2020高中数学 第二章 变化率与导数及导数的应用 高考中导数问题的六大热点拓展资料素材 北师大版选修1-1

合集下载

导数的定义与性质解析

导数的定义与性质解析

导数的定义与性质解析导数是微积分中的重要概念,它描述了函数的变化率。

在本文中,我们将探讨导数的定义、性质以及其在数学中的重要应用。

1. 导数的定义导数表示函数在某一点上的变化率。

对于函数y = f(x),它在点x处的导数记作f'(x)或dy/dx。

导数的定义可以通过极限表示:f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

2. 导数的性质导数具有以下几个重要的性质:- 导数存在性:函数在某一点上导数存在的充分必要条件是函数在该点可导。

- 导数与函数图像:函数在某一点导数存在,则函数在该点的图像有切线。

切线的斜率即为导数的值。

- 导数与连续性:若函数在某点可导,则函数在该点连续。

- 导数的四则运算:若f(x)和g(x)在某点可导,则[f(x) ± g(x)]' = f'(x) ± g'(x);[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x);[f(x)/g(x)]' = [f'(x)g(x) -f(x)g'(x)]/g^2(x)(其中g(x) ≠ 0)。

- 链式法则:若y = f(g(x)),其中f(u)和g(x)分别可导,则y' = f'(g(x)) * g'(x)。

3. 导数的应用导数在数学和实际问题中都有广泛的应用,其中包括:- 切线与法线:导数可以求得函数曲线在某点的切线和法线,从而帮助我们研究函数图像的特性。

- 极值与拐点:函数在极值点导数为零,通过导数可以判断函数的最大值、最小值和拐点。

- 函数图像的草图:通过导数可确定函数图像的趋势、拐点以及关键点,有助于绘制函数的草图。

- 物理学应用:导数在物理学中常用于描述速度、加速度以及变化率等问题。

综上所述,导数是函数变化率的重要工具,通过导数的定义与性质,我们可以深入理解函数的特性与行为。

(完整版)变化率与导数、导数的计算知识点与题型归纳

(完整版)变化率与导数、导数的计算知识点与题型归纳

(完整版)变化率与导数、导数的计算知识点与题型归纳1●⾼考明⽅向1.了解导数概念的实际背景.2.理解导数的⼏何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x 的导数. 4.能利⽤基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.★备考知考情由近⼏年⾼考试题统计分析可知,单独考查导数运算的题⽬很少出现,主要是以导数运算为⼯具,考查导数的⼏何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、⽅程、斜率与倾斜⾓的关系,以平⾏或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014⼴东理科10、⽂科11. 2014⼴东理科10 曲线52-=+xy e在点()0,3处的切线⽅程为;2014⼴东⽂科11曲线53=-+xy e 在点()0,2-处的切线⽅程为;⼀、知识梳理《名师⼀号》P39知识点⼀导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0.(2)称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.注意:《名师⼀号》P40 问题探究问题1f′(x)与f′(x0)有什么区别?f′(x)是⼀个函数,f′(x0)是常数,f′(x0)是函数f′(x)在点x0处的函数值.例.《名师⼀号》P39 对点⾃测11.判⼀判(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)f′(x0)与[f(x0)]′表⽰的意义相同.()(3)f′(x0)是导函数f′(x)在x=x0处的函数值.()答案(1)×(2)×(3)√23知识点⼆导数的运算公式及法则 1.基本初等函数的导数公式注意:(补充)常量函数的导数为零11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();17.()log ,'()(0,1);ln 8.nn x xx x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x ==则42.导数的运算法则注意:(补充)复合函数的导数(())y f u x =,'''(())()y f u x u x =g注意:《名师⼀号》P40 问题探究问题3对函数求导时,其基本原则是什么?求函数的导数时,要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利⽤运算法则求导数.对于不具备求导法则结构形式的要适当恒等变形;对于⽐较复杂的函数,如果直接套⽤求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进⾏合'221.(()())''()'()2.(()())''()()()'()()'()()()()'3.()()4.(())''()1'()5.[]'()()f x g x f x g x f x g x f x g x f x g x f x f x g x f x g x g x g x cf x cf x g x g x g x ±=±?=?+-= ==-理变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误., 称为曲线在点P处的切线的斜率.即:'0000()()()lim lim→?→+?-===x xf x x f xyk f xx x切线5导数的⼏何意义函数在x=x0处的导数——曲线y=f(x)在点(x0,f(x0))处切线的斜率.导数的物理意义——瞬时速度例.周练13-1⼀个物体的运动⽅程为s=1-t+t2,其中s的单位是⽶,t的单位是秒,那么物体在3秒末的瞬时速度是() A.7⽶/秒B.5⽶/秒C.6⽶/秒D.4⽶/秒注意:《名师⼀号》P40 问题探究问题2过点P的切线与在点P处的切线有什么区别?在点P处的切线,P是切点,⽽过点P的切线,P不⼀定是切点,后者包括前者.注意:《名师⼀号》P40 问题探究问题2过点P的切线与在点P处的切线有什么区别?在点P处的切线,P是切点,⽽过点P的切线,P不⼀定是切点,后者包括前者.67⼆、例题分析: (⼀) 导数的计算例1.(补充)⽤导数定义求函数1()f x x=的导数。

