黄冈实验学校2017-2018学年度下学期高一年级数学期中考试试卷

合集下载

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<2.已知集合A={x|x2≥1},,则A∩(∁RB)=()A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.175.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±647.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S138.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.201512.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016= .16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a 2n ,求数列{b n }的前n 项和T n .20.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c 且acosC ,bcosB ,ccosA 成等差数列. (1)求B 的值;(2)求2sin 2A ﹣1+cos (A ﹣C )的取值范围.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成.已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A 1B 1=x 米,求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<【考点】2K:命题的真假判断与应用.【分析】举例说明A、C、D错误,利用反证法说明B正确.【解答】解:a、b为非零实数,且a<b.当a=﹣2,b=1时,有a<b,但a2>b2,故A错误;若a<0,b>0,则<;若a<b<0,假设<,则ab2>a2b,即b>a,假设成立;若b>a>0,假设<,则ab2>a2b,即b>a,假设成立.综上,<,故B正确;当a=﹣2,b=1时,有a<b,但a2b>ab2,故C错误;当a=﹣2,b=1时,有a<b,但,故D错误.故选:B.2.已知集合A={x|x2≥1},,则A∩(∁B)=()RA.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】分别求解一元二次不等式和分式不等式化简集合A,B,然后利用交、并、补集的混合运算得答案.【解答】解:A={x|x2≥1}={x|x≤﹣1或x≥1},由,得0<x≤2,∴={x|0<x≤2},∴∁RB={x|x≤0或x>2},∴A∩(∁RB)=(﹣∞,﹣1)∪(2,+∞).故选:C.3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.【考点】HR:余弦定理.【分析】利用余弦定理可得A,再利用三角形面积计算公式即可得出.【解答】解:△ABC中,∵a2=b2+c2﹣bc,∴cosA==,又A∈(0,π),∴A=,又bc=2,∴△ABC的面积S=sinA==,故选:D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.17【考点】8H:数列递推式.【分析】利用递推关系可得:an+3=an,再利用数列的周期性即可得出.【解答】解:∵a1=3,an+1=﹣(n∈N*),∴a2=﹣,同理可得:a3=,a4=3,…,∴an+3=an,∴a16=a1=3,能使an=3的n可以等于16.故选:C.5.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.【考点】HP:正弦定理.【分析】由题意设a=7k、b=4k、c=5k(k>0),由余弦定理求出cosA的值,由正弦定理和二倍角的正弦公式化简所求的式子,可得答案.【解答】解:∵,∴设a=7k、b=4k、c=5k,(k>0)在△ABC中,由余弦定理得cosA==,由正弦定理得===,故选:C.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±64【考点】88:等比数列的通项公式.【分析】利用等比数列通项公式及其性质即可得出.【解答】解:设此等比数列为{an },公比为q,a1=1,a5=16,∴a3==4.则a2a3a4==64.故选:C.7.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S13【考点】84:等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式能求出a6=1,从而利用等差数列的前n项和公式能求出S11.【解答】解:∵等差数列{an }的前n项和记为Sn,a2+a6+a10=3,∴3a6=3,解得a6=1,∴.∴各和数S6,S11,S12,S13中可确定值的是S11.故选:B.8.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【考点】HR:余弦定理;HP:正弦定理.【分析】由题意和余弦定理变形已知式子可得b=c,结合A=60°可判.【解答】解:∵在△ABC中A=60°,a2=bc,∴由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc,∴bc=b2+c2﹣bc,即(b﹣c)2=0,∴b=c,结合A=60°可得△ABC一定是等边三角形.故选:D9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列【考点】87:等比数列.【分析】可根据数列{an }的前n项和Sn=2n+t(t是实常数),求出a1,以及n≥2时,an,再观察,t等于多少时,{an}是等比数列即可.【解答】解:∵数列{an }的前n项和Sn=2n+t(t为常数),∴a1=s1=2+t,n≥2时,an =sn﹣sn﹣1=2n+t﹣(2n﹣1+t)=2n﹣2n﹣1=2n﹣1当t=﹣1时,a1=1满足an=2n﹣1故选:B10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)【考点】3R:函数恒成立问题.【分析】不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立,利用判别式小于0,即可求出实数m的取值范围.【解答】解:不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立∴[2(3﹣m)]2﹣4×2×(3﹣m)<0,故m的取值范围为(1,3).故选:A.11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.2015【考点】8F:等差数列的性质.【分析】正项等差数列{an }满足a1+a2015=2,可得a1+a2015=2=a2+a2014,再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵正项等差数列{an }满足a1+a2015=2,∴a1+a2015=2=a2+a2014,则=(a2+a2014)=≥=2,当且仅当a2=a2014=1时取等号.故选:B.12.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤【考点】3W:二次函数的性质.【分析】不等式等价变化为a≤=+,则求出函数Z=+的最小值即可.【解答】解:依题意,不等式2x2﹣axy+y2≤0等价为a≤=+,设t=,∵x∈[1,2]及y∈[1,3],∴≤≤1,即≤≤3,∴≤t≤3,则Z=+=3t+,∵3t+≥2=2,当且仅当3t=,即t=时取等号,故a≤2,故选:B.二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.【考点】74:一元二次不等式的解法.【分析】由一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),可知:﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,利用根与系数的关系可得a,b.进而解出一元一次不等式ax+b<0的解集.【解答】解:∵一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),∴﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,∴﹣3+1=﹣a,﹣3×1=b,解得a=2,b=﹣3.∴一元一次不等式ax+b<0即2x﹣3<0,解得.∴一元一次不等式ax+b<0的解集为.故答案为:.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为{x|x<3} .【考点】7E:其他不等式的解法.【分析】根据函数的表达式解关于x≥2时的不等式f(x)<即可.【解答】解:∴f(x)=,∴x<2时,不等式f(x)<恒成立,x≥2时,x﹣<,解得:2≤x<3,综上,不等式的解集是:{x|x<3},故答案为:{x|x<3}.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016=18 .【考点】88:等比数列的通项公式.【分析】由4x2﹣8x+3=0,解得x=,.根据{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,可得a2013=,a2014=.q=3.即可得出.【解答】解:由4x2﹣8x+3=0,解得x=,.∵{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,∴a2013=,a2014=,∴q=3.∴a2015+a2016=q2(a2013+a2014)=18.故答案为:18.16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.【考点】HT:三角形中的几何计算.【分析】根据,利用向量的性质建立关系与余弦定理结合可得A的大小.b和c的等差中项为,根据等差中项性质,可得b+c=1.△ABC面积S=bcsinA,利用基本不等式可得最大值.【解答】解:向量,,∵,∴b(b﹣c)+(c﹣a)(c+a)=0.得:b2﹣bc=﹣c2+a2.即﹣a2+b2+c2=bc由余弦定理:b2+c2﹣a2=2bccosA可是:bc=2bccosA.∴cosA=.∵0<A<π∴A=又b和c的等差中项为,根据等差中项性质,可得b+c=1.∴b+c,(当且仅当b=c时取等号)可得:bc≤.则△ABC面积S=bcsinA≤=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【考点】3W:二次函数的性质;74:一元二次不等式的解法.【分析】(1)直接利用二次不等式转化求解即可.(2)利用函数恒成立,分离变量,利用函数的最值求解即可.【解答】解:(1)当a=﹣2时,不等式f(x)>2可化为x2+3x﹣4>0,解得{x|x<﹣4或x>1} …(2)若对任意的x∈[1,+∞),f(x)>0恒成立,则a>﹣x2﹣3x在x∈[1,+∞)恒成立,设g(x)=﹣x2﹣3x则g(x)在区间x∈[1,+∞)上为减函数,当x=1时g(x)取最大值为﹣4,∴a得取值范围为{a|a>﹣4} ….18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】HX:解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =a2n,求数列{bn}的前n项和Tn.【考点】8M:等差数列与等比数列的综合.【分析】(Ⅰ)运用等比数列的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(Ⅱ)设bn =a2n=2n+1+1,运用分组求和的方法,结合等比数列的求和公式,计算即可得到Tn.【解答】解:(I)依题意,a1,a4,a13成等比数列.即有a42=a1a13,则,解得,因此an =a1+(n﹣1)d=3+2(n﹣1)=2n+1,即an=2n+1.(Ⅱ)依题意,.Tn =b1+b2+…+bn=(22+1)+(23+1)+…+(2n+1+1),=22+23+…+2n+1+n==2n+2+n﹣4.20.在△ABC中,角A,B,C所对边分别为a,b,c且acosC,bcosB,ccosA成等差数列.(1)求B的值;(2)求2sin2A﹣1+cos(A﹣C)的取值范围.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由于acosC,bcosB,ccosA成等差数列,可得2bcosB=acosC+ccosA,再利用正弦定理、和差化积、诱导公式等即可得出.(2)由,可得A﹣C=2A﹣,再利用倍角公式即可化为2sin2A﹣1+cos(A﹣C)=,由于,可得<π,即可得出.【解答】解:(1)∵acosC,bcosB,ccosA成等差数列,∴2bcosB=acosC+ccosA,由正弦定理可得:2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵B∈(0,π),sinB ≠0,∴cosB=,B=.(2)∵,∴A﹣C=2A﹣,∴=,∵,∴<π,∴<≤1,∴2sin2A﹣1+cos(A﹣C)的取值范.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?【考点】7G:基本不等式在最值问题中的应用;5C:根据实际问题选择函数类型.【分析】(1)利用休闲区A1B1C1D1的面积为4000平方米,表示出,进而可得公园ABCD所占面积S关于x的函数S(x)的解析式;(2)利用基本不等式确定公园所占最小面积,即可得到结论.【解答】解:(1)由A1B1=x米,知米∴=(2)当且仅当,即x=100时取等号∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.【考点】8K :数列与不等式的综合;8E :数列的求和;8I :数列与函数的综合.【分析】(Ⅰ)利用已知条件得出数列的通项和前n 项和之间的等式关系,再结合二者间的基本关系,得出数列{a n }的通项公式,根据{b n }的相邻两项满足的关系得出递推关系,进一步求出其通项公式;(Ⅱ)利用放缩法转化各项是解决该问题的关键,将所求的各项放缩转化为能求和的一个数列的各项估计其和,进而达到比较大小的目的;(Ⅲ)利用错位相减法进行求解T n 是解决本题的关键,然后对相应的和式进行估计加以解决.【解答】解:(Ⅰ)由题意可得2a n =s n+2, 当n=1时,a 1=2,当n ≥2时,有2a n ﹣1=s n ﹣1+2,两式相减,整理得a n =2a n ﹣1即数列{a n }是以2为首项,2为公比的等比数列,故a n =2n .点P (b n ,b n+1)在直线x ﹣y+2=0上得出b n ﹣b n+1+2=0,即b n+1﹣b n =2, 即数列{b n }是以1为首项,2为公差的等差数列, 因此b n =2n ﹣1.(Ⅱ)B n =1+3+5+…+(2n ﹣1)=n 2 ∴=. (Ⅲ)T n =①②①﹣②得∴又∴满足条件Tn<c的最小值整数c=3.。

