Monolithic Catalysts for the Chemical Industry
聚合物化学英语翻译

第三章Polymer StructureThis chapter is concerned with aspects of the structure of polymeric materials outside those of simple chemical composition. The main topics covered are polymer stereochemistry, crystallinity, and the character of amorphous polymers including the glass transition. These may be thought of as arising from the primary structure of the constituent molecules in ways that will become clearer as the chapter progresses.本章所关注的这些简单的化学成分之外的高分子材料的结构方面。
主要内容包括:聚合物立体化学,结晶,包括无定形聚合物的玻璃化转变的特征。
这些可能被认为是章进展变得更为清晰的方式,将组成分子的一级结构所产生的。
Before proceeding, a word on nomenclature is necessary. Polymer chemists, following the example of P.J. Flory, have tended to use the words configuration and conformation in a sense that differs from that conventionally employed within organic chemistry. In this book, by contrast, I intend to go along with F. W. Billmeyer, and use these words in the way that they apply more widely throughout chemistry. Thus configuration is the term given to an arrangement of atoms that cannot be altered except by breaking chemical bonds, while conformation is the term applied to the individual, recognisable arrangement of atoms that can be altered by simple rotation around a single bond. Configurations include head-to-tail arrangements, described in the previous chapter, conformations include trans versus gauche arrangements of successive carbon-carbon bonds along the backbone of an individual macromolecule.在继续之前,一个命名的话是必要的。
六铝酸盐作涂层的蜂窝陶瓷型La_0_8_Sr_0_2_MnO_3催化剂热稳定性

第22卷第6期高校化学工程学报No.6 V ol.22 2008 年12月 Journal of Chemical Engineering of Chinese Universities Dec. 2008文章编号:1003-9015(2008)06-0954-06六铝酸盐作涂层的蜂窝陶瓷型La0.8Sr0.2MnO3催化剂热稳定性官芳, 卢晗锋, 黄海凤, 刘华彦, 张泽凯, 陈银飞(浙江工业大学化材学院催化反应工程研究所, 浙江杭州 310014)摘要:采用共沉淀法分别制备了Sr0.3Ba0.5La0.2MnAl11O19和La0.8Sr0.2MnO3前驱体,并通过浸渍法制备了六铝酸盐作涂层的蜂窝陶瓷型La0.8Sr0.2MnO3催化剂。
超声振荡测试结果表明所得催化剂具有较好的粘结强度, 30 min后脱落率仅为0.3%(wt)。
XRD和SEM结果则表明Sr0.3Ba0.5La0.2MnAl11O19和La0.8Sr0.2MnO3具有完善的六铝酸盐和钙钛矿晶型,且经850℃焙烧后La0.8Sr0.2MnO3仍能在六铝酸盐涂层表面高度分散。
甲苯催化燃烧活性结果表明所得催化剂具有良好的催化活性,在280℃即可将甲苯完全燃烧。
与以γ-Al2O3为涂层的催化剂相比较,以六铝酸盐作涂层的催化剂表现出更好的热稳定性,经850℃高温焙烧3 h后,甲苯完全燃烧所需温度只提高了20℃;且在反应气氛下改变温度运行28 h后,甲苯转化率未发生任何改变。
关键词:六铝酸盐;涂层;甲苯;热稳定性;催化燃烧中图分类号:TQ426.81;O643.361 文献标识码:AThermal Stability of Monolithic Honeycomb Ceramic La0.8Sr0.2MnO3 Catalyst withHexaaluminate WashcoatGUAN Fang, LU Han-feng, HUANG Hai-feng, LIU Hua-yan, ZHANG Ze-kai, CHEN Yin-fei (College of Chemical Engineering and Materials Science, Zhejiang University of Technology,Hangzhou 310014, China)Abstract:Sr0.3Ba0.5La0.2MnAl11O19 hexaaluminate and La0.8Sr0.2MnO3 perovskite were firstly prepared by co-precipitation, and then, by using the hexaaluminate as the washcoat, the honeycomb ceramic La0.8Sr0.2MnO3 catalyst was prepared. It was found that , after 30 min ultrasonic shock, the surface loading cast-off of the catalyst is only 0.3%(wt). XRD patterns show that both the Sr0.3Ba0.5La0.2MnAl11O19 hexaaluminate and La0.8Sr0.2MnO3 perovskite have perfect crystalline phase, and The SEM image shows that the La0.8Sr0.2MnO3 is well dispersed on the honeycomb ceramic support. The prepared catalyst has very good behavior for toluene catalytic combustion, and the toluene can be fully conversed at 280℃. Furthermore, the hexaaluminate washcoated honeycomb ceramic La0.8Sr0.2MnO3 catalysts exhibit higher thermal stability than that of the γ-Al2O3 washcoated honeycomb ceramic La0.8Sr0.2MnO3 catalysts. After calcinated at 850℃ for 3 h, the T95 (temperature needed for 95% toluene conversion) of the hexaaluminate washcoated catalyst only increases 20℃, while the T95 of the γ-Al2O3 washcoated catalyst increases 80℃.Key words: hexaaluminate; waswhcoat; toluene; thermal stability; catalytic combustion1前言催化燃烧是一种行之有效的VOCs(volatile organic compounds)处理方法[1~3],其应用关键在于催化剂的性能。
The role of nanocatalysts in green chemistry

The role of nanocatalysts in greenchemistry绿色化学中纳米催化剂的作用随着环境保护意识的提高和可持续发展理念的普及,绿色化学成为全球化学界关注的重点。
绿色化学强调利用可再生资源,降低有害污染物的产生和排放,推动化学工业向可持续方向发展。
而在绿色化学中,纳米催化剂发挥着至关重要的作用,在催化反应中起着先导作用。
1. 纳米催化剂的定义纳米催化剂是指粒径小于100纳米的催化剂。
纳米尺度下,普通材料(如铜)因其特殊的电子结构、表面能、形貌和尺寸等因素呈现出一系列与大尺寸材料不同的物理、化学和表面特性。
这些特性使得纳米催化剂在催化反应中表现出了优越的性能,如高催化活性、选择性、稳定性和重复利用性等。