2020年高考数学(文科)复习课件 第二单元 第13讲 变化率与导数、导数的运算

2020年高考数学(文科)复习课件 第二单元 第13讲 变化率与导数、导数的运算

课堂考点探究
考向2 求切点坐标
例 3(1)[2018·衡水武邑中学月考] 已知直线 l:x-ty-2=0(t≠0)与函数 f(x)=e������������(x>0)的图像相切,则切 点的横坐标为 ( )
A.2± 2 B.2+ 2 C.2 D.1+ 2
(2)[2018·大连一模] 过曲线 y=ex 上一点 P(x0,y0)作曲
程为 y-1=2(x-0),即 2x-y+1=0.
课前双基巩固
4.[教材改编] 若曲线 y=ax2-ln x 在点(1,a)处
的切线平行于 x 轴,则 a=
.Hale Waihona Puke [答案]1 2[解析] ∵y=ax2-ln x, ∴y'=2ax-1������,∴y' x=1=2a-1=0,∴a=12.
课堂考点探究
考点一

e������ ������
=
������,
解得 m=2± 2,故
e������ (������-1) ������ 2
=
1 ������
,
选 A.
课堂考点探究
例 3(1)[2018·衡水武邑中学月考] 已知直线 l:x-ty-2=0(t≠0)与函数 f(x)=e������(x>0)的图像相切,则切
例 1 (1)[2018·咸阳模拟] 已知 f'(x)是函
数 f(x)的导函数,且对任意的实数 x 都有
f'(x)=ex(2x-2)+f(x)(e 是自然对数的底
数),f(0)=1,则 ( )
A.f(x)=ex(x+1) B.f(x)=ex(x-1) C.f(x)=ex(x+1)2 D.f(x)=ex(x-1)2

高中数学第二章变化率与导数2.2导数的概念及其几何意义课件北师大选修2_2

高中数学第二章变化率与导数2.2导数的概念及其几何意义课件北师大选修2_2

=
������(������0
+
������)-������(������0) ������
,曲线割线的斜率就是函数的平均
(2)切线的斜率.
当点B沿曲线趋近于点A时,割线AB绕点A转动,它的最终位置为
直线AD,这条直线AD叫作此曲线在点A的切线.则当Δx→0时,割线
AB的斜率趋近于在点A的切线AD的斜率,即 切线AD的斜率.
1.导数的概念
定义:设函数y=f(x),当自变量x从x0变到x1时,函数值从f(x0)变到
f(x1),函数值y关于x的平均变化率为
������ ������
=
������(������1)-������(������0) ������1-������0
=
������(������0+ΔΔ������������)-������(������0),
当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那
么这个值就是函数y=f(x)在x0点的瞬时变化率,在数学中,称瞬时变
化率为函数y=f(x)在x0点的导数.
计算公式:f'(x)= lim
������ 1 →������ 0
f(xx11)--fx(0x0)=������������x������→������0
§2.2 导数的概念及其几何意义
学习目标
思维脉络
1.通过实例分析,体会由平 均变化率过渡到瞬时变化
率的过程,了解导数概念建 立的背景. 2.理解瞬时变化率的含义, 并知道瞬时变化率就是导
数. 3.会求函数 f(x)在某一点 x0 处的导数. 4.理解导数的几何意义,并 能利用几何意义解决相关
问题. 5.会求与导数相关的切线 问题.