湖北省黄冈市2017-2018学年高一下学期期末考试数学(理)试题(WORD版)

湖北省黄冈市2017-2018学年高一下学期期末考试数学(理)试题(WORD版)

黄冈 2017-2018下期末数学试题(理科) 2018年7月9日上午8: 00〜10: 00本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,总分150分,考试时间120分钟注意事项:1.答题前请将密封线内的项目填写清楚。

2.请将第I 卷和第Ⅱ卷的答案统一填写在“答题卷”中,否则作零分处理。

一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

)1.200)15cos 15(sin +的值为 A. 23 B. 21 C. 23 D. 43 2.已知a >b>0,则下列不等式一定成立的是A. b a 1+>a b 1+ B. bb a a 11+≥+ C. 11++≥a b a b D. a a b b 11-≥- 3. 函数43)1ln(2+--+=x x x y 定义域为A.(-4,-l)B.( -4,1)C.( -1,1)D. ( -1,1]4. 已知直线02)1()1(:1=-++-y a x a l 和012)1(:2=++-y x a l 互相垂直,则a 的值为A. -1B.OC. 1D.25.在△ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,若b A B c C B a 21cos sin cos sin =+且 a > b,则 ∠B =A. 6πB. 3πC. π32D. π65 6.已知{n a }为等比数列,1a >0,8,26574-==+a a a a ,则=+101a aA. 7B. 5C. -5D. -76.设a ,b 是两条不同的直线,βα,是两个不同的平面,则能得出a 丄b 的是A. a 丄α,b//β,βα⊥B. a 丄α,β⊥b ,α//βC. α⊂a ,β⊥b ,α//βD. α⊂a ,6//β,βα⊥8.设等差数列{n a }的前n 项和为)(*∈N n S n , 当首项1a ,和公差d 变化时,若1185a a a ++ ,是一个定值,则下列各数中为定值的是A. 15SB. 16SC. 17SD. 18S9.若某几何体的三视图(单位:cm)如图所示,俯视图为两同心圆,则此几何体的体积是(附:圆台体积公式为h r r r r V )(31222121++=π .A. 335cm πB. 33106cm πC. 370cm πD. 33212cm π 10.数列{n a }满足⎪⎪⎩⎪⎪⎨⎧≤≤=-+1<21,221<0,211n n n n n a a a a a ,若531=a ,则=2018a A. 51 B. 52 C. 53 D. 54 11.直三棱柱ABC - A 1B 1C 1中,若10,90AA AC AB BAC ===∠,则异面直 线BA 1与AC 1所成的角等于A. 30°B.45°C. 60°D. 90°12.设R x ∈,对于使M x x ≤+-22成立的所有常数M 中,我们把M 的最小值1叫做x x 22+-的上确界。