纳米催化剂在绿色化学中被广泛应用,推动化学产业的可持续发展。
2. 纳米催化剂在绿色化学中的应用2.1. 绿色合成纳米催化剂在绿色合成中扮演着重要的角色。
传统的合成反应通常需要高温、高压、有机溶剂和毒性催化剂等,容易导致污染。
而纳米催化剂具有较高的催化活性和选择性,可以在温和条件下催化反应,避免有机溶剂的使用,降低了对环境的污染。
例如,采用纳米金催化剂合成胺类化合物,可以不使用有毒的氰化物和阴离子试剂,让合成过程更加安全、简单和高效。
2.2. 环境控制纳米催化剂在环境控制领域的应用越来越受到关注。
例如,在水处理中,纳米催化剂可以分解有害污染源,如工业废水中的重金属离子和有机污染物,大大减少了污染物对环境的危害。
2.3. 能源转化纳米催化剂在能源转化方面也有着广泛的应用。
例如,在绿色氢能产业中,纳米催化剂可以在低温下催化水的分解反应,产生的氢气可以用于燃料电池发电。
3. 纳米催化剂的制备纳米催化剂的制备方法多种多样。
其中,溶胶-凝胶法、微乳液法、共沉淀法和物理气相沉积法等方法得到了广泛应用。
不同制备方法对于纳米催化剂的制备效果有所差异。
溶胶-凝胶法可以制备出粒度小、结构高度有序的纳米催化剂;微乳液法则可以得到高度分散的纳米团簇;共沉淀法适用于制备堆积型纳米催化剂;而物理气相沉积法则可以制备出具有高度均匀性、形貌可控且尺寸精密的纳米催化剂。
稀土催化剂(Ce、La)用于丙烷催化燃烧的研究进展

第41卷第1期Vol.41㊀No.1重庆工商大学学报(自然科学版)J Chongqing Technol &Business Univ(Nat Sci Ed)2024年2月Feb.2024稀土催化剂(Ce ㊁La )用于丙烷催化燃烧的研究进展龚旭栋,王玮璐,吴㊀云,张贤明重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆400067摘㊀要:目的挥发性有机物(VOCs )对人体健康和生态环境都有不良影响,已引发研究者的广泛关注㊂催化燃烧是处理VOCs 的有效技术之一,具有去除效率高㊁无二次污染等优势㊂稀土元素Ce ㊁La 及其氧化物因特殊的理化性质常作为催化助剂或载体,在催化燃烧中起着重要作用㊂因此针对稀土催化剂(主要为Ce ㊁La ),综述了其在丙烷催化燃烧中的应用及相应的催化反应机制以及未来的发展方向㊂方法通过对Ce 基和La 基催化剂在丙烷催化燃烧中的研究和应用进行综述,分析了稀土催化剂的反应机理及发展方向㊂结果首先,Ce ㊁La 及其氧化物可调节催化剂的整体结构㊁形貌和比表面积等物理性质;同时,上述物质也可与催化剂内的其他金属相互作用,从而有效调控材料中的氧空位密度,最终增强对丙烷催化燃烧的反应活性㊂其次,CeO 2作为载体能与活性金属产生有赖于CeO 2形貌和晶面的金属-CeO 2相互作用,这会对催化剂的结构和性能产生极大影响㊂此外,也讨论了通过优化合成方法和表面改性所获得的La 系钙钛矿催化剂在丙烷催化燃烧中的应用研究㊂结论目前,稀土基催化剂的催化作用机制探索尚处于初级阶段,应对其进行更深入系统的研究,以早日实现其工业化应用㊂关键词:多相催化;催化燃烧;丙烷;稀土元素中图分类号:X511,X -1㊀㊀文献标识码:A ㊀㊀doi:10.16055/j.issn.1672-058X.2024.0001.002㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-03-05㊀修回日期:2022-05-18㊀文章编号:1672-058X(2024)01-0012-09基金项目:国家自然科学基金资助项目(51678095);重庆市科委面上项目(CSTC2021JCYJ -MSXMX0628).作者简介:龚旭栋(1997 ),女,重庆市人,硕士研究生,从事环境热催化研究㊂通讯作者:王玮璐(1989 ),女,河南新乡人,助理研究员,博士,从事多相催化研究.Email:weiluwang@.引用格式:龚旭栋,王玮璐,吴云,等.稀土催化剂(Ce㊁La)用于丙烷催化燃烧的研究进展[J].重庆工商大学学报(自然科学版),2024,41(1):12 20.GONG Xudong WANG Weilu WU Yun et al.Advances in rare earth element-based catalysts Ce La for propane catalyticcombustion J .Journal of Chongqing Technology and Business University Natural Science Edition 2024 41 1 12 20.Advances in Rare Earth Element-based Catalysts Ce La for Propane Catalytic Combustion GONG Xudong WANG Weilu WU Yun ZHANG XianmingEngineering Research Center for Waste Oil Recovery Technology and Equipment Ministry of Education Chongqing Technology and Business University Chongqing 400067 ChinaAbstract Objective Volatile organic compounds VOCs have adverse effects on both human health and the ecological environment thus attracting widespread attention from researchers.Catalytic combustion is one of the effective technologies for treating VOCs with the advantages of high removal efficiency and no secondary pollution.Rare earth elements such as Ce and La and their oxides often play an important role in catalytic combustion due to their special physicochemical properties as catalytic additives or carriers.Therefore for rare earth catalysts mainly Ce and La their applications in the propane catalytic combustion and the corresponding catalytic reaction mechanisms as well as future development directions were reviewed.Methods Through a review of the research and applications of Ce-based and La-based catalysts in the propane catalytic combustion the reaction mechanisms and development directions of rare earth catalysts were analyzed.Results Firstly Ce La and their oxides modulated the physical properties of the catalyst such as the overall structure morphology and specific surface area.Meanwhile these substances also interacted with other metals within the catalyst to effectively modulate the oxygen vacancy density in the material ultimately enhancing the reactivity for the propane catalytic combustion.Secondly when CeO 2acted as a carrier it was capable of producing metal-第1期龚旭栋,等:稀土催化剂(Ce㊁La)用于丙烷催化燃烧的研究进展CeO2interactions with the active metal dependent on the CeO2morphology and crystallographic surface which can have a great impact on the structure and performance of the catalyst.Studies on the application of La-based chalcogenide catalysts obtained by optimizing synthesis methods and surface modification in the propane catalytic combustion were also discussed. Conclusion At present the exploration of the catalytic mechanism of rare