8.2(1)二元一次方程组的解法
8.2消元 --二元一次方程组的解法(加减法1)

解 ①-②,得 -2x=12 x =-6 解: ①+②,得 8x=16 x =2
a+2b=8 四、已知a、b满足方程组 已知 、 满足方程组 2a+b=7 则a+b= 5
在解方程组
ax + by = 2 cx − 3y = 5
x =1 时,小张正确的解是 ,小李由于看错 y = 2
二.选择题 选择题
6x+7y=-19① ①
1. 用加减法解方程组
6x-5y=17② ②
应用( 应用( B)
A.①-②消去 ① ②消去y B.①-②消去 ① ②消去x B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组 方程组
3x-2y=5
消去y后所得的方程是( ) 消去 后所得的方程是(B 后所得的方程是
你够细心吗? 你够细心吗
这个方程组的两个方程中,y的系数有什么关系 利用 这个方程组的两个方程中 的系数有什么关系?利用 的系数有什么关系 这种关系你能发现新的消元方法吗? 这种关系你能发现新的消元方法吗
x+y=22 ① 2x+y=40 ② 这两个方程中未知数y的系数相同 的系数相同, 这两个方程中未知数 的系数相同 ②-①可消去未知数 ① y,得 得 x=18 代入① 把x=18代入①,得 代入 得 y=4.
像这样,通过对方程组中的两个方程进行加或减的运算就 像这样 通过对方程组中的两个方程进行加或减的运算就 可以消去一个未知数,得到一个一元一次方程 得到一个一元一次方程,这种方法叫做 可以消去一个未知数 得到一个一元一次方程 这种方法叫做 加减消元法,简称加减法. 简称加减法 加减消元法 简称加减法
①-②也能消去 ② 未知数y,求得 未知数 求得 x吗? 吗
8.2二元一次方程组的解法(加减消元)

5x 6
(4)
x
1
y
5 6
7
y
3 2
解:(1)xy
11(2)xy
3 2
(3)xy
8 x 4(4) y
11 2
14
3
(1)已知关于x、y的方程组( nmx mn)yx6y 5
的解是xy
1,求m, 2
y
2
,所用的消元法是 加减消元法 ,首先用①
Байду номын сангаас
减去 ②,求出 x ,再求出 y 。
2. 解方程组:
(1)22xx
5y 3y
7 1
(3) x
3
y
x
2
y
6
3(x y) 2(x y) 28
(2)32xx
3y 4y
12 17
∴ x y2 x y3 12 33 28
甲、乙两人同解方程组
Ax Cx
By 3y
2 2,
甲正确解得 xy
11,乙抄错C,解得xy
2 ,
6
求A、B、C的值。
(1)解三元一次方程组:
x z 4 (1)z 2 y 1
n的值。
解:将xy
12代入方程组得2mmnn3
, 6
解得:
m 3 n 0
(2)若22000054xx
2005 2004
y y
2003 ,
2006
求
人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)

复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组
②
m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2
④
m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14
②
分析:方程①中x的系数是1,用含y的式子表示x,比较简便.
【新】人教版七年级数学下册第八章《8.2 解二元一次方程组(代入法1)》优秀课件.ppt

2、若 则
x y
a b
是方程2x+y=2的解,
8a+4b-3=_5___.
二、学习目标
1、用含有一个未知数的式子表示 另一个未知数
2、用代入消元法解二元一次方组.
三、研读课文
认真阅读课本第92至93页 的内容,完成下面练习并体 验知识点的形成过程.
三、研读课文
知 识
1、在方程组
x y 10
解这个方程,得x= 2 . 把x= 2 代入①,得y= 1 _
x 2
∴原方程组的解是
y
1
引导学生读懂数学书课题研究成果配套课件 课件制作:何姗
练一练 用代入法解下列方程组:
2x y 5 ①
(2)
3x 4y 2 ②
解:由①,得y=2x-5… ③ 把③代入②,得3x+4(2x-5)= 2 解这个方程,得x=2 把x=2代入③,得y=-1
x+1=3 x=2
把y=-1代入②得: 3x-8×(-1)=14
3x+8=14 3x=14-8 3x=6 x=2
经比较我认为把y=-1代入①比较好
2、用代入法解方程组的时候要注意 格式的规范.
练一练 用代入法解下列方程组:
y 2x 3 ①
(1)
3x 2y 8 ②
解:把①代入②,得
3x+2(2x-3 )= 8 .
新课引入 学习目标 研读课文 归纳小结 学习反思
引导学生读懂数学书课题研究成果 七年级(下)数学学习设计
第二课时 8.2.1 消元 ------二元一次 方程组的解法(代入法1)
黑发不知勤学早,白发方悔读书迟。
一、新课引入
--- 颜真卿
1、二元一次方程组的两个方程的_公__共___
二元一次方程组的解法