2017-2018高一下期中数学试题

2017-2018高一下期中数学试题

2017-2018学年度第二学期高一年级期中考试数学试题(考试时间:120分钟,满分160分)一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.若直线l 过两点()()6,3,2,1B A ,则l 的斜率为 .2.已知等差数列{}n a 中,7,141==a a ,则它的第5项为__________. 3.在△ABC 中,角A,B,C 的对边分别为,,a b c,若60a A ︒==,则=Bbsin ________.4.不等式01<-xx 的解集为 . 5.在△ABC 中,角A,B,C 的对边分别为,,a b c ,若(a +c )(a -c )=b (b +c ),则A =________. 6.若点()t P ,2-在直线062:=++y x l 的上方,则t 的取值范围是 . 7.已知点()1,1-A 与点B 关于直线03:=+-y x l 对称,则点B 坐标为 . 8.若圆M 过三点()()()1,3,4,2,1,7A B C -,则圆M 的面积为__________.9.若方程组23{22ax y x ay +=+=无解,则实数a =_____.10.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若15323S S S +=,则{}n a 的公比等于__________.11.已知实数x,y 满足⎪⎩⎪⎨⎧≤+≥≥200y x y x ,若{}y x y x z 24,3max --=,则z 的取值范围是____________.({}b a ,m ax 表示b a ,中的较大数) 12.已知实数x,y 满足322=+y x ,22y x ≠,则()()22222122y x y x y x -+++的最小值为____________.13.已知数列{}n a 的前n 项和为n S ,若1,,51221=-=+=+n n n n a a n a a a ,则100S =___________.14.在△ABC 中,角A,B,C 所对的边分别为c b a ,,,且32co s 422=-+C ab b a ,则A B C∆的面积的最大值为___________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分14分)如图,在ABC ∆中, 4AB B π=∠=, D 是BC 边上一点,且3ADB π∠=.(1)求AD 的长;(2)若10CD =,求AC 的长. 16.(本小题满分14分)已知函数1)1()(2++-=x a a x x f ,(1)当2a =时,解关于x 的不等式0)(≤x f ; (2)若0>a ,解关于x 的不等式0)(≤x f . 17.(本小题满分14分)已知正项等差数列{}n a 的前n 项和为n S ,且满足63,7272351==+S a a a . (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1111,++=-=n n n a b b a b ,若数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和为n T ,求使得20k T n <对任意的*N n ∈都成立的最小正整数k 的值. 18.(本小题满分16分)如图所示,直角三角形ABC 是一块绿地,90C =,20AC =米,50BC =米,现要扩大成更大的直角三角形DEF 绿地,其斜边EF 过点A ,且与BC 平行,DE 过点C ,DF 过点B .(1)设∠=BCD α,试用α表示出三角形DEF 面积S (平方米);(2)如果在新增绿地上种植草皮,且种植草皮的费用是每平方米100元,那么在新增绿地上种植草皮的费用最少需要多少元? 19.(本小题满分16分)已知圆C 过A (0,2)且与圆M :04822=+++y x y x 切于原点. (1)求圆C 的方程;(2)已知D 为y 轴上一点,若圆C 上存在两点M ,N ,使得2π=∠MDN ,求D 点纵坐标的取值范围;(3)12,l l 是过点B (1,0)且互相垂直的两条直线,其中1l 交y 轴于点E ,2l 交圆C 于P 、Q 两点.求三角形EPQ 的面积的最小值. 20. (本小题满分16分)已知数列{}n a 满足112++-=n n n n a a a a ,且*1,21N n a ∈=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:⎪⎪⎩⎪⎪⎨⎧=-=++-=+k n a a k n n n b nn n 2,12,111122()*∈N k ,求{}n b 的前n 项和n S (用n 表示); (3)设nn a C 1=,n T 为{}n C 前n 项和,从{}n C 中抽取一个公比为q 的等比数列{}n k C ,其中11=k ,且*∈<<<<N k k k k n n ,21 ,若关于()*∈N n n 的不等式12+>n n k T 有解,求q 的值.数学试题参考答案1.2 2.9 3.2 4.{}10<<x x 5.120° 6.()+∞-,2 7.()2,2-8.π25 9.2± 10.2 11.[]8,2- 12.5913.1314 14.5515.解:(1)在ABD ∆中,由正弦定理得sin sin AD ABB ADB=∠,=∴6AD=(2)∵3ADBπ∠=,∴23ADCπ∠=在ACD∆中,由余弦定理得13610026101962⎛⎫=+-⨯⨯⨯-=⎪⎝⎭∴14AC=16.解:(1)当2a=时得()2111210202222x x x x x⎛⎫⎛⎫-++≤∴--≤∴≤≤⎪ ⎪⎝⎭⎝⎭,解集为1[,2]2(2)∵不等式0))(1()(≤--=axaxxf,0>a当10<<a时,有aa>1,∴不等式的解集为}1|{axax≤≤;当1>a时,有aa<1,∴不等式的解集为}1|{axax≤≤;当1=a时,不等式的解集为{1}.17.解:(1)12+=nan(2)321+=-+nbbnn,当2≥n时,()()()112211bbbbbbbbnnnnn+-++-+-=---=()2+nn又31=b也满足上式,所以()2+=nnbnkkTn∴≤∴<204343的最小正整数值为15.18.(1)αααααcos20sin50tan,sin20cos50+==+=DEDFDE(2)设新增绿地上种植草皮的费用为当且仅当52cossin=αα即542sin=α时等号成立答:(1)⎪⎭⎫⎝⎛∈+⎪⎭⎫⎝⎛+=∆2,0,1000cossin4cossin2550παααααDEFS(2)新增绿地上种植草皮的费用最少需要15万元.19.(1)圆C 方程为:22(2)(1)5x y -+-=(2)设()t D ,0,则()61611014102+≤≤-∴≤-+∴≤t t CD所以D 点纵坐标范围是[]61,61+-;(3)(i )当直线2l :1x =时,直线1l 的方程为0y =,此时,2EPQS =;(ii )当直线2l 的斜率存在时,设2l 的方程为:(1)yk x =-(0k ≠),则1l 的方程为:1(1)y x k =--,点1(0,)E k.所以,BE =又圆心C到2l 的距离为1|1|2+-k k ,所以,222214242)1|1|(52k k k k k PQ +++=+--=.故12EPQSBE PQ =⋅==≥因为22<所以,()2EPQ min S =. 20.解:(1)由112++-=n n n n a a a a ,得:21,21111==-+a a a n n ⎭⎬⎫⎩⎨⎧∴n a 1是首项为2公差为2的等差数列,所以()na n n a n n 2122121=∴=-+= (2)由(1)可得()⎪⎭⎫⎝⎛+-=+=+111411411n n n n a a n n ,当n 为偶数时,()2422214121212131212114122224202++=⎪⎭⎫ ⎝⎛+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=∴n n n n n n n n n S n 当n 为奇数时,()211141211--+++-+-=+=-n n n n n b S S n n n =()14121+-++n n n ()()⎪⎪⎩⎪⎪⎨⎧+-++++=∴为奇数为偶数n n n n n n n n S n ,14121,242; (3)()1,2+==n n T n C n n ,1122--=∴==n n n n k q k q k C n ,由*∈<<<<N k k k k n n ,21 ,得*∈>N q q ,112+>n n k T 即()()11212>+∴>+nn qn n q n n 当3,2=q 时均存在n 满足上式,下面证明*∈≥N q q ,4时,不满足题意, 设()nn qn n e 12+=, {}n e ∴递减,()112141≤+=∴≤=n n qn n e q e 综上, 3,2=q .。