earth-based catalysts is still in its initial stage and in-depth and systematic research should be conducted to realize its industrial application as early as possible. Keywords heterogeneous catalysis catalytic combustion propane rare-earth elements1㊀引㊀言挥发性有机化合物(Volatile Organic Compounds, VOCs)是引发光化学烟雾及雾霾等大气环境问题的主要前体物,对人体具有极强的致癌和致畸性,是大气治理的重点研究对象[1-4]㊂其中,丙烷因结构稳定而难以被去除,常作为VOCs中烷烃组分的代表而被研究[5-6]㊂目前,催化燃烧是较常用的处理技术,与传统的物理吸附和热焚烧技术相比具有能耗低㊁去除效率高以及无二次污染等优势[7-9]㊂在该途径中,催化剂的性能决定丙烷的去除效率和技术能耗[10],因此这也成为研究者所关注的重点㊂当前用于催化燃烧的催化剂主要为贵金属基和非贵金属基两大类㊂其中,贵金属基催化剂(Pt㊁Pd㊁Rh)虽在低温下(T100<300ħ)对丙烷的去除效果良好,但高额的成本及易中毒失活也极大限制了其工业化进程[11-13];非贵金属基催化剂,如Co㊁Mn等元素虽能在丙烷的催化燃烧中提供良好的抗毒化能力,但其活性(T100>300ħ)却远低于贵金属类材料[14-15]㊂因此,定向设计及构筑对丙烷去除率高㊁抗毒性强且绿色经济的新型催化剂将成为该领域研究工作的核心㊂众所周知,我国稀土资源丰富,年产量占世界的95%以上[16],被广泛应用于发光㊁储氢和超导等领域㊂此外,稀土元素(Rare Earth Element,REE)由于特殊的结构性质,也被开发用于多相催化领域[17-18]㊂具体来说,REE原子中存在未被电子完全占据的4f轨道,导致该轨道中的电子容易发生离域㊁迁移,因此REE可有效改善材料的整体电子结构和载流子传输情况㊂此外, REE作催化助剂时,可有效调控材料的化学组成㊁孔结构及活性位点的分散状态等,显著提高催化剂的活性和稳定性[19-20]㊂因此,将REE引入催化剂中可有效改善材料的物理化学性质,增强其催化燃烧活性,所以合理制备催化效率高且绿色经济的稀土基催化剂也是未来研究者们需攻克的重点和难点㊂本文综述了近几年丙烷催化燃烧的研究,发现Ce㊁La及其氧化物作为催化剂中的促进或改性组分,可有效调控材料的形貌结构㊁化学组成及活性位点的分散状态等物理化学性质;同时可与其他金属产生相互作用,调控材料中的氧空位密度,显著提高催化剂的活性和稳定性㊂除作为催化剂助剂以外,Ce的氧化物(CeO2)在丙烷催化燃烧中也有较多应用㊂CeO2载体可与活性金属产生较强的电子效应,有效分散和稳定活性金属,提高催化活性㊂同时,在研究中发现催化丙烷燃烧的结果会受到CeO2不同形貌和晶面的影响㊂此外,La系钙钛矿具有良好的热稳定性和氧化还原性,但其较高的成相温度所致的低比表面积和相应的低活性限制了其应用㊂通过改进La系钙钛矿的合成方法,可以使其具有较高比表面积及催化活性㊂最后,以Ce 基催化剂,La基催化剂在催化燃烧中的研究现状及作用机理为理论基础,提出了稀土催化剂存在的问题和未来发展方向㊂2㊀Ce基催化剂2.1㊀Ce及其氧化物作助催化剂Ce属于镧系元素,由于具有未被电子完全占据的4f轨道而具有独特的催化性能㊂将Ce及其氧化物作为结构助剂引入催化剂可有效调节材料的形貌和分散性㊂例如,胡等[21]在MnO x中引入Ce元素,催化剂整体形貌会从大小不均一的团聚体逐渐转变为尺寸均一且分散良好的球形颗粒,同时其比表面积也会从8m2㊃g-1显著提高至102m2㊃g-1㊂同样地,Wang等[22]将CeO2引入MnO x/Nb2O5-x中,发现CeO2的存在可有效降低催化剂的尺寸,提升MnO x的分散性㊂与此同时,研究者们还发现Ce元素可与活性金属产生良好的相互作用,调节催化剂表面的氧空位密度㊂因此将Ce及其氧化物引入催化剂中能显著提高单元素氧化物(Co3O4[23])㊁混合或复合氧化物(CoCeO x[24]㊁Fe2O3-CuO[25]等)材料中氧活性物种丰度,最终提升催化活性㊂与单一的CeO2㊁Co3O4催化剂相比,Zhu等[23]发现Co3O4-CeO2二元氧化物对丙烷的完全催化氧化表现出更高的活性㊂这是因为Co3O4和CeO2之间的相互作用导致Co3+被部分还原成Co2+或金属Co,而这些被还原的Co或Co2+会与周围的CeO2氧物种结合,发生如下反应:Co3O4ңCo2+/Co3++[O]ңCo0+[O]; Co0(Co2+)+CeO2ңCo2+/Co3+(Co3+)+CeO2-x+[O],从而在Co3O4-CeO2界面附近产生大量氧空位㊂氧气在这些氧空位上被吸附形成活性氧物种,从而提高催化剂在丙烷催化燃烧中的活性㊂然而Ce及其氧化物31重庆工商大学学报(自然科学版)第41卷的添加量存在最优配比,添加过多会覆盖部分活性位点,添加过少则不能达到最佳协同效应[25]㊂这在Li 等[24]采用双模板结合溶胶-凝胶法制备的一系列不同Co /Ce 摩尔比(1ʒ4㊁1ʒ1㊁4ʒ1)的微介孔CoCeO x 催化剂用于丙烷催化燃烧的研究中得到印证㊂研究表明,催化剂中Co /Ce 摩尔比为1(Co 1Ce 1)时,具有较好的裂解丙烷C -H 键生成CO 2的能力(图1),在238ħ时转化率达到90%㊂在该比例下材料中催化剂存在Co x Ce 1-x O 2-σ固溶体及大量氧空位,使得Co 1Ce 1还原性大幅提高,表面活性氧物种数量也显著增加㊂但Co /Ce 的摩尔比过大及过小均会导致上述活性位点和比表面积的减少,导致催化剂活性降低㊂S t a g e 4S t a g e 1S t a g e 2S t a g e 3C o C e O xP r o p a n eO x y g e n v a c a n c y S u r f a c e a c t i v e o x y g e n O x y g e nC e 3+C o 3+C e 3+C e 3+C o 2+C e 4+C e 4+C o 2+C e 3+C e 3+C o 3+C e3+图1㊀CoCeO x 催化剂表面反应机理[24]Fig.1㊀The surface reaction mechanism of CoCeO x catalyst[24]此外,Ce 还可与活性金属产生相互作用,有效改善催化剂的稳定性和活性[26]㊂Tang 等[27]采用低温水热工艺使NiO 纳米片阵列均匀生长在堇青石蜂窝状孔道的表面,形成整体式催化剂㊂对于纯NiO 纳米片催化剂,其T90为481ħ,并且在1h 运行后丙烷的转化率由79.9%下降到58.4%,在48小时后下降到21.5%,稳定性较差㊂将Ce 引入到NiO 后,催化剂的低温还原性和活性在Ce 和Ni 的相互作用下得到显著改善,其T90降低至440ħ,且丙烷转化率在48h 后仅降低了1.1%㊂因此Ce 掺杂不仅能有效改善催化剂活性,还能显著提高催化剂的稳定性(图2)㊂100806040200200250300350400450500丙烷转化率/%温度/℃N i O0.2C e 5N i O(a )NiO 和0.2Ce -NiO 纳米阵列丙烷催化燃烧活性测试10080604020001020304050丙烷转化率/%时间/h92.0%79.9%90.9%58.4%N i O0.2C e 5N i O(b )在425ħ时NiO 和0.2Ce -NiO 催化剂稳定性测试图2㊀原始NiO 和0.2Ce -NiO 纳米阵列催化剂性能评价,丙烷浓度=3000ppm ,SV =24,000h -1[27]Fig.2㊀Performance evaluation of pristine NiO and 0.2Ce -NiOnanoarray monolithic catalysts ,C 3H 8concentration =3000ppm ,and SV =24000h -1[27]在其他VOCs 催化燃烧中,Ce 也显示出良好的促进作用㊂Piumetti 等[28]采用溶液燃烧合成技术(Solution Combustion Synthesis,SCS)合成了一系列不同Ce /Cu 摩尔比的铈铜氧化物催化剂,将其用于催化乙烯总氧化反应㊂发现CuO x 与CeO 2相互作用的小团簇很容易被还原,促进了Cu +物种和结构缺陷(氧空位)的形成,导致更高的催化氧化活性㊂Mo 等[29]发现Ce 能与MnAl 复合氧化物中的Mn 通过Ce 4+-Mn 3+↔Ce 3+-Mn 4+反应产生协同作用,提高晶格氧的迁移率和有效性,在210ħ时苯的转化率可达到90%㊂简而言之,Ce 及其氧化物作为结构助剂可有效调节催化剂的整体结构和形貌㊁增加其比表面积并改善活性金属的分散性,从而提升材料的催化性能㊂同时,Ce 元素由于具有电子未完全占据的4f 轨道,可与其他金属发生相互作用,有效调控材料中的氧空位密度,提高催化剂表面的活性氧物种,进而增强丙烷催化燃烧反应活性㊂此外,Ce 及其氧化物也可优化催化剂的低温可还原性和稳定性㊂然而,许多研究表明在不同Ce 添加量的情况下,催化剂活性会有所差异,因此,稀土催化剂中Ce 及其氧化物的添加比例值得进一步研究㊂2.2㊀CeO 2作载体Ce 元素具有特殊的电子结构和结构弛豫,能够加强活性金属(Ru㊁Pd㊁Ni)与其氧化物CeO 