高中数学 第二章 变化率与导数及导数的应用 高考中导数问题的六大热点拓展资料素材 北师大版选修1-1

高中数学 第二章 变化率与导数及导数的应用 高考中导数问题的六大热点拓展资料素材 北师大版选修1-1

高考中导数问题的六大热点由于导数其应用的广泛性,为解决函数问题提供了一般性的方法及简捷地解决一些实际问题.因此在高考占有较为重要的地位,其考查重点是导数判断或论证单调性、函数的极值和最值,利用导数解决实际问题等方面,下面例析导数的六大热点问题,供参考.一、运算问题 例1已知函数22()(1)x bf x x -=-,求导函数()f x '. 分析:用商的导数及复合函数导数的运算律即可解决.解:242(1)(2)2(1)()(1)x x b x f x x ---∙-'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--.评注:对于导数运算问题关键是记清运算法则.主要是导数的定义、常见函数的导数、函数和差积商的导数法则等.二、切线问题例2设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = .分析:由垂直关系可得切线的斜率为-12,又k =0()f x ',即可求出a 的值.解:axae y =',∴切线的斜率a y k x ===0',由垂直关系,有1)21(-=-⋅a ,解得2=a .评注:是指运用导数的几何意义或物理意义,解决瞬时速度,加速度,光滑曲线切线的斜率等三类问题.特别是求切线的斜率、倾斜角及切线方程问题,其中:(1) 曲线y =f (x )在点P (x 0,f (x 0))处的斜率k ,倾斜角为θ,则tan θ=k =0()f x '.(2)其切线l 的方程为:y =y 0+0()f x '(x -x 0).若曲线y =f (x )在点P (x 0,f (x 0))的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为x=x 0.三、单调性问题例3已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 分析:对于第(1)小题,求导后利用f '(x )>0或'()f x <0,解不等式即得单调区间;而(2)转化为'()f x <0在2133⎛⎫-- ⎪⎝⎭,上恒成立即可.解:(1)32()1f x x ax x =+++求导:2()321f x x a x '=++. 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增.当23a >,()0f x '=求得两根为x =,即()f x在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增. (2)若函数在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,则2()321f x x ax '=++两根在区间2133⎛⎫-- ⎪⎝⎭,外,即2'()31'()3f f ⎧-⎪⎪⎨⎪-⎪⎩≤0≤0,解得a ≥2,故取值范围是[2,+∞).评注:一般地,设函数y =f (x )在某个区间内可导.如果f '(x )>0,则f (x )为增函数;如果f '(x )<0,则f (x )为减函数.单调性是导数应用的重点内容,主要有四类问题:①运用导数判断单调区间; ②证明单调性; ③已知单调性求参数;④先证明其单调性,再运用单调证明不等式等问题. 四、极值问题 例4已知函数1()l n (1),(1)nf x a x x =+--其中n ∈N*,a 为常数.当n =2时,求函数f (x )的极值;分析:运用导数先确定函数的单调性,再求其极值. 解:由已知得函数f (x )的定义域为{x |x >1}, 当n =2时,21()l n (1),(1)f x a x x =+-- 所以232(1)().(1)a x f x x --=-(1)当a >0时,由'()f x =0,得11x =+>1,21x =<1, 此时 f ′(x )=123()()(1)a x x x x x ----.当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1+∞)时,f ′(x )>0, f (x )单调递增.(2)当a ≤0时,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时,当a >0时,f (x )在1x =取得极小值,极小值为2(1(1ln ).2a f a+=+当a ≤0时,f (x )无极值.评注:运用导数解决极值问题.一般地,当函数f (x )在x 0处连续,判别f (x 0)为极大(小)值的方法是:⑴ 若0'()f x =0,且在x 0附近的左侧()f x '>0,右侧()f x '<0,那么f (x 0)是极大值,⑵ 如果在x 0附近的左侧()f x '<0,右侧()f x '>0,那么f (x 0)是极小值. 五、最值问题例5 求函数f (x )=x 4-2x 2+5在[-2,2]上的最大值与最小值. 分析:可先求出导数及极值点,再计算.解: ()f x '=4x 3-4x ,令()f x '=0,解得x 1=-1,x 2=0,x 3=1,均在(-2,2)内.计算f (-1)=4,f (0)=5,f (1)=4,f (-2)=13,f (2)=13. 通过比较,可见f (x ) 在[-2,2]上的最大值为13,最小值为4. 评注:运用导数求最大(小)值的一般步骤如下: 若f (x )在[a ,b ]上连续,在(a ,b )内可导,则⑴ 求()f x ',令()f x '=0,求出在(a ,b )内使导数为0的点及导数不存在的点.⑵ 比较三类点:导数不存在的点,导数为0的点及区间端点的函数值,其中最大者便是f (x )在[a ,b ]上的最大值,最小者便是f (x )在[a ,b ]上的最小值.六、应用问题例6 用总长14.8m 的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积.分析:本小题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等基础知识.解:设容器底面短边长为x m ,则另一边长为()0.5x + m ,高为()14.8440.5 3.224x x x --+=-.由3.220x ->和0x >,得0 1.6x <<, 设容器的容积为3ym ,则有()()0.5 3.22y x x x =+- ()0 1.6x <<.即322 2.2 1.6y x x x =-++,令0y '=,有26 4.41.60x x -++=, 即2151140x x --=,解得11x =,2415x =-(不合题意,舍去). 当x =1时,y 取得最大值,即max 2 2.2 1.6 1.8y =-++=,这时,高为3.221 1.2-⨯=.答:容器的高为1.2m 时容积最大,最大容积为31.8m .。