2017-2018学年高一下学期期中统一考试数学试题Word版含答案

2017-2018学年高一下学期期中统一考试数学试题Word版含答案

2017-2018学年高一下学期期中统一考试数学试题一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一个正确选项) 1、经过1小时,时针旋转的角是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 2、已知,2παπ⎛⎫∈⎪⎝⎭,3tan 4α=-,则sin()απ+=( )A .35- B .35 C .45- D .45 3、一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( )A .2π B .3πC4 )项. A.21 B.22 C.23 D.245、在四边形ABCD 中,)2,1(=,)2,4(-=,则该四边形的面积为( ) A.5 B.52 C.5 D.106、在ABC ∆中1tan tan )tan (tan 3-=+C B C B ,则A 2sin =( )A .23-B .23C .2D .217、已知函数200f x sin x ωϕωϕπ=+()()(>,<<),且函数 的图象如图所示,则点(ωϕ, )的坐标是( )A .B .C .D .8、函数y = ) A .[2,2]()33k k k Z ππππ-+∈ B .[2,2]()66k k k Z ππππ-+∈C .2[2,2]()33k k k Z ππππ++∈ D .22[2,2]()33k k k Z ππππ-+∈9、记0sin(cos 2016)a =,0sin(sin 2016)b =,0cos(sin 2016)c =,cos(cos 2016)d =︒,则( ) A .d c b a >>> B .c d b a >>> C .d c a b >>> D .a b d c >>> 10、40sin 125cos 40cos -=( )A. 1B.3C.2D.211、已知函数)0)(cos 3(sin cos )(>+=ωωωωx x x x f ,如果存在实数0x ,使得对任意的实数x ,都有)2016()()(00π+≤≤x f x f x f 成立,则ω的最小值为( )A .40321 B .π40321 C .20161 D .π2016112、已知点O 是锐角ABC ∆的外心,3,12,8π===A AC AB .若y x +=,则=+y x 96( )A.6B.5C.4D.3 二、填空题(本大题共4小题,每小题5分,共20分)13、已知角)(παπα<≤-的终边过点)32cos ,32(sinππP ,则=α .14、已知向量,a b 满足2,3a b == ,且2a b -=a 在向量b 方向上的投影为 .15、已知x ,y 均为正数,0,4πθ⎛⎫∈ ⎪⎝⎭,且满足sin cos x y θθ=,()222222cos sin 174x y x y θθ+=+,则x y 的值为 .16、给出下列五个命题:①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x =的图象关于点(2π,0)对称; ③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k ∈Z ;⑤函数()sin 2sin [2]0f x x x x π=+∈,,的图像与直线y k =有且仅有两个不同的交点,则k 的取值范围为()1,3.其中正确命题的序号为 .三、解答题(本大题共6题,共70分,17题10分,其余5题各12分.解答应写出文字说明,证明过程或演算步骤) 17、已知4π<α<4π3,0<β<4π,cos (4π+α)=-53,sin (4π3+β)=135,求sin (α+β)的值.18.已知12,e e 是平面内两个不共线的非零向量,122AB e e =+ ,12BE e e λ=-+ ,122EC e e =-+,且,,A E C 三点共线.(1)求实数λ的值;(2)已知12(2,1),(2,2)e e ==-,点(3,5)D ,若,,,A B C D 四点按逆时针顺序构成平行四边形,求点A 的坐标.19、已知]43,4[,2)26sin(2)(πππ∈++-=x b a x a x f . (1)若Q b Q a ∈∈,,)(x f 的值域为}133|{-≤≤-y y ,求出a 、b 的值 (2)在(1)的条件下,求函数)(x f 的单调区间.20、已知向量)cos 2cos ,sin 2(sin ),sin ,(cos ),sin ,(cos αααα++===x x x x ,其中0πx α<<<. (1)若π4α=,求函数x f ∙=)(的最小值及相应x 的值; (2)若a 与b 的夹角为π3,且a c ⊥ ,求tan2α的值.21、已知函数)22,0()sin()(πϕπωϕω<<->++=b x x f 相邻两对称轴间的距离为2π,若将)(x f 的图像先向左平移12π个单位,再向下平移1个单位,所得的函数)(x g 为奇函数。

云南省昆明市黄冈实验学校2017-2018学年高一下学期第

云南省昆明市黄冈实验学校2017-2018学年高一下学期第

昆明黄冈实验学校2017-2018学年下学期第三次月考试卷高一年级数学高一数学;考试时间:120分钟;总分:150分第I卷(选择题共60分)一、选择题(共60分)1、(本题5分)已知集合,,则的子集个数为()A.2 B.4 C.7 D.82、(本题5分)在中,角的对边分别为,若,则( )A.60° B.120°C.45° D.30°3、(本题5分)圆的圆心坐标和半径分别是A .B .C .D .4、(本题5分)在△ABC中,B=45°,C=30°,c=1,则b=A .B .C .D .5、(本题5分)已知中,角的对边分别为,已知,,,则此三角形()A.有一解 B.有两解 C.无解 D.不确定6、(本题5分)中,角的对边分别为,已知,,,则()A .B .C .D .7、(本题5分)下图中,能表示函数的图像的是()A . B . C . D .8、(本题5分)若数列满足,,则()A .B .C .D .9、(本题5分)已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A . B.1 C.- D.-110、(本题5分)数列的前几项为,则此数列的通项可能是()A .B .C .D .11、(本题5分)直线截圆所得的弦长为()A .B .C .D .12、(本题5分)已知等差数列中,,,则的值为()A.15 B.17 C.22 D.64第II卷(非选择题共90分)二、填空题(共20分)13、(本题5分)已知点与点,则的中点坐标为__________.14、(本题5分)已知空间两点,,则它们之间的距离为__________.15、(本题5分)已知,,则以为直径的圆的方程为___________.16、(本题5分)如图,根据图中数构成的规律,所表示的数是__________.三、解答题(共70分,17题10分其各题每题12分,要求写出必要的解题)17、(本题10分)在等差数列{a n}中,a12=23,a42=143,a n=239,求n及公差d.18、(本题12分)如图,在中,,是边上一点,且.(1)求的长;(2)若,求的长及的面积.19、(本题12分)在中,内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若,求.20、(本题12分)已知直线;.(1)若,求的值.(2)若,且他们的距离为,求的值.21、(本题12分)已知圆经过两点,并且圆心在直线上。

2017-2018学年度第二学期期中考试高一数学答案

2017-2018学年度第二学期期中考试高一数学答案

2017-2018学年度第二学期期中考试高一年级数学答案2018.5一.选择题1-5:CBCCB 6-10:DABDD 11-12:AD二.填空题1310y +-=14.90o15.②③16.()22225x y ++=三.解答题17.(本小题满分10分) 解:(1)设边AB 所在的直线的斜率为,则. 它在y 轴上的截距为3.所以,由斜截式得边AB 所在的直线的方程为 (2)B(1,5).,, 所以BC 的中点为. 由截距式得中线AD 所在的直线的方程为:,即18.(本小题满分10分) 解:过点作于点, ,,所以,所以 所以四边形绕着直线旋转一周所形成的封闭几何体为一个底面半径为,母线为的圆柱及一个底面半径为,高为的圆锥的组合体.(II19.(本小题满分10分)解:(1)证明:连结BD .在长方体1AC 中,对角线11//BD B D .又Q E .F 为棱AD .AB 的中点,//EF BD ∴.11//EF B D ∴.B BE AD ⊥D 45DAB ∠=o 2BE =1DE =ABCD AD 2122又B 1D 1Ì平面11CB D ,EF ⊄平面11CB D ,∴EF ∥平面CB 1D 1.(2)Q 在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1Ì平面A 1B 1C 1D 1,∴AA 1⊥B 1D 1.又Q 在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴B 1D 1⊥平面CAA 1C 1.又Q B 1D 1Ì平面CB 1D 1,∴平面CAA 1C 1⊥平面CB 1D 1.20.(本小题满分12分)解: (1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16,此即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图,则直线l 是此圆的切线,连接CQ ,则|QM |=|CQ |2-|CM |2=|CQ |2-16.当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42, ∴|QM |最小=4.21.(本小题满分14分)解:(1)Θ棱柱ABCD —1111A B C D 的所有棱长都为2,∴四边形ABCD 为菱形,AC BD ⊥ .又1A O ⊥平面ABCD,BD ⊂平面ABCD ,1AO BD ∴⊥ . -----------2分 又1AC AO O =Q I ,1,AC AO ⊂平面11ACC A , ⊥∴BD 平面11ACC A ,⊂1AA Θ平面11ACC A ,∴ BD ⊥1AA . -----------4分(2)连结1BCΘ四边形ABCD 为菱形,AC BD O =IO ∴是BD 的中点. 又Θ点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , -----------6分 ⊄OF Θ平面11BCC B ,⊂1BC 平面11BCC B ∴//OF 平面11BCC B -----------8分(3)Θ1A O ⊥平面ABCD ∴直线1A D 与平面ABCD 所成的角为1A DO ∠--------10分又Θ侧棱1AA 与底面ABCD 的所成角为60o∴011602A O AA ===sin 01601AO AA ==cos 在菱形ABCD 中,AC BD ⊥,OD == -----------12分 ∴11tan 1AO A DO DO∠==,从而0145A DO ∠= 故直线1A D 与平面ABCD 所成的角为045 -----------14分22.(本小题满分14分)解:(1)设圆的圆心为,半径为,则有 ,解得 所以圆的方程为. (2), 设,,所以,因为,所以,所以,从而的取值范围为. C (),1a a -R C Q2244x y x y +++。