2表面间的电子电荷转移,从而更好地稳定活性金属位点,提升催化剂的活性和稳定性[30-32]㊂41第1期龚旭栋,等:稀土催化剂(Ce㊁La)用于丙烷催化燃烧的研究进展由于常见的Al2O3及SiO2等载体材料的化学惰性较强,与活性金属相互作用较差,因此以这些氧化物作载体的催化剂在VOCs氧化中的催化活性仍存在较大提升空间㊂一般来说,金属与载体的相互作用是影响催化剂性能的重要因素之一,它通常决定了活性金属的氧化状态和氧化还原反应的路径[33-35]㊂CeO2中存在Ce4+/Ce3+氧化还原循环对(图3),可与活性金属进行电子转移并产生良好的相互作用,这能极大改善催化剂的结构和催化性能㊂同时,在氧化过程中,CeO2还能为氧化还原反应提供丰富的活性氧物种,提升丙烷催化燃烧的去除效率㊂C e O2u n i t c e l l P o i n t d e f e c t s i t e sO2-C e4+C e3+/D o3+VOC e3+/D o3+i n c u b i c(Oh)s i t eVOi n t e t r a h e d r a l(Td)s i t e(a)CeO2晶胞㊀㊀(b)CeO2晶胞中Ce3+/Do3+位点(c)CeO2晶胞中的氧空位Vo图3㊀氧化铈及其与其他金属元素形成的氧化物固溶体的晶体结构和缺陷示意图[32]㊂(Do3+代表外来离子;(a)和(b)右侧的4个半透明氧原子属于下一个单胞) Fig.3㊀Schematic diagram of the crystal structure and defects of cerium oxide and its oxide solid solutions formed with other metallic elements[32](Do3+represents foreign ions;the4semi-transparent oxygen atoms on the right in(a)and(b)belong to the next unit cell)Wu等[35]使用无氯前驱体合成的Ru/CeNs催化剂,发现由于Ru与Ce之间存在的强相互作用,使其表面形成了均匀且高密度的Ru-O-Ce界面㊂此界面是丙烷吸附和解离的首选活性位点,其存在可显著提高催化剂对丙烷的催化燃烧活性㊂Hu等[30]将1.5~ 3.2%(wt)的Ru纳米颗粒(~3nm)负载于CeO2和Al2O3基底上(Ru/CeO2㊁Ru/Al2O3)㊂在不同载体性质的影响下,丙烷催化燃烧展示出不同的反应路径(图4)㊂在Ru/Al2O3催化剂上,丙烷只能吸附在Ru 纳米颗粒上形成异丙基,再转化为丙酮基,随后分解成甲酸或乙酸,最终生成CO2和H2O㊂而对于Ru/CeO2催化剂,除上述路径外,丙烷也可以作为含有丙烯酸基团的物种在Ru-CeO2界面上吸附并被部分氧化㊂归因于CeO2载体作为氧气储层,在反应过程中为丙烷吸附提供额外的位点,即Ru-CeO2界面㊂同时,具有高储氧能力的CeO2还为催化剂提供了丰富的活性氧物种,从而氧化反应速率得到提升(T90=180ħ)㊂R u H O A l C C e(a)Ru/Al2O3催化剂上的丙烷氧化反应路径(b)Ru/CeO2催化剂上的附加反应路径图4㊀催化剂表面丙烷氧化反应路径示意图[30] Fig.4㊀Schematic diagram of propane oxidation reaction path on the surface of two catalysts[30]此外,研究者观察到强烈依赖于CeO2形貌的金属-CeO2相互作用对CeO2负载催化剂结构和催化性能的强烈影响㊂Zhang等[32]发现负载于CeO2纳米立方体(c-CeO2)㊁纳米颗粒(p-CeO2)㊁纳米棒(r-CeO2)上Ni的理化状态有明显差异㊂由于CeO2与Ni的相互作用不同,负载于r-CeO2表面的NiO呈分散状态;在p-CeO2中NiO则会聚集成团;负载于c-CeO2催化剂表面上的Ce与Ni间的相互作用最强,则形成Ni-O-Ce 结构,此结构可削弱CeO2中相邻的Ce-O键并激活其晶格氧,进而提升催化剂活性㊂这也在C3H8催化燃烧反应活性对比实验中得到证实,相比于r-CeO2催化剂,负载Ni后的催化剂活性大约提升了27%㊂由于不同的CeO2形貌其主要暴露晶面有所差异,因此也有研究表明不同晶面会对催化性能产生明显影响㊂Hu 等[31]合成了棒状(r)㊁立方体(c)以及八面体(o)的CeO2纳米晶体,其中r-CeO2暴露(110)和(100)晶面㊁c-CeO2暴露(100)晶面㊁o-CeO2暴露(111)晶面(图5)㊂进一步将Pd负载于CeO2表面时,发现在o-CeO2的(111)面上存在较强的表面Ce-O键,有利于C3H8催化燃烧活性位点PdO x纳米颗粒的存在㊂因此Pd/o-CeO2催化剂在300ħ时的TOF(3.52ˑ10-2/s)远高于Pd/c-CeO2(2.59ˑ10-3/s)和Pd/r-CeO2(6.97ˑ10-4/s)催化剂㊂此外,研究者们发现CeO2形貌差异也会影响催化剂在苯系物和有机氯化物等其他VOCs中的催化性能㊂Feng等[36]发现空心球状的CeO2暴露的(111)面最易形成氧空位,导致其表面氧活性更高,氧化还原性能更好㊂因此,在207ħ时甲苯转化率可达90%㊂Wang 等[37]采用直接煅烧Ce(NO3)3㊃6H2O的方法合成CeO2(CeO2-DC),并在其上负载Pd得到Pd/CeO2-DC 催化剂㊂CeO2-DC暴露的(200)晶面与PdO x产生的相互作用,提高了催化剂表面Ce3+和Pd2+的丰度,这极大地提升了催化剂的氧化还原性能和催化活性,因此51重庆工商大学学报(自然科学版)第41卷在260ħ时可实现苯的完全燃烧㊂Zhang 等[38]发现三维有序(3DOM)CeO 2负载的Au -Pd 合金纳米粒子催化剂可在450ħ实现三氯乙烯的完全转化㊂3DOM 结构有利于活性组分的分散,也利于增强反应物分子的吸附和传质,其较高的比表面积使反应物更容易接近表面活性位点㊂此外,3DOM 的CeO 2与Au -Pd 合金之间的强相互作用可提高表面活性氧的迁移率,从而进一步提升催化剂活性㊂abcefd100n m 5n m 5n m 5n m50n m 200n m图5㊀(a ,b )CeO 2-R ㊁(c ,d )CeO 2-C 和(e ,f )CeO 2-O 的TEM ㊁HRTEM 和SEM 图像[31]Fig.5㊀TEM ,HRTEM and SEM images of (a ,b )CeO 2-R ,(c ,d )CeO 2-C ,and (e ,f )CeO 2-O[31]CeO 2具有Ce 4+/Ce 3+氧化还原循环对,作为载体可与活性金属产生较强的电子效应,提高活性位点的分散度和催化活性㊂同时,CeO 2还能为氧化还原反应提供丰富的活性氧物种,从而提高丙烷催化燃烧的转化率㊂此外,可设计合成形貌和暴露晶面不同CeO 2,使其发挥最佳的催化性能,这展示了CeO 2在催化燃烧中具有的良好应用前景㊂3㊀La 基催化剂3.1㊀La 作助催化剂除用于丙烷催化燃烧的稀土催化剂除Ce 基催化剂外,其同系元素La 也常作为催化剂中的促进或改性组分,用于调节催化剂的形貌结构,并通过与其他金属相互作用促进反应物在催化剂表面的吸附和活化以提升催化效率㊂Xie 等[39]发现在催化剂中引入La 可以显著减小Pd 的粒径㊂与Pd /Na -ZSM -5催化剂上的Pd 纳米颗粒(4~6nm)相比,La 改性的Pd /Na -ZSM -5具有更小的Pd 粒径(1~3nm)㊂Xie 等[40]使用共沉淀法合成了La 改性的LaC -MnO x 催化剂(C 表示La /Mn摩尔比)㊂发现La 可促进C 3H 8在催化剂表面的吸附,在很大程度上加速了C 3H 8催化燃烧反应速率㊂且La 的存在可以抑制Mn 4+向Mn 3+的转化,使La -MnO x 催化剂上Mn 4+和表面氧的含量增加,促使更多高迁移率的表面氧在La -MnO x 催化剂上参与C 3H 8的深度氧化㊂在氧空位产生后,La -MnO x 催化剂中较高活性和迁移率的晶格氧在气态氧不足时补充了这些空位,而使催化剂具有较好的催化活性(图6)㊂因此,在MnO x 催化剂中加入La 可加速氧化-还原循环,增强催化剂活性㊂C 3H 8O sO sO sO s O 2C a t a l .C a t a l .c a r b o n a t e sP a r t i a l o x i d a t i o n D e e p o x i d a t i o nC a t a l .O l a t t .HC H 3C H 3C H C O 2+O 2图6㊀C 3H 8在La -MnO x 催化剂上的催化氧化反应机理[40]Fig.6㊀The mechanism of catalytic oxidation reaction of C 3H 8over La -MnO x catalyst [40]此外,La 3+与过渡金属离子的大尺寸失配可能导致强晶格应变,诱导催化剂氧空位的形成,从而增加活性氧物种的数量并改善催化性能㊂如Yao 等[41]通过水热法合成的La 掺杂Co 3O 4催化剂在C 3H 8催化燃烧表现出较高活性㊂La 的引入导致Co 3O 4产生晶格畸变而形成氧空位,促进了气相氧的吸附和活化,进而产生表面活性氧物种,使得催化活性显著提升㊂La 在氯化物和甲烷的催化燃烧中也发挥着重要作用㊂Dai 等[42]发现引入La 后的MnCe 催化剂在氯苯催化燃烧中表现出高活性㊂原因在于La 的引入增强了MnCeO x 固溶体的热稳定性,并且改善了活性Mn 物种的分散性㊂Li 等[43]合成了掺La 的花状介孔氧化铈微球,用于甲烷催化燃烧具有良好的活性㊂归因于La 3+取代Ce 4+而产生的更多氧空位和催化剂的氧迁移率的提升㊂3.2㊀La 系钙钛矿(ABO 3(A =La ))La 系钙钛矿的化学计量比为LaBO 3,其中A 是La 3+阳离子,B 一般是第三周期的过渡金属㊂La 