高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

提示:在点x=x0处的导数的定义可变形为f′(x0)=
lx im 0f(x0- 或- xf )′- x (xf0)=x0
lim
f
x
f
x0
.
xx0 x-x0
28
【类题·通】
求一个函数y=f(x)在x=x0处的导数的步骤
(1)求函数值的变化量Δy=f(x0+Δx)-f(x0).
(2)求平均变化率 yf(x0x)fx0.
47
(1)求直线l1,l2的方程. (2)求由直线l1,l2和x轴所围成的三角形的面积.
48
【思维·引】1.设出切点的坐标,利用导数在切点处的 导数值即为切线的斜率求解. 2.(1)利用导数的几何意义求出切线的斜率,进而求出 两直线的方程;(2)解方程组求出两直线的交点坐标, 利用三角形的面积公式求解.
36
【解析】将x=1代入曲线C的方程得y=1,即切点
P(1,1).
因为f′(1)=
limy= lim(1x)313
x x 0
x 0
x
= lim3x3(x)2(x)3
x 0
x
=
l
xi[m30 +3Δx+(Δx)2]=3,
37
所以切线方程为y-1=3(x-1), 即3x-y-2=0.
38
【素养·探】 求曲线在某点处的切线方程通常应用的数学核心素养 是数学运算,一般要根据导数的定义求出函数的导数, 即所求切线的斜率,然后利用直线的点斜式方程求切 线的方程. 本典例中的切线与曲线C是否还有其他的公共点?
59
2.面积问题三类型 (1)曲线的一条切线与两坐标轴围成的图形的面积.此类 问题,只要求出切线方程与两坐标轴的交点,即可计 算.