云南省昆明市黄冈实验学校2017-2018学年高一下学期期中考试数学试题及答案解析

云南省昆明市黄冈实验学校2017-2018学年高一下学期期中考试数学试题及答案解析

云南省昆明市黄冈实验学校2017-2018学年高一下学期期中考试数学试题一、选择题1.集合{1,2,3}的子集的个数是( )A.7 B.4 C.6 D.8【答案】D【解析】子集的个数是个,故选D.2.设集合,若,则的值为()A.B.C.D.【答案】A【解析】,若,不满足集合元素的互异性,故,故结果选A.3.若直线的倾斜角为,则等于()A.B.C.D.不存在【答案】A【解析】直线平行于轴,倾斜角为,故选.4.平面与△ABC的两边AB,AC分别交于点D,E,且AD︰DB=AE︰EC,如图,则BC与的位置关系是()A.异面B.相交C.平行或相交D.平行【答案】D【解析】在中,因为,所以,又平面,平面,故平面,选D.5.若直线过点(1,2),(4,2+)则此直线的倾斜角是()A.B.C.D.【答案】A【解析】设直线的倾斜角为,则,又,故选A.6.已知,,,若直线的斜率为1,则直线的斜率为()A.B.C.D.4【答案】B【解析】由题,直线的斜率为1,则,则直线的斜率为,故选B7.过两点,的直线的倾斜角是,则()A.B.C.D.【答案】D【解析】斜率,故选D.8.已知两直线.和平面,若,,则直线.的关系一定成立的是()A.与是异面直线B.C.与是相交直线D.【答案】B【解析】当一条直线垂直于一个平面,则此直线垂直于这个平面内的所有直线.故答案选9.要得到函数y=sin x的图像,只需将函数的图像()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】C【解析】将函数的图像向左平移个单位得到. 故选C.10.设是两条不同的直线,是两个不同的平面,下列命题中不正确的是()A.若,,,则B.若,,,则C.若,,则D.若,,,则【答案】D【解析】选项A中,由于,故,又,故,A正确;选项B中,由得或,又,故只有,故B正确. 选项C中,由面面垂直的判定定理可得C正确.选项D中,由题意得的关系可能平行.相交.垂直.故D不正确.综上可知选项D不正确.选D.11.下图是某几何体的三视图,则此几何体可由下列哪两种几何体组合而成()A.两个长方体B.两个圆柱C.一个长方体和一个圆柱D.一个球和一个长方体【答案】C【解析】上面那部分,正视图,侧视图均为矩形,俯视图为圆,所以是圆柱;下面那部分,正视图,侧视图,俯视图均为矩形,所以为长方体,所以该几何体是由一个圆柱和一个长方体组成.故选C.12.已知一个几何体的三视图如图所示,则这个几何体的体积是()A.B.C.D.【答案】B【解析】几何体为一个圆柱去掉一个内接圆锥,所以体积为,选B.二、填空题13.已知直线与直线有相同的斜率,且,则实数的值是____________.【答案】【解析】依题意有,解得.14.已知球的体积是,则球的表面积为_________.【答案】【解析】球的体积为,球的半径,球的表面积.15.已知,且是第二象限角,则___________.【答案】【解析】∵是第二象限角,∴.又,∴.答案:16.一个几何体的表面展开平面图如图,该几何体中的与“数”字面相对的是“__________”字面.【答案】学【解析】把平面图还原是一个三棱台,两个三角形分别为上下底面,所以与数对应的是学故答案为学.三、解答题17.已知全集,集.(1)求集合;(2)求集合.解:(1)由题意得.(2)因为,所以.18.已知定义在上的偶函数,当时,.(1)求的解析式;(2)若,求实数的值.解:(1)设,则,∴,又为偶函数,∴,∴,故.(2)当时,;当时,.故.19.已知直线经过点,且斜率为.(1)求直线的方程.(2)求与直线平行,且过点的直线方程.(3)求与直线垂直,且过点的直线方程.解:(1)由题设有,整理得.(2)设所求直线方程为,代入点,解得,所以直线方程为.(3)所求直线方程为,化简得,所以直线方程为.20.如图,在平行四边形中,点.()求所在直线的斜率.()过点做于点,求所在直线的方程.解:()点,点,故,所在直线的斜率为.()∵OC∥AB,∴.∵,∴.又点,故为,即.故所在直线的方程.21.如图所示,在四面体中,,,两两互相垂直,且.(1)求证:平面平面;(2)求二面角的大小;(3)若直线与平面所成的角为,求线段的长度.解:(1)∵,,∴平面.又平面,∴平面平面.(2)∵,,∴平面.∴.∴是二面角的平面角.在中,∵,∴.∴二面角的大小为.(3)过点作,垂足为,连接.∵平面平面,∴平面,∴为与平面所成的角.∴.在中,,∴.又∵在中,,∴,∴在中,.22.如图所示,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,且满足.(1)求证:四边形EFGH是梯形;(2)若BD=a,求梯形EFGH的中位线的长.(1)证明:因为==,所以EH∥BD,且EH=BD.因为==2,所以FG∥BD,且FG=BD.因而EH∥FG,且EH=FG,故四边形EFGH是梯形.(2)解:因为BD=a,所以EH=a,FG=a,所以梯形EFGH的中位线的长为(EH+FG)=a.。