在该化合物中起结构稳定剂的作用,同时可通过改变B 位元61第1期龚旭栋,等:稀土催化剂(Ce ㊁La )用于丙烷催化燃烧的研究进展素形成不同种类的La 系钙钛矿,其催化性能可通过掺杂㊁离子取代等方法进行调控[44-45](图7)㊂此外,La 系钙钛矿具有价格低廉㊁氧化还原性能好㊁氧迁移率高㊁热稳定性优异等特点[46-47],是一种常用的多相催化材料㊂在自然界中La 的丰度高,可利用性强,因此La 系钙钛矿在实际应用中很有前景,已被成功应用于甲苯完全氧化[48]㊁CO 氧化[49]㊁甲烷完全氧化[50]等反应㊂A s i t eB s i t e O x y g e nAA ’BOO x y g e n v a c a n c y(a )理想ABO 3钙钛矿晶胞㊀㊀㊀(b )A 位掺杂具有氧空位的㊀㊀ABO 3钙钛矿图7㊀ABO 3钙钛矿晶胞[49]Fig.7㊀ABO 3perovskite cells [49]由于钙钛矿的成相温度较高,导致其比表面积和催化活性都相对较低[51]㊂针对其催化活性问题,如何调整合成方法和表面化学组成是解决上述问题的关键㊂溶胶凝胶法的反应条件温和且易于控制,已有研究者成功将其用于钙钛矿的合成㊂如Lin 等[52]通过溶胶-凝胶法合成了LaCoO 3钙钛矿纯相,发现使用生物质络合剂(竹粉)代替传统有机络合剂可以得到平均粒径更小㊁比表面积更大的钙钛矿催化剂㊂同时,生物质中有机碳的络合能力和生物还原能力可以有效缓解Co 2+还原为Co 3+,从而提升催化剂表面的Co 2+浓度㊂Co价态的变化会导致晶格畸变并改变Co -O 共价成分,从而增加氧空位的丰度并提升氧的迁移率㊂材料中较高的比表面积和氧空位丰度也可提供更多的酸性位点,有利于催化剂对C 3H 8的吸附和C -H 键的激活,导致催化活性提升㊂除了溶胶-凝胶法,溶剂法也是钙钛矿的有效合成方法之一㊂在溶剂热合成中,溶剂作为反应介质发挥着重要作用㊂首先,它可以控制溶液中化学物质的浓度,从而影响反应动力学;其次,它还能够改变溶解物种的配位,影响成核和晶体生长步骤,诱导特定结构的形成[53]㊂因此可通过选择合适的溶剂合成具有良好性能的La 系钙钛矿,如Miniajluk 等[54]分别以1,2-乙二醇(EG)㊁1,2-丙二醇(PG)和1,4-丁二醇(BG)为溶剂成功制备了LaMnO 3钙钛矿(LM 材料)㊂结果表明,使用EG 制备的LM -EG 具有较高的表面活性氧物种数量㊁良好低温还原性以及较大的表面积和孔体积,在300ħ左右对丙烷去除率与1%Pt /Al 2O 3相当,但其本征活性却是后者的近六倍(表1)㊂表1㊀LM 材料在丙烷氧化中的催化性能[54]Table 1㊀Catalytic performances in propane oxidation ofLM materials [54]SampleT 10/ħT 50/ħT 95/ħa Ea /(kJ /mol )LM -EG 23127532588.7LM -BG 30235845089.9LM -PG38543749284.91%Pt /Al 2O 3b21726030785.9㊀a分别对应于10%㊁50%和95%转化率的温度,b 参考催化剂(铂分散度:63%;S BET =168m 2㊃g -1)㊂此外,La 系钙钛矿具有良好的氧化还原性㊁高氧迁移率以及优异的热稳定性,是作为催化剂载体的良好材料㊂Luo 等[55]通过使用高表面积(31m 2/g)的电纺LaCoO 3纳米棒负载Pt,然后分别在He㊁O 2和H 2氛围中连续热退火得到了具有高Pt 分散性的0.29%(wt)Pt /LaCoO 3纳米棒催化剂㊂Pt 与LaCoO 3载体之间的相互作用有利于Co 2+物种㊁Co 3+/Co 2+氧化还原循环对和更多氧空位的形成,可有效改善材料的氧迁移率,最终提升丙烷催化燃烧活性(图8)㊂O x y g e n v a c a n c yP tC o 3+C o 2+O 2O 2O 2O 2O 2O 2O 2O 2C 3H 8C 3H 8C 3H 8C 3H 8C 3H 8C 3H 8L a C o O 3P t /L a C o O 3 H e +O 2+H 2C O 2+H 2O 图8㊀LaCoO 3和Pt /LaCoO 3-He +O 2+H 2催化剂上丙烷催化氧化机理[55]Fig.8㊀The mechanism of catalytic oxidation of propaneover LaCoO 3and Pt /LaCoO 3-He +O 2+H 2catalysts [55]在脂肪烃及苯系物的催化燃烧中,La 系钙钛矿也有较多应用㊂Wang 等[56]通过乙酸(HAc)选择性蚀刻LaCoO 3-La 2O 3复合材料上的La 2O 3颗粒,获得了多孔LaCoO 3钙钛矿催化剂㊂经HAc 刻蚀的LaCoO 3产生了表面La 缺陷和丰富的氧空位,而且催化剂的孔隙率和氧化还原性能均得到改善㊂因此,多孔LaCoO 3可以有效地接触和激活反应物,在220ħ实现乙酸乙酯的完全催化燃烧㊂Yarbay 等[57]采用柠檬酸盐技术制备了LaMnO 3钙钛矿型催化剂,发现LaMnO 3中存在单斜相LaMn 2O 5,两者产生协同作用,可促进活性晶格氧的形成和还原性的提升,导致甲苯催化燃烧反应活性的提高㊂Luo 等[58]采用SBA -15辅助静电纺丝合成了高表面积菱面体LaCoO 3钙钛矿催化剂,并将其用于苯的催71重庆工商大学学报(自然科学版)第41卷化燃烧㊂静电纺丝技术有利于LaCoO3表面Co元素的暴露,导致氧空位和Co2+活性位点数量增加,从而提升催化剂的氧迁移率和活性,因此在330ħ时苯的转化率可达90%㊂总之,La系钙钛矿的催化性能受到制备方法的影响较大,如高温制备的钙钛矿结构催化剂具有较低的表面积和反应活性,而其他合成方法如溶胶凝胶法和溶剂热合成法制备的材料则能够有效改善催化剂的比表面积和粒径等,使其催化燃烧活性更佳㊂因此,通过调整材料合成方法和合成条件以获得性能优良的钙钛矿催化剂将是研究者们未来亟需探索的方向㊂4 结束语本研究简要综述了近年来应用于丙烷催化燃烧的稀土催化剂,主要为Ce和La元素参与形成的稀土类催化材料㊂Ce及其氧化物作为助剂能够调节催化剂的结构和形貌等物理性质,并通过与活性金属进行电子传递(Ce4++M n+ңCe3++M(n-1)+)而产生强烈的相互作用形成氧空位,进而增强丙烷催化燃烧反应活性㊂此外,CeO2载体能够与活性金属产生良好的相互作用,从而改善催化剂的结构和催化性能㊂同时,研究发现催化燃烧受到CeO2不同形貌和晶面的影响㊂因此,可基于对形貌和晶面调整,使得CeO2能在丙烷催化燃烧中发挥最佳效果㊂La及其氧化物作为催化助剂能有效调节催化剂的形貌结构,诱导其产生氧空位,从而有效改善材料的催化活性㊂而以La为A位制备的钙钛矿氧化物可通过表面改性和优化合成方法来改变其比表面积和粒径等以提升催化性能㊂但稀土元素在丙烷催化燃烧的应用仍存在诸多不足:(1)稀土催化剂作为助催化剂和载体都有较优异的丙烷催化燃烧性能㊂但稀土元素与其他元素间的相互作用及其对催化剂整体的结构和性能的影响机理较为复杂,因此深入系统地研究稀土元素与其他元素的相互作用机理是重要的研究方向㊂(2)稀土元素在催化中发挥了重要作用,能显著优化催化剂结构与性能,但其应用仅限于实验室阶段㊂因此,设计开发兼具多样性和普适性的稀土催化剂,将其推广至其他工业催化反应中是进一步的研究方向㊂虽然诸多研究表明稀土元素在丙烷催化燃烧中起到了积极的作用,但其与催化剂整体性能的构效关系尚有进一步探索的空间,如何设计合成活性优良且兼具稳定性的催化剂仍是未来研究者要面临的一大挑战㊂参考文献References1 ㊀HE C CHENG J ZHANG X et al.Recent advances in thecatalytic oxidation of volatile organic compounds A review based on pollutant sorts and sources J .Chemical Reviews 2019 119 7 4471 4568.2 ㊀LEWIS A.The changing face of urban air pollution J .Science 2018 359 6377 744 745.3 ㊀JIAN Y TIAN M HE C et al.Efficient propane low-temperature destruction by Co3O4crystal facets engineeringUnveiling the decisive role of lattice and oxygen defects and surface acid-base pairs J .Applied Catalysis BEnvironmental 2021 283 1 10.4 ㊀ZHANG S YOU J KENNES C et al.Current advances ofVOCs degradation by bioelectrochemical systems A review J .Chemical Engineering Journal 2018 334 2625 2637.5 ㊀ZHAO S HU F LI J.Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion J .ACS Catalysis 2016 6 6 3433 3441.6 ㊀LIU Y LI X LIAO W et al.Highly active Pt/BN catalystsfor propane combustion The roles of support and reactant-induced evolution of active sites J .ACS Catalysis 2019 92 1472 1481.7 ㊀ZHOU L ZHANG B LI Z et al.Amorphous-microcrystalcombined manganese oxides for efficiently catalytic combustion of VOCs J .Molecular Catalysis 2020 489 1 10.8 ㊀HU J LI W LIU R.Highly efficient copper-dopedmanganese oxide nanorod catalysts derived from CuMnO hierarchical nanowire for catalytic combustion of VOCs J .Catalysis Today 2018 314 147 153.9 ㊀ZHAO P CHEN J YU H et al.Insights into propanecombustion over MoO3promoted Pt/ZrO2catalysts The generation of Pt-MoO3interface and its promotional role on catalytic activity J .Journal of Catalysis 2020 391 80 90.10 DONG F HAN W GUO Y et al.CeCoOx-MNS catalystderived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs J .Chemical Engineering Journal 2021405 1 10.11 LI X LIU Y LIAO W et al.Synergistic roles of Pt0and Pt2+species in propane combustion over high-performance Pt/AlF3 catalysts J .Applied Surface Science 2019 475 524 531.12 DONG T LIU W MA M et al.Hierarchical zeoliteenveloping Pd-CeO2nanowires An efficient adsorption/ catalysis bifunctional catalyst for low temperature propane total degradation J .Chemical Engineering Journal 20203931 10.13 WU J CHEN B YAN J et al.Ultra-active Ru supported on81。
硅改性对石脑油择形改质催化剂性能的影响

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第6期·2222·化 工 进展硅改性对石脑油择形改质催化剂性能的影响王银斌,汪洋,臧甲忠,郭春垒,彭晓伟,刘冠锋,于海斌(中海油天津化工研究设计院有限公司,天津 300131)摘要:通过硅改性制备了一系列石脑油择形改质催化剂,在此催化剂的作用下,煤间接液化工艺所产石脑油中的正构烷烃可以实现有效转化,而异构烷烃则可以得到最大量的保留,这样既可以显著提升油品的辛烷值,还可以实现产品汽油收率的最大化。
石脑油改质小试实验结果表明,在未经硅改性催化剂的作用下,产物油品的收率为60.51%,辛烷值为91.3,但异构烷烃/正构烷烃比值仅为0.78;当催化剂的SiO 2负载量为5%时,产物油品的收率增加至72.68%,异构烷烃/正构烷烃比值增加至2.50,辛烷值略有所降低,为88.8。
石脑油改质中试实验结果表明,在保证干气收率不超过1%时,经负载5%SiO 2改性后的催化剂可稳定运行15天,产品汽油平均收率为62.83%,液化石油气(LPG )平均收率为33.82%。
该技术的经济性分析结果显示,对于10万吨/年的工业化装置,可实现3274万元/年的利润收入。
关键词:石脑油;硅改性;ZSM-5分子筛;择形改质;汽油中图分类号:TE624 文献标志码:A 文章编号:1000–6613(2018)06–2222–08 DOI :10.16085/j.issn.1000-6613.2017-1492The effect of silylation on the catalysts for naphtha selective upgradingWANG Yinbin ,WANG Yang ,ZANG Jiazhong ,GUO Chunlei ,PENG Xiaowei ,LIU Guanfeng ,YU Haibin(CenerTech Tianjin Chemical Research and Design Institute Co.,Ltd.,CNOOC ,Tianjin 300131,China )Abstract :A series of catalyst samples were prepared by silylation method ,which would be employedas the shape-selective modification catalyst of naphtha. With the application of these catalysts ,the n -alkane in the naphtha produced from indirect-coal-liquefaction-process would be converted effciently while the isoparaffin would remain. Thus ,the octane value of the processed oil would rise effectively and the yield of gasoline could be maximized. The results of lab-scale experiments showed that when using the unmodified sample as catalyst ,the yield of gasoline was 60.51%,and RON was 91.3,but the ratio of isoparaffin/n -alkanes was only 0.78. When the sample modified by loading 5% SiO 2 were used as catalyst ,the yield of gasoline increased to 72.68%,and the ratio of isoparaffin/n -alkanes increased to 2.50,while RON decreased slightly to 88.8. The results of pilot experiments showed that when the fuelgas yield was less than 1%,the life time of the catalyst modified by loading 5% SiO 2 was 15 days ,and the average yield of gasoline was 62.83% and the average yield of LPG was 33.82%. The results of economic analysis showed that the producer could get 32.74 million RMB profit annually by processing 100000 tons naphtha per year with this technology.Key words :naphtha ;silylation ;ZSM-5 zeolite ;selective upgrading ;gasoline2016年,全国的炼油能力增加至7.5亿吨,实际加工量为5.8亿吨。
碱处理对ZSM-5分子筛膜结构及其催化性能的影响

碱处理对ZSM-5分子筛膜结构及其催化性能的影响袁方;厉刚;胡申林【摘要】以片状或管状不锈钢为载体,采用原位生长法制备ZSM-5分子筛膜,考察了碱处理对ZSM-5分子筛膜结构及其催化性能的影响.结果表明,用0.2 mol/L的NaOH溶液处理ZSM-5分子筛膜时,碱处理温度偏高或时间偏长,均会导致分子筛膜表面出现裂痕,影响膜基界面结合强度;在合适的碱处理条件下,可避免分子筛膜出现裂痕,但不能如粉末样品那样产生介孔;碱处理可溶解分子筛膜表面的无定型物质,从而改善其催化性能.【期刊名称】《石油学报(石油加工)》【年(卷),期】2014(030)001【总页数】5页(P140-144)【关键词】原位生长法;碱处理;ZSM-5分子筛膜【作者】袁方;厉刚;胡申林【作者单位】浙江大学化学系,浙江杭州310027;浙江大学化学系,浙江杭州310027;高超声速冲压发动机技术重点实验室,北京100074【正文语种】中文【中图分类】O611.4规整结构催化剂是近年来化工领域的一个研究热点[1]。
所谓规整结构催化剂,就是将催化活性组分以涂层或薄膜的形式负载在具有规整结构的载体上,其优点是可减少扩散的影响,降低流体阻力,使流体分布更均匀。
ZSM-5分子筛是一类性能优异的固体酸催化剂,以ZSM-5分子筛膜为催化活性组分的规整结构催化剂得到了广泛关注,这类催化剂已用于NOx选择性催化还原(NOx-SCR)[2]、苯一步氧化制苯酚[3]、烃类裂解[4-6]等反应,表现出比一般填充床催化反应器更好的性能。