二元一次方程组的解法二元一次方程组是指包含两个未知数和两个方程的方程组。
解二元一次方程组的常用方法有消元法、代入法和矩阵法等。
下面将分别介绍这三种方法的步骤和应用。
一、消元法消元法是解二元一次方程组常用的方法,它的基本思想是通过消去一个未知数,从而将方程组转化为只含一个未知数的一次方程,进而求解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 通过等式的加减消去一个未知数。
选择其中一个方程,将其系数乘以另一个方程中与其同未知数的系数的相反数,然后将两个方程相加或相减,消去该未知数。
2. 获得新的一次方程,其中只含有一个未知数。
3. 解新的一次方程,求得该未知数的值。
4. 将求得的未知数值代入原方程中,求得另一个未知数的值。
5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。
二、代入法代入法是解二元一次方程组的另一种常用方法,它的基本思想是将一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程,从而将方程组转化为只含一个未知数的方程,进而求解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 选择一个方程,将其一个未知数表示为另一个未知数的函数,例如将(1)中的 x 表示为 y 的函数:x = f(y)。
2. 将函数表达式代入另一个方程(2),得到只含有一个未知数 y的一次方程。
3. 解这个一次方程,求得 y 的值。
4. 将求得的 y 值代入第一个方程(1),求得 x 的值。
5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。
三、矩阵法矩阵法是用矩阵运算的方法解二元一次方程组,它的基本思想是将方程组转化为矩阵方程,通过对矩阵的运算得到解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)将方程组表示为矩阵形式:⎛ a₁ b₁⎞⎛ x ⎞⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ a₂ b₂⎠ * ⎝ y ⎠ = ⎝ c₂⎠利用矩阵的逆矩阵,可以得到未知数向量的值:⎛ x ⎞⎛ a₁ b₁⎞⁻¹⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ y ⎠ = ⎝ a₂ b₂⎠⎝ c₂⎠通过计算矩阵的逆矩阵,可以求得未知数的值。
人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。
人教新课标版初中七下8.2消元——二元一次方程组的解法(1)教案