湖北省黄冈市2017-2018学年高一下学期期末数学试卷 Word版含解析

湖北省黄冈市2017-2018学年高一下学期期末数学试卷 Word版含解析

湖北省黄冈市2017-2018学年高一下学期期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.2.(5分)对于实数a,b,c,下列正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b<0,则D.若a<b<0,则3.(5分)已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A.0或1 B.1或C.0或D.4.(5分)已知x>2,则函数y=的最小值是()A.5B.4C.8D.65.(5分)一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.76.(5分)关于直线m,n与平面α,β,有以下四个:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n;其中真的序号是()A.①②B.③④C.①④D.②③7.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°8.(5分)已知点A(1,3),B(﹣2,﹣1),若直线l:y=k(x﹣2)+1与线段AB没有交点,则k的取值范围是()A.B.k≤﹣2 C.,或k<﹣2 D.9.(5分)设等差数列{a n}满足=1,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.(,)B.C.(,)D.10.(5分)若正实数a,b满足a+b=1,则()A.有最大值4 B.a b有最小值C.有最大值D.a2+b2有最小值11.(5分)点M(x,y)是不等式组表示的平面区域Ω内的一动点,且不等式2x﹣y+m≥0恒成立,则的取m值范围是()A.m≥3﹣2B.m≥3 C.m≥0 D. m≥1﹣2 12.(5分)如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.A C⊥BEB.E F∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡的相应位置. 13.(5分)经过点P(3,﹣1),且在x轴上的截距等于在y轴上的截距的2倍的直线l的方程是.14.(5分)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是.15.(5分)△ABC中角A,B,C的对边分别为a,b,c,已知∠A=60°,a=,b=x.若满足条件的三角形有两个.则x的范围是.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤17.(10分)已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式:>0(c为常数).18.(12分)设公差不为0的等差数列{a n}的首项为1,且a2,a5,a14构成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足,n∈N*,求{b n}的前n项和T n.19.(12分)△ABC中,A,B,C所对的边分别为a,b,c,,sin(B﹣A)=cosC.(1)求A,C;(2)若S△ABC=,求a,c.20.(12分)已知直线方程为(2﹣m)x+(2m+1)y+3m+4=0.(1)证明:直线恒过定点;(2)m为何值时,点Q(3,4)到直线的距离最大,最大值为多少?(3)若直线分别与x轴,y轴的负半轴交于A.B两点,求△AOB面积的最小值及此时直线的方程.21.(12分)A、B两仓库分别有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地.已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个.问如何调运,能使总运费最小?总运费的最小值是多少?22.(12分)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)求二面角A﹣ED﹣B的正弦值.湖北省黄冈市2014-2015学年高一下学期期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.考点:等比数列.分析:由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.解答:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.点评:本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.2.(5分)对于实数a,b,c,下列正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b<0,则D.若a<b<0,则考点:的真假判断与应用.专题:阅读型.分析:选项是不等式,可以利用不等式性质,结合特例逐项判断,得出正确结果.解答:解:A,当c=0时,有ac2=bc2 故错.B 若a<b<0,则a2﹣ab=a(a﹣b)>0,a2>ab;ab﹣b2=b(a﹣b)>0,ab>b2,∴a2>ab>b2故对C 若a<b<0,取a=﹣2,b=﹣1,可知,故错.D 若a<b<0,取a=﹣2,b=﹣1,可知,故错故选B.点评:本题考查真假,用到了不等式性质,特值的思想方法.3.(5分)已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A.0或1 B.1或C.0或D.考点:两条直线平行与倾斜角、斜率的关系.专题:计算题;分类讨论.分析:先检验当a=0时,是否满足两直线平行,当a≠0时,两直线的斜率都存在,由≠,解得a的值.解答:解:当a=0时,两直线的斜率都不存在,它们的方程分别是x=1,x=﹣1,显然两直线是平行的.当a≠0时,两直线的斜率都存在,故它们的斜率相等,由≠,解得:a=.综上,a=0或,故选:C.点评:本题考查两直线平行的条件,要注意特殊情况即直线斜率不存在的情况,要进行检验.4.(5分)已知x>2,则函数y=的最小值是()A.5B.4C.8D.6考点:基本不等式在最值问题中的应用;函数的最值及其几何意义.专题:函数的性质及应用;不等式的解法及应用.分析:根据分式函数的特点,进行整理,结合基本不等式的性质即可得到结论.解答:解:y===(x﹣2)+,∵x>2,∴x﹣2>0,则由基本不等式可得y=(x﹣2)+≥,当且仅当x﹣2=,即x﹣2=2,解得x=4时取等号,故函数的最小值为4,故选:B点评:本题主要考查函数最值的求解,利用分式函数的特点,结合基本不等式是解决本题的关键.5.(5分)一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.7考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是棱长为2的正方体,去掉两个全等的三棱锥,由此求出它的体积.解答:解:根据几何体的三视图,得;该几何体是棱长为2的正方体,在相对的两个顶点处各截去一个直三棱锥,如图所示;∴该几何体的体积为23﹣2×××12×1=.故选:A.点评:本题考查了空间几何体的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.6.(5分)关于直线m,n与平面α,β,有以下四个:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n;其中真的序号是()A.①②B.③④C.①④D.②③考点:空间中直线与平面之间的位置关系.分析:根据线面垂直的性质定理和线面平行的性质定理,对四个结论逐一进行分析,易得到答案.解答:解:若m∥α,n∥β且α∥β,则m,n可能平行也可能异面,也可以相交,故①错误;若m⊥α,n⊥β且α⊥β,则m,n一定垂直,故②正确;若m⊥α,n∥β且α∥β,则m,n一定垂直,故③正确;若m∥α,n⊥β且α⊥β,则m,n可能相交、平行也可能异面,故④错误故选D.点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a⊂α,b⊄α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄α,a⊄,a∥α⇒a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.7.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°考点:余弦定理的应用.专题:综合题.分析:先利用正弦定理,将角的关系转化为边的关系,再利用余弦定理,即可求得A.解答:解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.点评:本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.8.(5分)已知点A(1,3),B(﹣2,﹣1),若直线l:y=k(x﹣2)+1与线段AB没有交点,则k的取值范围是()A.B.k≤﹣2 C.,或k<﹣2 D.考点:两条直线的交点坐标.专题:直线与圆.分析:由已知条件画出图象并求出直线l与线段AB相交的条件,进而即可求出答案.解答:解:如图所示:由已知可得k PA=,.由此可知直线l若与线段AB有交点,则斜率k满足的条件是,或k≥﹣2.因此若直线l与线段AB没有交点,则k满足以下条件:,或k<﹣2.