ZSM-5分子筛晶体内含二维的孔道结构,沿b轴方向为直线型孔道,孔道截面尺寸为0.54nm×0.56nm;沿a轴方向为zig-zag孔道,孔道截面尺寸为0.51n m×0.55nm[7]。
由于ZSM-5分子筛的孔道尺寸与反应物分子尺寸相近,分子在孔道内扩散较慢,从而影响了催化剂的活性、产物选择性及使用寿命。
脱硝催化剂载体WO3 TiO2的制备及表征

氮氧化物 ( NO X ) 污染是一个全球性的环境问 题,可以引起酸雨、光化学烟雾、温室效应及臭氧 层的破坏。 根据对排放量的统计, NO X 主要在火 力发电、工业生产和交通运输过程中产生 。其中燃 煤电 站、 工 业 锅 炉 烟 气 是 NO X 的 最 大 来 源, 占 NO X 总 排 放 量 的 60% [1]。 选 择 性 催 化 还 原 脱 硝 ( SCR) 技术是目前国内外脱硝行业最成熟的技术 。 催化剂是 SCR 脱硝技术的核心, 而占催化剂质量 80% 以 上 的 钛 钨 粉 载 体 的 制 备 是 最 为 关 键 的 技 术
第
卷第 年 月
期
精细与专用化学品 · 33·
新 新产 产品 品开 开发 发
脱硝催化剂载体 WO3 / TiO2 的制备及表征
邱 赟,秦剑锋,鲁谦怀,吴 涛,廖 欣,李易英 ( 重庆普源化工工业有限公司,重庆 401221 )
摘要: 以工业偏钛酸为原料,采用一步法和后嫁接法成功制备了选择性催化脱硝 ( SCR ) 催化剂载体材料钛钨 ( WO3 / TPD、BET 等检测手段对样品进行表征。 结果表明,两种方法制备的钛钨粉中钨物种主 TiO2 ) 粉。采用 XRD、FTIR、NH3 要以非晶态存在; 一步法制备的钛钨粉与后嫁接法制备的钛钨粉相比,前者钨物种分散比较均匀,表面酸性较强,比表面积 较大。可以认为,一步法制备的钛钨粉更适合作为脱硝催化剂的载体材料 。 关键词: 选择性催化脱硝 ( SCR) ; 脱硝催化剂载体; 钛钨粉; 一步法; 后嫁接法
Preparation and characterization of WO3 / TiO2 as carrier for deNO X catalyst
QIU Yun,QIN Jianfeng,LU Qianhuai,WU Tao,LIAO Xin,LI Yiying
写一篇关于光合作用催化剂的观后感

写一篇关于光合作用催化剂的观后感英文回答:After watching the documentary about the catalysts in photosynthesis, I am truly amazed by the incredible role they play in this vital process. Photosynthesis is the process by which plants, algae, and some bacteria convert sunlight into chemical energy, and catalysts are essential in speeding up the reactions involved.One of the most important catalysts in photosynthesis is chlorophyll. This pigment is responsible for capturing sunlight and converting it into chemical energy through a series of reactions. Without chlorophyll, photosynthesis would not be possible, and life on Earth as we know it would cease to exist.Another catalyst that caught my attention is Rubisco, which stands for Ribulose-1,5-bisphosphate carboxylase oxygenase. Rubisco plays a crucial role in fixing carbondioxide from the atmosphere and converting it into organic molecules, such as glucose. This process is known as carbon fixation and is essential for the growth and development of plants.The documentary also mentioned the importance of enzymes as catalysts in photosynthesis. Enzymes are proteins that speed up specific chemical reactions without being consumed in the process. For example, the enzyme ATP synthase is responsible for producing ATP (adenosine triphosphate), which is the primary energy currency in cells.In addition to these catalysts, the documentary touched upon the role of cofactors and coenzymes in photosynthesis. Cofactors are inorganic ions or molecules that help enzymes function properly, while coenzymes are organic molecules that assist enzymes in their catalytic activities. These cofactors and coenzymes are like the supporting actors in a movie, working behind the scenes to ensure the success of the main characters.Overall, I was fascinated by the intricate web of catalysts involved in photosynthesis. It is truly remarkable how these catalysts work together to convert sunlight into chemical energy, providing sustenance for all living organisms. Without them, life as we know it would not be possible.中文回答:在观看了关于光合作用催化剂的纪录片后,我对它们在这个重要过程中所扮演的不可思议角色感到非常惊讶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Process Technologies, Corning Incorporated, MP-HQ-W2-21, Corning, New York 14831
Honeycomb-shaped monolithic catalysts are the standard catalyst shape in most environmental applications. In the processes of the chemical industry, however, their current use is very limited. In this paper, the current status of the monolith technology for applications in the chemical industry is reviewed. Application areas in which monolithic catalysts have superior performance characteristics are discussed. Especially pre- and postreactors as well as replacement concepts for slurry reactors are expected to have a very good near-term potential for application in commercial operations. In addition, it is expected that several adiabatic fixed-bed processes, especially those constrained by pressure drop or mass transfer, can benefit from the use of monolithic catalysts because of their excellent pressure drop to mass transfer ratio. A new and promising area for monoliths with a high thermal conductivity is their use in various gas-phase processes where multitubular reactors are employed.