8.2消元——二元一次方程组的解法(1)教学内容本节课主要学习8.2用代入法解二元一次方程组教学目标知识技能会用地用代入法解二元一次方程组,初步体会解二元一次方程组的基本思想。
数学思考通过对方程组中未知数特点的观察与分析,明确解二元一次方程组的的基本思路是“消元”,从而促进未知向已知转化,培养观察能力和体会化归思想. 解决问题 通过用代入法解二元一次方程组的训练及选用合理、简捷的方法解方程组培养运算能力。
情感态度通过研究解决问题的方法,培养学生合作交流意识与探究精神。
重难点、关键重点:用代入法解二元一次方程组。
难点:探索如何用代入法将“二元”化为“一元”。
关键:利用代入法解方程组时,灵活运用已学知识。
教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、 问题引入1. 什么叫二元一次方程组,什么叫二元一次方程组的解?由两个一次方程组成并含有两个未知数的方程组叫做二元一次方程组,二元一次方程组里各个方程的公共解叫做这个方程组的解。
2.篮球联赛中,每场比赛都要分出胜、负.每队胜1场均得2分,负1场均得1分.某队在22场比赛中共得40分,那么这个队胜、负场数分别为多少?师:上节课例“篮球联赛”题可设一个未知数(设胜x 场),可以用一元一次方程2x +(22-x)=40来解.如果设两个未知数(设胜x 场,负y 场),可以列方程组⎩⎨⎧=+=+40222y x y x那么一元一次方程与二元一次方程组有什么关系呢?【活动方略】教师出示问题,学生回答,教师引入新问题.【设计意图】通过问题情境,激发学生学习兴趣,引出解二元一次方程组的学习.二、 探索新知【分析】我们发现,二元一次方程组中第一个方程x +y =22可变形为y =22-x ,再将第二个方程2x +y =40中的y 换为(22-x),二元一次方程组就化为一元一次方程.解这个方程,得x =18,再把x =18代入y =22-x ,得y =4,从而得到这个方程组的解.【归纳】二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再设法求另一个未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想,这种方法叫做代入消元法,简称代入法.【思考】如何用代入法解二元一次方程组?【分析】首先,从方程组中选取一个方程,把其中的某一个未知数用另一个未知数的代数式表示出来.例如,可将⎩⎨⎧②=+①=+.402,22y x y x 中的第一个方程变形为y =22-x ③.接下来就应该将这个代数式代入另一个方程,达到消去一个未知数的目的,得到只含有一个未知数的一元一次方程.例如,将③代入②,得到方程2x +(22-x)=40,再解这个方程,求出一个未知数x =18,最后将x =18代入第一步所得的式子,求出另外一个未知数的值.可以概括为:(课件展示.)(1)求表达式;(2)代入消元;(3)回代求解;(4)写方程组解【范例】例1 用代入法解方程组⎩⎨⎧②=-①=-.1483.3y x y x 师:选择哪个方程呢?为什么?生:我们认为选取①,因为①中未知数x 的系数为1,用含y 的代数式表示x ,比较简便,把①变为x =3+y ③.师:把③代入①可以吗?为什么?生:不可以.因为③与①是同一个方程,应将③代入②,得3(3+y)-8y =14. 师:得到这个方程后,下一步如何解?生:先解出这个方程y =-1,再把y =-1代入③,得x =2.师:能否将y =-1代入①或②?生:可以.师:如何表示方程组的解?生:把两个未知数的解写在一起,就是方程组的解,一般写成⎩⎨⎧by a x ==的形式.师:请同学们完整地解出题目.【活动方略】引导学生比较、分析,归纳二元一次方程组的解法。
8.2二元一次方程组解法(1)