故选C点评:熟练掌握直线的斜率与直线的位置之间的关系是解决问题的关键.9.(5分)设等差数列{a n}满足=1,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.(,)B.C.(,)D.考点:数列与三角函数的综合.专题:等差数列与等比数列.分析:由已知条件推导出sin(a3﹣a6)=1,或sin(a3+a6)=0,由仅当n=9时,数列{a n}的前n项和S n取得最大值,推导出.由此能求出该数列首项a1的取值范围.解答:解:∵等差数列{a n}满足=1,∴(sina3cosa6﹣sina6cosa3)(sina3cosa6+sina6cosa3)=sin(a3+a6)=(sina3cosa6+sina6cosa3),∴sina3cosa6﹣sina6cosa3=1,即sin(a3﹣a6)=1,或sin(a3+a6)=0(舍)当sin(a3﹣a6)=1时,∵a3﹣a6=﹣3d∈(0,3),a3﹣a6=2kπ+,k∈Z,∴﹣3d=,d=﹣.∵=+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴﹣=9,化为.∴=.故选:C.点评:本题综合考查了等差数列的通项公式及其性质、三角函数的平方关系和倍角公式、特殊角的三角函数等基础知识与基本技能方法,属于难题.10.(5分)若正实数a,b满足a+b=1,则()A.有最大值4 B.a b有最小值C.有最大值D.a2+b2有最小值考点:基本不等式.专题:计算题.分析:由于==2+≥4,故A不正确.由基本不等式可得a+b=1≥2,可得ab≤,故B不正确.由于=1+2≤2,故≤,故C 正确.由a2+b2 =(a+b)2﹣2ab≥1﹣=,故D不正确.解答:解:∵正实数a,b满足a+b=1,∴==2+≥2+2=4,故有最小值4,故A不正确.由基本不等式可得a+b=1≥2,∴ab≤,故ab有最大值,故B不正确.由于=a+b+2=1+2≤2,∴≤,故有最大值为,故C正确.∵a2+b2 =(a+b)2﹣2ab=1﹣2ab≥1﹣=,故a2+b2有最小值,故D不正确.故选:C.点评:本题考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.11.(5分)点M(x,y)是不等式组表示的平面区域Ω内的一动点,且不等式2x﹣y+m≥0恒成立,则的取m值范围是()A.m≥3﹣2B.m≥3 C.m≥0 D.m≥1﹣2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用数形结合将不等式恒成立转化为求最值问题,即可得到结论.解答:解:若2x﹣y+m≥0总成立⇔m≥y﹣2x总成立即可,设z=y﹣2x,即求出z的最大值即可,作出不等式组对应的平面区域如图:由z=y﹣2x得y=2x+z,平移直线y=2x+z,由图象可知当直线经过点C(0,3)时,直线的截距最大,此时z最大,此时z=3﹣0=3,∴m≥3,故选:B.点评:本题主要考查线性规划的应用,将不等式恒成立转换为求目标函数的最值是解决本题的关键.12.(5分)如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.A C⊥BEB.E F∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值考点:棱柱的结构特征.专题:空间位置关系与距离.分析:利用证线面垂直,可证AC⊥BE;判断A正确;根据正方体中上下面平行,由面面平行的性质可证,线面平行,从而判断B正确;根据三棱锥的底面面积与EF的位置无关,高也与EF的位置无关,可判断C正确;例举两个特除位置的异面直线所成的角的大小,根据大小不同判断D错误.解答:解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.点评:本题考查了异面直线所成的角及求法,考查了线面垂直、面面平行的性质,考查了学生的空间想象能力及作图分析能力.二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡的相应位置. 13.(5分)经过点P(3,﹣1),且在x轴上的截距等于在y轴上的截距的2倍的直线l的方程是x+2y﹣1=0或x+3y=0.考点:直线的截距式方程.专题:直线与圆.分析:设直线l在x轴上的截距为a,在y轴上的截距为b,当a=0时,b=0,当a≠0时,a=2b,由此利用题设条件能求出直线l的方程.解答:解:设直线l在x轴上的截距为a,在y轴上的截距为b,当a=0时,b=0,此时直线l过点P(3,﹣1),O(0,0),∴直线l的方程为:,整理,得x+3y=0;当a≠0时,a=2b,此时直线l的斜率k=﹣=﹣,∴直线l的方程为:y+1=﹣(x﹣3),整理,得x+2y﹣1=0故答案为:x+2y﹣1=0或x+3y=0.点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意不要丢解.14.(5分)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是.考点:球的体积和表面积;余弦定理;旋转体(圆柱、圆锥、圆台).专题:计算题.分析:设圆锥的半径为R,高为H,母线与轴所成角为θ,求出圆锥的高,利用体积相等,求出2θ的余弦值即可.解答:解:设圆锥的半径为R,高为H,母线与轴所成角为θ,则圆锥的高H=R•ctgθ圆锥的体积V1=πR2•H=πR3ctgθ半球的体积V2=πR3∵V1=V2即:πR3ctgθ=πR3∴ctgθ=2∴cos2θ=故答案为:.点评:本题考查旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积,球的体积和表面积,考查计算能力,是基础题.15.(5分)△ABC中角A,B,C的对边分别为a,b,c,已知∠A=60°,a=,b=x.若满足条件的三角形有两个.则x的范围是(,2).考点:正弦定理.专题:解三角形.分析:由已知条件A的度数,a及b的值,根据正弦定理用x表示出sinB,由A的度数及正弦函数的图象可知满足题意△ABC有两个B的范围,然后根据B的范围,利用特殊角的三角函数值即可求出sinB的范围,进而求出x的取值范围.解答:解:由正弦定理得:,即,变形得:sinB=,由题意得:当B∈(60°,120°)时,满足条件的△ABC有两个,所以<<1,解得:<x<2,则a的取值范围是(,2).故答案为:(,2).点评:此题考查了正弦定理及特殊角的三角函数值.要求学生掌握正弦函数的图象与性质,牢记特殊角的三角函数值以及灵活运用三角形的内角和定理这个隐含条件,属于基本知识的考查.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.考点:数列递推式;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为点评:本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤17.(10分)已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式:>0(c为常数).考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分析:(1)由题意知1,b为关于x的方程ax2﹣3x+2=0的两根,由韦达定理可得方程组,解出即可;(2)不等式等价于(x﹣c)(x﹣2)>0,按照对应方程的根2、c的大小关系分三种情况讨论可得;解答:解:(1)由题意知1,b为关于x的方程ax2﹣3x+2=0的两根,则,∴a=1,b=2.(2)不等式等价于(x﹣c)(x﹣2)>0,所以:当c>2时解集为{x|x>c或x<2};当c=2时解集为{x|x≠2,x∈R};当c<2时解集为{x|x>2或x<c}.点评:该题考查一元二次不等式的解法,属基础题,深刻理解“三个二次”间的关系是解题关键.18.(12分)设公差不为0的等差数列{a n}的首项为1,且a2,a5,a14构成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足,n∈N*,求{b n}的前n项和T n.考点:数列的求和;等差数列与等比数列的综合.专题:综合题;等差数列与等比数列.分析:(Ⅰ)设等差数列{a n}的公差为d(d≠0),由a2,a5,a14构成等比数列得关于d的方程,解出d后利用等差数列的通项公式可得a n;(Ⅱ)由条件可知,n≥2时,=1﹣﹣(1﹣)=,再由(Ⅰ)可求得b n,注意验证n=1的情形,利用错位相减法可求得T n;解答:解:(Ⅰ)设等差数列{a n}的公差为d(d≠0),∵a2,a5,a14构成等比数列,∴=a2a14,即(1+4d)2=(1+d)(1+13d),解得d=0(舍去),或d=2.∴a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由已知,,n∈N*,当n=1时,=;当n≥2时,=1﹣﹣(1﹣)=.∴=,n∈N*.由(Ⅰ),知a n=2n﹣1,n∈N*,∴b n=,n∈N*.又T n=+++…+,则T n=++…++.两式相减,得T n=+(++…+)﹣=﹣﹣,∴T n=3﹣.点评:本题考查等差数列等比数列的综合应用、错位相减法对数列求和,属中档题.19.(12分)△ABC中,A,B,C所对的边分别为a,b,c,,sin(B﹣A)=cosC.(1)求A,C;(2)若S△ABC=,求a,c.考点:余弦定理的应用;两角和与差的余弦函数;正弦定理的应用.专题:计算题.分析:(1)先根据同角三角函数的基本关系将正切化为正余弦之比再相乘可得到3内角的正弦关系式,再由sin(B﹣A)=cosC可求出答案.