高考数学一轮复习 第二章 第10讲 变化率与导数、导数

高考数学一轮复习 第二章 第10讲 变化率与导数、导数

第二章 函数、导数及其应用 第10讲 变化率与导数、导数的计算一、必记3个知识点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0Δy Δx=lim Δx →0 fx 0+Δx -f x 0Δx.(2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数: 称函数f ′(x )=lim Δx →0f x +Δx -f xΔx为f (x )的导函数.2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x)′=a xln_a ,(e x)′=e x,(log a x )=1x ln a ,(ln x )′=1x. 3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).二、必明3个易误区1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.考点一利用导数的定义求函数的导数利用导数的定义求函数的导数:(1)y =x 2; (2)f (x )=1x +2. 解:(1)因为Δy Δx =fx +Δx -f x Δx =x +Δx 2-x 2Δx =x 2+2x ·Δx +Δx2-x2Δx=2x +Δx ,所以y ′=lim Δx →0ΔyΔx =lim Δx →0(2x +Δx )=2x .(2)因为Δy Δx =fx +Δx -f x Δx =1x +Δx +2-1x +2Δx =-1x +Δx +2x +2所以y ′=lim Δx →0ΔyΔx=-lim Δx →01x +Δx +2x +2=-1x +22.[类题通法]定义法求函数的导数的三个步骤一差:求函数的改变量Δy =f (x +Δx )-f (x ).二比:求平均变化率Δy Δx =fx +Δx -f xΔx.三极限:取极限,得导数y ′=f ′(x )=lim Δx →0Δy Δx. 考点二导数的运算[典例] 求下列函数的导数.(1)y =x 2sin x ; (2)y =e x+1e x -1.[解] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=e x+1′e x-1-e x+1e x -1′e x -12=exe x -1-e x +1e x e x -12=-2exe x -12.[类题通法]1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.2.有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量. [针对训练]已知f (x )=sin 2x ,记f n +1(x )=f n ′(x )(n ∈N *),则f 1⎝ ⎛⎭⎪⎫π6+f 2⎝ ⎛⎭⎪⎫π6+…+f 2 013⎝ ⎛⎭⎪⎫π6+f 2 014⎝ ⎛⎭⎪⎫π6=________.解析:由题意,可知f 2(x )=f 1′(x )=(sin 2x )′=2cos 2x ;f 3(x )=f 2′(x )=(2cos 2x )′=-4sin 2x ; f 4(x )=f 3′(x )=(-4sin 2x )′=-8cos 2x ; f 5(x )=f 4′(x )=(-8cos 2x )′=16sin 2x ;…故f 4k +1(x )=24ksin 2x ,f 4k +2(x )=24k +1cos 2x ,f 4k +3(x )=-24k +2sin 2x ,f 4k +4(x )=-24k +3cos 2x (k ∈N ).所以f 1⎝ ⎛⎭⎪⎫π6+f 2⎝ ⎛⎭⎪⎫π6+…+f 2 014⎝ ⎛⎭⎪⎫π6=20sin ⎝ ⎛⎭⎪⎫2×π6+21cos ⎝ ⎛⎭⎪⎫2×π6-22sin ⎝⎛⎭⎪⎫2×π6-23cos ⎝ ⎛⎭⎪⎫2×π6+24sin ⎝ ⎛⎭⎪⎫2×π6+…-22 010sin ⎝ ⎛⎭⎪⎫2×π6-22 011cos ⎝ ⎛⎭⎪⎫2×π6+22 012sin ⎝ ⎛⎭⎪⎫2×π6+22 013cos ⎝⎛⎭⎪⎫2×π6=(20-22+24-26+…+22 008-22 010+22 012)sin π3+(21-23+25-27+…+22 009-22 011+22 013)cos π3=1×[1--22 1 007]1--22×32+2×[1--22 1 007]1--22×12=1+22 0145×32+2×1+22 0145×12=3+21+22 01410答案:3+21+22 01410考点三导数的几何意义角度一 求切线方程1.曲线y =x e x+2x -1在点(0,-1)处的切线方程为( )A .y =3x -1B .y =-3x -1C .y =3x +1D .y =-2x -1 解析:选A 依题意得y ′=(x +1)e x+2,则曲线y =x e x+2x -1在点(0,-1)处的切线的斜率为(0+1)e 0+2=3,故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即3x -y -1=0,故选A. 角度二 求切点坐标2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C 由题意知y ′=3x+1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).角度三 求参数的值3.(2014·郑州第一次质量预测)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2解析:选C ∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),且y =x 3+ax +b 的导数y ′=3x 2+a , ∴⎩⎪⎨⎪⎧3=k ×1+1,3=13+a ×1+b k =3×12+a ,,解得a =-1,b =3,∴2a +b =1.[类题通法]导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.课后作业[试一试]1.(2013·江西高考)若曲线y =x α+1(α∈R )在点(1,2)处的切线经过坐标原点,则α=________.解析:由题意y ′=αx α-1,在点(1,2)处的切线的斜率为k =α,又切线过坐标原点,所以α=2-01-0=2.答案:22.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′=x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x .答案:-x sin x 做一做1.(2013·全国大纲卷)已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( ) A .9 B .6 C .-9 D .-6解析:选D y ′=4x 3+2ax ,由导数的几何意义知在点(-1,a +2)处的切线斜率k =y ′|x =-1=-4-2a =8,解得a =-6.2.(2014·济宁模拟)已知f (x )=x (2 012+ln x ),f ′(x 0)=2 013,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B 由题意可知f ′(x )=2 012+ln x +x ·1x=2 013+ln x .