教学过程设计一.情境设计与问题设计情境设计下面是我们讨论过的一个篮球比赛的问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。
某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?请你求出结果问题设计1、设一个未知数如何解答?(设胜了x 场,则2x+(22-x )=40)2、若设胜了x 场,负了y 场,则列方程组为⎩⎨⎧=+=+2212y x y x 怎样求这个方程组的解呢?3.上面的二元一次方程组与一元一次方程有什么关系?(把第2个方程中的y 用2-2x 表示,再用它替换第1个方程中的y,就得到一元一次方程,从而引出消元思想)4、上面解方程组的基本思路是什么?基本方法有哪些?(基本思路:消元:化二元为一元 基本方法:代入法(1)将一个未知数用含另一个未知数的式子表示(2)代入另一个方程(3)得方程组的解)二.习题设计(落实知识点1)认真预习教材,尝试完成下列各题:1.我们把________,从而求出方程组的解的方法,叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)把方程组中的一个方程变形,写出_________的形式;(2)把它_________中,得到一个一元一次方程;(3)解这个__________;(4)把求得的值代入到_________,从而得到原方程组的解.3.把下列方程写成用含x 的代数式表示y 的形式:(1)2x+3y-6=0 (2)2x-3y=-11; (3)4x+3y=x-y+1 (4)2(x+y )=3(x-y )-1 (落实知识点2)1.用代入法解二元一次方程组时,•要把一个未知数用含另一个未知数的代数式来表示,你认为应该选择哪一个方程来变形?2.用代入法解方程组:(1)⎩⎨⎧=++=x y x y 5837(2)⎩⎨⎧=+=-12382y x y x (3)⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x 3.在y=kx+b 中,当x=1时,y=2;当x=2时,y=4,那么k=_______,b=_______.4.若│x+y -2│+(x-y )2=0,那么x=________,y=________.5.已知x=5-t ,y-3=2t ,则x 与y 之间的关系式是_______.6. 若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;若每个鸡笼放5只,则有一个笼子无鸡可放,那么鸡有多少只?有鸡笼多少个?7.张明从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2消元----二元一次方程组的解法⑴ 学案
【学习目标】
1. 会用代入法解二元一次方程组.
2. 初步体会解二元一次方程组的基本思想――“消元”.
3. 会列二元一次方程组解简单的应用题.
【重点难点】
重点:会用代入法解二元一次方程组.
难点:探索如何用代入法将“二元”转化为“一元”的消元过程.
会列二元一次方程组解简单的应用题.
【知识链接】
1.一元一次方程,二元一次方程,二元一次方程组的概念
2. 用一个未知数表示另一个未知数
【问题探究】
活动1 消元思想与代入消元法
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
在这个问题中,直接设两个未知数(设胜x 场,负y 场),得方程组22,2
x y x y +=⎧⎨+=⎩如果只设一个未知数(设胜场x 场),这个问题也可以用一元一次方程:____________________________来解.
⑴观察上面的二元一次方程组和一元一次方程有什么关系?
通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程.
⑵解二元一次方程组的基本思想是什么?
二元一次方程组的基本思想是“消元”,即通过消元将“二元一次方程组”转化为“一元一次方程”.
[3]归纳:什么是代入消元法?
【典型问题】
例1用代入法解方程组
3, 3814. x y
x y
-=
⎧
⎨
-=
⎩
第一步:选一个系数比较简单的方程,用一个未知数表示另一个未知数
第二步:将变形后的关系式代入另一方程,消去一个未知数,得到一个一元一次方程,记做方程③;
第三步:解这个一元一次方程,得一个未知数的值;
第四步:将求得的未知数的值代入,求出另一未知数的值;
第五步:把求得的两个未知数的值,用“{”联立起来,就是方程组的解.
想一想:在第四步中,将求得的未知数带到方程①,②,还是③中比较简便?
注:①二元一次方程组的解是一对数值,而不是一个单纯的x值或y值.
②算出结果后要做心算检验,以养成习惯.
例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小两种产品各多少瓶?
【归纳总结】
这节课你学到了哪些知识与方法?运用这些知识与方法过程中应注意什么?
本节课我学到了用代入法解二元一次方程组,基本思想是“消元”,即通过消元将“二元一次方程组”转化为“一元一次方程”.,你还有其他的收获吗?
【目标检测】
1. 解二元一次方程组的基本思想是_________,即将“二元一次方程组”转化为
“一元一次方程”.
2. 已知3212
x y +=,用含x 的式子表示y ,得y =_________________. 3 把方程7x -2y =15写成用含y 的代数式表示x 的形式,得_________________
4. 将y =-2x -4代入3x -y =5可得( )
A .3x -2x +4=5
B .3x +2x +4=5
C .3x +2x -4=5
D .3x -2x -4=5
5. 用代入法解方程组252138x y x y +=-⎧⎨+=⎩ 较为简便的方法是( ) A .先把①变形 B .先把②变形
C .可先把①变形,也可先把②变形
D .把①、②同时变形
6. 当a =3时,方程组122
ax y x y +=⎧⎨+=⎩的解是_________. 7.某校课外小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人,设课外小组的人数为x ,分成的组数为y .依题意可得方程组为( )
A 、
B 、
C 、
D 、
8.用代入法解下列方程组:
(1)⎩⎨⎧-==-x y y x 571734 (2)⎩
⎨⎧=+=7623y x x
① ②
7y =x +3 8y +5=x 7x +3=y 8x -5=y 7y =x -3 8y =x +5 7y =x +3 8y =x +5
(3)⎩⎨⎧=-=+1
2853y x y x (4) ⎩⎨⎧=+=+10
432029y x y x
9. 已知方程4x -y =10中,x 与y 互为相反数,求x ,y .
10. 某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?
11. 有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.篮、排球队各有多少支参赛?。