分)将下列各题的答案填在题后的表格内。

1、二次根式3-x 中,x 的取值范围是
(A )x>3(B )x ≥3(C )x<3(D )x ≤3
2、下列根式中最简二次根式是 (A )3.0(B )
5
2
(C )a 4(D )22b a + 3、下列图形中,是中心对称图形的有( ) ①正方形 ②平行四边形 ③线段 ④角 ⑤等腰梯形
(A )2个(B )3个(C )4个(D )5个
4、下列二次根式中,与3可以合并的是 (A )6(B )18(C )
3
1(D )9 5、下列运算错误的是
(A )632=⨯(B )22
21=
(C )252322=+(D )21)21(2-=- 6、一元二次方程022=++x x 的根的情况是( ) (A )没有实数根 (B )有两个不相等的实数根
(C )有两个相等的实数根(D )无法判断力
7、等边三角形绕它重心至少旋转( ) (A )60°(B )90°(C )120°(D )180° 8、下列方程是关于x 的一元二次方程的是( ) (A )ax 2+bx+c=0(B )
2112
=+x x
(C )x 2+2x=(x+1)(x-1)(D )3(x+1)2
=2(x+1) 9、若关于x 的方程02
22=-+k
x x 没有实数根,那么k 的最大整数值是( )
(A )-3(B )-2(C )-1(D )0
10、把m m 1
-根号处的因式移到根号内得( )
(A )m (B )m
-(C )m --(D )m - 二、填空题(30分)
11、方程x x 3122=-的二次项系数是_____;一次项系数是_____;常数项是______。

12、方程02)(1(=-+)
x x 的根是________________。

13、方程9)12(2=-x 的根是________________。

14、请写出一个一元二次方程,使它的一个根是3.这个方程可以是___________. 15、已知方程022=-+kx x 的一个根是1,那么它的另一个根是___________ .
16、___________182712=⨯÷。

17、若,3)3(-∙=-m m m m 则m 的取值范围是_____________.
18、△ABC 中,CA=CB=2cm,∠C=900,以AC 的中点O 为旋转中心,将这个三角形旋转1800后,点B 落在E 处,那么BE=___________cm 。

B
19、若02=++-y x x ,则____________2=-xy x 。

20、若24224+---=x x y ,则____________2=xy 三、解答题(60分) 21、(15分)计算:
⑴3242228÷-+-)( ⑵2)23()23(23--+-)(
⑶若13+=x ,13-=y 。

求22y x -的值。

22、(20分)解方程:
⑴0)3()3(42=-+-x x x ⑵5)3)(1(=-+x x
⑶31022=-x x ⑷01842=+-x x (本题要求用配方法,
否则不得分)
23、(7分)已知等腰三角形的底边长为8,腰长为方程02092=+-x x 的一个根,
求这个三角形的周长。

24、(8分)求证:方程0)3(4)6(2=-++-k x k x 一定有两个不相等的实数根。

25、(10分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,
每件盈利40元,为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。

经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?。

相关文档
最新文档