由f ′(x 0)=2 013,得ln x 0=0,解得x 0=1.3.若曲线y =x 2+a ln x (a >0)上任意一点处的切线斜率为k ,若k 的最小值为4,则此时该切点的坐标为( ) A .(1,1) B .(2,3) C .(3,1) D .(1,4) 解析:选A y =x 2+a ln x 的定义域为(0,+∞),由导数的几何意义知y ′=2x +ax≥22a =4,则a =2, 当且仅当x =1时等号成立,代入曲线方程得y =1,故所求的切点坐标是(1,1). 4.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.解析:∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4.∴f ′(0)=-45.(2014·黄冈一模)已知函数f (x )=x (x -1)(x -2)(x -3)·(x -4)(x -5),则f ′(0)=________. 解析:f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+x [(x -1)(x -2)(x -3)(x -4)(x -5)]′, ∴f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.答案:-1206.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解:∵(1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′=-1,y =53,∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,∴切线方程为x +y -113=0. (2)由(1)得k ≥-1,∴tan α≥-1,∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.7.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).8.已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154 D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.9.(2014·济南模拟)已知曲线y 1=2-1x与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0的值为( )A .-2B .2 C.12D .1解析:选D 由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 20-2x 0+2,所以3x 20-2x 0+2x 2,所以x 0=1. 10.已知f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).11.已知函数f (x )=23x 3-2ax 2-3x (a ∈R ),若函数f (x )的图像上点P (1,m )处的切线方程为3x -y +b =0,则m 的值为( )A .-13B .-12 C.13 D.12解析:选A ∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∴过点P (1,m )的切线斜率k =f ′(1)=-1-4a .又点P (1,m )处的切线方程为3x -y +b =0,∴-1-4a =3,∴a =-1,∴f (x )=23x 3+2x 2-3x .又点P 在函数f (x )的图像上,∴m =f (1)=-13.12.(2013·广东高考)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________. 解析:因为y ′=2ax -1x ,依题意得y ′|x =1=2a -1=0,所以a =12.答案:1213.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x-2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.14.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 014⎝ ⎛⎭⎪⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=(cos x -sin x )′=-sin x -cos x ,f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x ,以此类推,可得出f n (x )=f n +4(x ),又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 014⎝ ⎛⎭⎪⎫π2=503f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+f 3⎝ ⎛⎭⎪⎫π2+f 4⎝ ⎛⎭⎪⎫π2+f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2=0.答案:015.求下列函数的导数.(1)y =x ·tan x ; (2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x.(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)·(x +2)+(x +1)(x +3)=3x 2+12x +11.16.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),又f (1)=-1,得:y +1=3(x -1),即切线方程为3x -y -4=0.曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1).又g (1)=-6.得y +6=3(x -1),即切线方程为3x -y -9=0,所以,两条切线不是同一条直线.17.(2014·东营一模)设曲线y =sin x 上任一点(x ,y )处切线的斜率为g (x ),则函数y =x 2g (x )的部分图像可以为( )解析:选C 根据题意得g (x )=cos x ,∴y =x 2g (x )=x 2cos x 为偶函数.又x =0时,y =0,故选C.18.(2013·山西模拟)已知函数f (x )=x +12+sin xx 2+1,其导函数记为f ′(x ),则f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=________.解析:由已知得f (x )=1+2x +sin x x 2+1,则f ′(x )=2+cos xx 2+1-2x +sin x ·2xx 2+12令g (x )=f (x )-1=2x +sin xx 2+1,显然g (x )为奇函数,f ′(x )为偶函数,所以f ′(2 012)-f ′(-2 012)=0,f (2 012)+f (-2 012)=g (2 012)+1+g (-2 012)+1=2,所以f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=2.答案:2。