(2)先根据正弦定理得到a与c的关系,再利用三角形的面积公式可得答案.解答:解:(1)因为所以左边切化弦对角相乘得到sinCcosA﹣cosCsinA=cosCsinB﹣sinCcosB,所以sin(C﹣A)=sin(B﹣C).所以C﹣A=B﹣C或C﹣A=π﹣(B﹣C)(不成立)即2C=A+B,C=60°,所以A+B=120°,又因为sin(B﹣A)=cosC=,所以B﹣A=30°或B﹣A=150°(舍),所以A=45°,C=60°.(2)由(1)知A=45°,C=60°∴B=75°∴sinB=根据正弦定理可得即:∴a=S=acsinB==3+∴c2=12∴c=2∴a==2点评:本题主要考查同角三角函数的基本关系和正弦定理与三角形面积公式的应用.对于三角函数这一部分公式比较多,要强化记忆.20.(12分)已知直线方程为(2﹣m)x+(2m+1)y+3m+4=0.(1)证明:直线恒过定点;(2)m为何值时,点Q(3,4)到直线的距离最大,最大值为多少?(3)若直线分别与x轴,y轴的负半轴交于A.B两点,求△AOB面积的最小值及此时直线的方程.考点:点到直线的距离公式;恒过定点的直线.专题:计算题;转化思想.分析:(1)证明:利用直线是直线系求出直线恒过定点,即可;(2)点Q(3,4)到直线的距离最大,转化为两点间的距离,求出距离就是最大值.(3)若直线分别与x轴,y轴的负半轴交于A.B两点,设出直线的方程,求出A,B,然后求出△AOB面积,利用基本不等式求出的最小值及此时直线的方程.解答:(1)证明:直线方程为(2﹣m)x+(2m+1)y+3m+4=0,可化为(2x+y+4)+m (﹣x+2y+3)=0,对任意m都成立,所以,解得,所以直线恒过定点(﹣1,﹣2);(2)解:点Q(3,4)到直线的距离最大,可知点Q与定点(﹣1,﹣2)的连线的距离就是所求最大值,即=2.(3)解:若直线分别与x轴,y轴的负半轴交于A.B两点,直线方程为y+2=k(x+1),k <0,则A(,0),B(0,k﹣2),S△AOB===2+≥2+2=4,当且仅当k=﹣2时取等号,面积的最小值为4.此时直线的方程为2x+y+4=0.点评:本题是基础题,考查直线系过定点,零点的距离公式,基本不等式的应用,考查计算能力,转化思想.21.(12分)A、B两仓库分别有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地.已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个.问如何调运,能使总运费最小?总运费的最小值是多少?考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元,建立约束条件,利用线性规划进行求解即可.解答:解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元.那么需从B仓库调运(40﹣x)万个到甲地,调运万个到乙地.从而有,则z=120x+180y+100(40﹣x)+150=20x+30y+7 000,作出以上不等式组所表示的平面区域(如图所示),即可行域.令z′=z﹣7 000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z=20x+30y取得最小值,从而z=z′+7 000=20x+30y+7 000亦取得最小值,z min=20×30+30×0+7 000=7 600(元).答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7 600元.点评:本题主要考查线性规划的应用问题,根据条件建立约束条件,利用数形结合是解决本题的关键.22.(12分)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)求二面角A﹣ED﹣B的正弦值.考点:异面直线及其所成的角;棱柱、棱锥、棱台的体积;二面角的平面角及求法.专题:计算题.分析:(1)通过已知条件可知,AC⊥底面BCED,再求出梯形BCED的面积,根据三棱锥的体积公式即可求出体积.(2)先找到异面直线所成的角,可过B作DE的平行线,则角ABF便是异面直线所成的角,根据条件求出即可.(3)先找出二面角的平面角,过C作CG⊥ED,并交ED于G,连接AG,则∠AGC即是所找的二面角的平面角,根据条件求出即可.解答:解:(1)∵∠ACE,∠ACB都是直角,∴AC⊥BC,AC⊥CE,CB∩CE=C,CB⊂平面BCED,CE⊂平面BCED;∴AC⊥平面BCED.∴V=.(2)取CE中点F,连接BF,则BF∥DE,则∠ABF即异面直线DE与AB所成的角,连接AF.在△ABF中,AB=4,BF=,AF=;∴由余弦定理得:cos∠ABF=;异面直线DE与AB所成角的余弦值是.(3)过C作CG⊥DE,交DE于G,连接AG,∵AC⊥平面BCED,ED⊂平面BCED,∴AC⊥ED;∴ED⊥平面ACG,AG⊂平面ACG,∴ED⊥AG,∴∠AGC是二面角A﹣ED﹣B的平面角;在Rt△ACG中,AC=4,CG=,∠ACG=90°;∴tan∠AGC=,sin.点评:求异面直线所成角时,通过作另一直线的平行线,找出这个角,然后把它放在一个三角形里去求即可.求二面角时,先找到二面角的平面角,然后把它放在一个三角形里去求即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈实验学校2017-2018学年度
高一年级数学期中考试试卷
姓名: 班级: 考号: 分数:
(满分:150分,时间:120分钟)
一、选择题:本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.与0
1303终边相同的角是 ( )
A .0
763 B .0
493 C .0
371- D .0
47-
4.某扇形的半径为cm 1,它的弧长为cm 2,那么该扇形圆心角为( ) A .2° B .2rad C .4° D .4rad 5. 若角765°的终边上有一点()4,m ,则m 的值是( ) A .1 B .4± C .4 D .-4
6.sin 780°等于( )
A.32 B .-32 C.12 D .-12
7.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角
8.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A.14 B.12 C .1 D.32
9.若sin α=4
5,且α是第二象限角,则tan α的值等于( )
A .-43 B.34 C .±34 D .±43
10.下列函数中,周期为π,且在⎣⎢⎡⎦
⎥⎤
π4,π2上为减函数的是( )
A .y =sin(2x +π2)
B .y =cos(2x +π
2)
C .y =sin(x +π2)
D .y =cos(x +π
2)
11. 函数y =-sin x ,x ∈[-π2,3π
2]的简图是
(
)
12.函数y =|sin x |的一个单调增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭
⎪⎫π4,3π4 C.⎝ ⎛⎭⎪⎫π,3π2 D.⎝ ⎛⎭
⎪⎫3π2,2π 13.函数f (x )=3sin(x 2-π
4),x ∈R 的最小正周期为( )
A.π
2 B .π C .2π D .4π
14.函数y =3tan(2x +π
4)的定义域是( )
A .{x |x ≠k π+π2,k ∈Z }
B .{x |x ≠k 2π-3π
8,k ∈Z }
C .{x |x ≠k 2π+π8,k ∈Z }
D .{x |x ≠k
2π,k ∈Z }
15.函数f (x )=tan(x +π
4)的单调递增区间为( )
A .(k π-π2,k π+π
2),k ∈Z B .(k π,(k +1)π),k ∈Z
C .(k π-3π4,k π+π4),k ∈Z
D .(k π-π4,k π+3π
4),k ∈Z
二.填空题(每题4分,满分20分,将答案填在答题纸上) 16.用(角度制)表示终边在直线y= x 上的角的集合 17.若角α的终边过点P(5,-12),则sin α+cos α=______
18.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2
θ=________. 19.已知cos(π6+θ)=33,则cos(5π6-θ)=________. 20.满足sin α= 的角α的终边的集合为________________. 三、解答题 (共70分.解答应写出文字说明、证明过程或演算步骤.) 21.(文科)找出与下列各角终边相同的角的集合,并把集合中适合不等式-720°~360°的元素写出来. (1)-225°; (3)1303°18′.
22. (理科) 求y= 的定义域
23. 化简: cos (α+π)sin 2(α+3π)
tan (α+π)cos 3(-α-π)
24.求下列各式的值.
(1)cos ⎝ ⎛⎭
⎪⎫-233π+tan 174π;
(2)sin 630°+tan 1 125°+tan 765°+cos 540°.
25.利用“五点法”作出下列函数的简图:
(1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π). 26.已知定义在R 上的函数y=f(x)满足f(x+2)=f(x-2),求证:函数y=f(x)是周期函数
27.求出函数y=2sin (3x+π4)
(1)单调递增区间和单调递减区间 (2)定义域和值域的取值范围
(3)判断奇偶性、计算最小正周期
(4)最大值和最小值,并写出取最大值和最小值时自变量x 的集合
x tan -11。

相关文档
最新文档