* To whom correspondence should be addressed. Tel.: +49 611 7366 168. Fax: +49 611 7366 143. E-mail: BogerT@ .
waste stream. Another benefit, especially important in SCR reactors, is that the open-channel structure is capable of processing streams having high loads of particulates and dust. For automotive catalytic converters, mechanical integrity and durability are key attributes because of the thermal and mechanical stresses that occur during the many rapid changes in operating conditions. Additional important attributes for the success of monoliths in mobile applications are the low weight and low thermal mass, which is essential for a fast lightoff of the catalyst. Finally, another key factor for the relatively fast introduction of monolithic catalysts into these applications is that they were always driven by regulations. As catalysts and catalyst supports for the conversion and synthesis processes of the chemical industry, monoliths have found very limited commercial use so far. Public information indicates that monoliths are used in the production of hydrogen peroxide2 and in a postreactor for the synthesis of pththalic anhydride.3 The first example represents a selective multiphase hydrogenation reaction whereas the second one is a selective gas-phase oxidation. The limited use of monoliths in the chemical industry can be attributed to several reasons, and on the basis of our experience, the following items are some of the most important ones: (a) Today a large number of different catalysts, often with tailored properties, are employed in the many processes of the chemical industry. Often the annual volume of each catalyst is small, and it is often difficult to justify dedicated research and development efforts as well as capital investment to achieve a monolithic product with the same intrinsic catalyst properties. During the selection and evaluation of candidate monolithic catalysts, one needs to consider how much catalyst development work will be required. In the case of transferring previously developed pellet technology to monoliths, it will in many cases be required either that the benefits that come from the monolithic catalyst shape are significant enough to allow for some short-
Introduction Since their introduction in the mid-1970s, monolithic catalysts have become the standard catalyst shape in most environmental applications. The most prominent examples are the automotive catalytic converter and the DeNOx catalyst used in selective catalytic reduction (SCR) units used, for example, at power plants and incinerators. Annually more than 100 000 m3 of monolithic catalysts and catalyst supports are produced worldwide to meet the demand of these and other related applications.48 The term monolithic catalyst is used for a number of different structures, but we will limit the scope of this contribution to those commonly used in the abovementioned applications. Figure 1 shows a photo of a monolith composed of a large number of straight and parallel channels that extend throughout the body. These structures can be made from a range of materials.1 They are characterized by the size and geometry of the channel openings (dh), the void fraction ( ) or open frontal area (OFA), and the cell density usually characterized by cells per square inch (cpsi) or per square centimeter. Table 1 gives some examples of structures and materials available commercially or that were made within our R&D laboratories. One of the key reasons for the success of monoliths in environmental applications is clearly their excellent ratio of pressure drop to geometric surface area. This is shown in Figure 2. Compared to any other catalyst structure such as pellets or foams, a significantly lower pressure drop is observed at a given geometric surface area. This is especially important in environmental applications because large volumetric flow rates often have to be handled. Energy consumption is an important part of the overall operating costs because there is no commercial value created and the feedstock is a