2020年浙江高考数学一轮复习:变化率与导数、导数的运算

2020年浙江高考数学一轮复习:变化率与导数、导数的运算

••>必过数材美1. 导数的概念⑴函数y= f(x)在x = x o处的导数:函数y= f(x)在x= x o处的瞬时变化率li附0牛li碍0W fxo为函数y= f(x)在x= x0处的导数,记作f' (x o)或y' |x = x o,即f' (x o) = li 知0 严=ligO fxo+A x~ fxo .(2) 导数的几何意义:函数f(x)在点X o处的导数f' (X o)的几何意义是在曲线y= f(x)上点P(x o,y>)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y—y o= f' (x o)(x —x o)_(3) 函数f(x)的导函数:称函数f' (x)= li A xrto ~x+ A xx^f-为f(x)的导函数.2. 基本初等函数的导数公式原函数导函数n *f' (x)= n x n 1 2f(x)= x (n € Q)f(x)= sin x f' (x) = cos xf(x)= cosx f' (x)=—sin xx ln axf(x)= a (a>o)f' (x)= af(x) = e x f' (x) = £f(x)= log a x(a>o,且a* 1) f (x)= xln af(x) = In x1f' (x)=- ' 'x3.1 [f(x) dg(x)] '= f'(X) ±'(X);2 [f(x) g(x)]'= f' (x)g(x)+ f(x)g' (x);[小题体验]1.下列求导运算正确的是(, 1B . (log2x)=而22+ x (cos x)' = 2xcosx — x sin x . 2.曲线y = x 3 — x + 3在点(1,3)处的切线方程为 答案:2x — y + 1 = 0必过易措关1.利用公式求导时要特别注意不要将幕函数的求导公式 导公式(a%)' = ^In a 混淆.2.求曲线切线时,要分清在点 P 处的切线与过P 点的切线的区别,前者只有一条,而 后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有 差别.[小题纠偏]1.函数y =呼的导函数为 答案:y '= —e 戶xe12. (2018杭州模拟)函数f(x) = x 2 + 一的图象在点(1, f(1))处的切线方程为( )f 'xgx — fxg x(g(Z0). [gx ]4.复合函数的导数复合函数y = f(g(x))的导数和函数 y = f(u), u = g(x)的导数间的关系为 y x '= y u ' u x ',即y 对x 的导数等于y 对u 的导数与 u 对x的导数C . (3x )'= 3xlog 3e 2D . (xcosx)'=— 2sin x解析:选B1 x y2 =1 — ~2; (3 )' = 3 In 3; x cosxx, )'=(x 2)zcos x 故选B.(x a )' = ax a "与指数函数的求A . x — y + 1 = 0B .3x — y — 1 = 0C . x — y — 1 = 0 3x —y +1 = 0切点为(1,2),可得图象在点 (1, f(1))处的切线方程为y — 2= x — 1,解析:选A1函数f(x) = x 2+1的导数为f '(x)=2x -x 2,可得图象在点 (1, f(1))处的切线斜率为k = 2— 1= 1,即为x — y + 1 = 0.故选A.』=鶴當°會闻奧館 圍詢^舎悔啄 酪圃區 金伺爾匪愿考点一导数的运算基础送分型考点一一自主练透[题组练透]求下列函数的导数. (1) y = x 2sin x ; 1(2) y = In x + X ;(3)y =讐; (4)(易错题)y = xsin 2x + 2 cos 2 (5)y = ln(2x — 5).解:(1)y ‘ = (x )' sin x + x (sin x)2=2xsin x + x cosx.1 1=_—飞 x xsin x + cosxxe(4) ■/ y = xsin 1 1=^xsin(4x + n= — ^xsin 4x , . / …y 1 1 =—^sin 4x — ^x 4cos 1=—2sin 4x — 2xcos 4c.(5)令 u = 2x — 5, y = In u ,[谨记通法]求函数导数的3种原则2x +n ; (2)y 'ln x +=(In x)(3)y '=讐'cosx 'e x — cosx e x (e )则 y ' = (In u)' u1 2 2x — 5 2= 2x — 5,即y '2 2x — 5.2x + n bosg +[提醒]复合函数求导时,先确定复合关系, 由外向内逐层求导,必要时可换元.考点二 导数的几何意义 题点多变型考点 一一多角探明 [锁定考向]导数的几何意义是每年高考的必考内容,考查题型既有选择题、填空题,也常出现在 解答题的第 ⑴问中,难度偏小,属中低档题.常见的命题角度有: (1) 求切线方程; (2) 求切点坐标; (3)求参数的值(范围).[题点全练]角度一:求切线方程x 一 11.曲线y =——在点(0 , - 1)处的切线与两坐标轴围成的封闭图形的面积为( )X + 1程为y + 1= 2x ,即y = 2x — 1,与两坐标轴的交点坐标分别为 (0,— 1), ;,0 ,所以与两1 1 1坐标轴围成的三角形的面积S = 2X |— 1|X 1 = 4.角度二:求切点坐标2. (2018湖州模拟)曲线f(x) = X 3 + X — 2在P o 处的切线平行于直线 y = 4x — 1,贝V P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考中导数问题的六大热点
由于导数其应用的广泛性,为解决函数问题提供了一般性的方法及简捷地解决一些实际问题.因此在高考占有较为重要的地位,其考查重点是导数判断或论证单调性、函数的极值和最值,利用导数解决实际问题等方面,下面例析导数的六大热点问题,供参考.
一、运算问题 例1已知函数2
2()(1)
x b
f x x -=
-,求导函数()f x '. 分析:用商的导数及复合函数导数的运算律即可解决.
解:24
2(1)(2)2(1)
()(1)x x b x f x x ---•-'=-
3222
(1)x b x -+-=
-
3
2[(1)]
(1)x b x --=-
-.
评注:对于导数运算问题关键是记清运算法则.主要是导数的定义、常见函数的导数、函数和差积商的导数法则等.
二、切线问题
例2设曲线ax
y e =在点(01),处的切线与直线210x y ++=垂直,则
a = .
分析:由垂直关系可得切线的斜率为-1
2
,又k =0()f x ',即可求出a 的值.
解:ax
ae y =',∴切线的斜率a y k x ===0
',由垂直关系,有1)2
1(-=-⋅a ,解得2=a .
评注:是指运用导数的几何意义或物理意义,解决瞬时速度,加速度,光滑曲线切线的斜率等三类问题.特别是求切线的斜率、倾斜角及切线方程问题,其中:
(1) 曲线y =f (x )在点P (x 0,f (x 0))处的斜率k ,倾斜角为θ,则tan θ=
k =0()f x '.
(2)其切线l 的方程为:y =y 0+0()f x '(x -x 0).若曲线y =f (x )在点P (x 0,
f (x 0))的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为x
=x 0.
三、单调性问题
例3已知函数3
2
()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭

内是减函数,求a 的取值范围. 分析:对于第(1)小题,求导后利用f '(x )>0或'()f x <0,解不等式
即得单调区间;而(2)转化为'()f x <0在2133⎛⎫-- ⎪⎝⎭

上恒成立即可. 解:(1)3
2
()1f x x ax x =+++求导:2
()321f x x ax '=++. 当2
3a
≤时,0∆≤,()0f x '≥,()f x 在R 上递增.
当2
3a >,()0f x '=求得两根
为x =,
即()f x
在3a ⎛---∞ ⎪⎝⎭,递增
,33a a ⎛---+ ⎪⎝⎭,递减,
⎫+∞⎪⎪⎝⎭
递增. (2)若函数在区间2
13
3⎛⎫-- ⎪⎝⎭

内是减函数,则2
()321f x x ax '=++两根在区间2133⎛⎫-- ⎪⎝⎭,外,即2'()3
1'()3f f ⎧-⎪⎪⎨⎪-⎪⎩
≤0≤0,解得a ≥2,故取值范围是[2,+∞).
评注:一般地,设函数y =f (x )在某个区间内可导.如果f '(x )>0,则
f (x )为增函数;如果f '(x )<0,则f (x )为减函数.单调性是导数应用的重
点内容,主要有四类问题:
①运用导数判断单调区间; ②证明单调性; ③已知单调性求参数;
④先证明其单调性,再运用单调证明不等式等问题. 四、极值问题 例4已知函数1
()ln(1),(1)n
f x a x x =+--其中n ∈N*,a 为常数.当n =2时,
求函数f (x )的极值;
分析:运用导数先确定函数的单调性,再求其极值. 解:由已知得函数f (x )的定义域为{x |x >1}, 当n =2时,2
1
()ln(1),(1)f x a x x =
+--
所以2
3
2(1)().(1)
a x f x x --=-
(1)当a >0时,由'()f x =0,得11x =+
>1,21x =-<1, 此时 f ′(x )=
123
()()(1)a x x x x x ----.
当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1+∞)时,f ′(x )>0, f (x )单调递增.
(2)当a ≤0时,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时,
当a >0时,f (x )在1x =+取得极小值,极小值为2
(1(1ln ).2a f a
+
=+当a ≤0时,f (x )无极值.
评注:运用导数解决极值问题.一般地,当函数f (x )在x 0处连续,判别
f (x 0)为极大(小)值的方法是:
⑴ 若0'()f x =0,且在x 0附近的左侧()f x '>0,右侧()f x '<0,那么f (x 0)是极大值,
⑵ 如果在x 0附近的左侧()f x '<0,右侧()f x '>0,那么f (x 0)是极小值. 五、最值问题
例5 求函数f (x )=x 4
-2x 2
+5在[-2,2]上的最大值与最小值. 分析:可先求出导数及极值点,再计算.
解: ()f x '=4x 3
-4x ,令()f x '=0,解得x 1=-1,x 2=0,x 3=1,均在(-2,2)内.
计算f (-1)=4,f (0)=5,f (1)=4,f (-2)=13,f (2)=13. 通过比较,可见f (x ) 在[-2,2]上的最大值为13,最小值为4. 评注:运用导数求最大(小)值的一般步骤如下: 若f (x )在[a ,b ]上连续,在(a ,b )内可导,则
⑴ 求()f x ',令()f x '=0,求出在(a ,b )内使导数为0的点及导数不存在的点.
⑵ 比较三类点:导数不存在的点,导数为0的点及区间端点的函数值,其中最大者便是f (x )在[a ,b ]上的最大值,最小者便是f (x )在[a ,b ]上的最小值.
六、应用问题
例6 用总长14.8m 的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积.
分析:本小题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等基础知识.
解:设容器底面短边长为x m ,则另一边长为()0.5x + m ,高为
()
14.8440.5 3.224
x x x --+=-.
由3.220x ->和0x >,得0 1.6x <<, 设容器的容积为3
ym ,则有
()()0.5 3.22y x x x =+- ()0 1.6x <<.
即3
2
2 2.2 1.6y x x x =-++,
令0y '=,有2
6 4.4 1.60x x -++=,
即2
151140x x --=,解得11x =,24
15
x =-
(不合题意,舍去). 当x =1时,y 取得最大值,即max 2 2.2 1.6 1.8y =-++=, 这时,高为3.221 1.2-⨯=.
答:容器的高为1.2m 时容积最大,最大容积为3
1.8m .。

相关文档
最新文档