2017年江苏省苏州市中考数学三模试卷

合集下载

江苏省苏州市市辖区2024届中考三模数学试题含解析

江苏省苏州市市辖区2024届中考三模数学试题含解析

江苏省苏州市市辖区2024年中考三模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-42.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()A.12B.59C.49D.233.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差4.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.22B2C3D.25.点P(4,﹣3)关于原点对称的点所在的象限是()A.第四象限B.第三象限C.第二象限D.第一象限6.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x 件,乙种奖品y件.依题意,可列方程组为()A.204030650x yx y+=⎧⎨+=⎩B.204020650x yx y+=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩7.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20178.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.159.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.10.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1 312.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.14.二次根式1x-中字母x的取值范围是_____.15.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.16.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.17.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.18.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.20.(6分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC=26,tan∠B=125,求EF的长.21.(6分)解不等式313212xx+->-,并把解集在数轴上表示出来.22.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.(8分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求证:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的长.24.(10分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12;(2)解方程:x(x﹣4)=2x﹣825.(10分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.(12分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:整理数据:分析数据:请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?27.(12分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W 元. (1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D 【解题分析】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣1),得: m +1x =x ﹣1,由分母可知,分式方程的增根可能是1. 当x =1时,m +4=1﹣1,m =﹣4, 故选D . 2、D 【解题分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率. 【题目详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D. 【题目点拨】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键. 3、D 【解题分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【题目详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【题目点拨】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 4、B 【解题分析】首先求得AB 的中点D 的坐标,然后求得经过点D 且垂直于直线y=-x 的直线的解析式,然后求得与y=-x 的交点坐标,再求得交点与D 之间的距离即可. 【题目详解】AB 的中点D 的坐标是(4,-2), ∵C (a ,-a )在一次函数y=-x 上,∴设过D 且与直线y=-x 垂直的直线的解析式是y=x+b , 把(4,-2)代入解析式得:4+b=-2, 解得:b=-1,则函数解析式是y=x-1. 根据题意得:6{y x y x--==,解得:3{3x y ==-,则交点的坐标是(3,-3).故选:B本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.5、C【解题分析】由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.【题目详解】∵设P(4,﹣3)关于原点的对称点是点P1,∴点P1的坐标为(﹣4,3),∴点P1在第二象限.故选 C【题目点拨】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.6、A【解题分析】根据题意设未知数,找到等量关系即可解题,见详解.【题目详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为20 4030650x yx y+=⎧⎨+=⎩,故选A.【题目点拨】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.7、A【解题分析】利用直接开平方法解方程.【题目详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.8、B【解题分析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.9、B【解题分析】根据俯视图是从上面看到的图形解答即可.【题目详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.10、D【解题分析】根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.11、B【解题分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【题目详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【题目点拨】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.12、A【解题分析】根据从正面看得到的图形是主视图,可得答案.【题目详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A.【题目点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3 5【解题分析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.点睛:知道“,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.14、x≤1【解题分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【题目详解】根据题意得:1﹣x≥0,解得x≤1.故答案为:x≤1【题目点拨】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15、1 2【解题分析】根据同弧或等弧所对的圆周角相等来求解.【题目详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【题目点拨】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.16、9332+.【解题分析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3. ∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得3.∴OB3∴S△POB=12OB•PH=9332+.17、1【解题分析】根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN 的长.【题目详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴12CN CQAM AQ==,21CP CDAP AM==,设CN=x,AM=1x,∴82 21x=,解得,x=1,∴CN=1,故答案为1.【题目点拨】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.18、1【解题分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【题目详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【题目点拨】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析(2)见解析【解题分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【题目详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形20、(1)证明见解析;(2)EF=1.【解题分析】(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB=EHBH=125可计算出BH=5,从而得到EF=AB=2BH=1.【题目详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∴BE=EC=13,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB=EHBH=125,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.21、见解析【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.【题目详解】解:去分母,得3x+1-6>4x-2,移项,得:3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【题目点拨】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序. 22、(1)证明见解析;(2)BH=.【解题分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【题目详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【题目点拨】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23、(1)见解析;(2).【解题分析】(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.【题目详解】证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,∵∠PCA=∠PDB,∴△PAC∽△BPD;(2)∵,PC=PD,AC=3,BD=1∴PC=PD=,∴CD=.【题目点拨】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.24、(1)3;(1)x1=4,x1=1.(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【题目详解】解:(1)原式=8×(12﹣18)﹣4×2=8×38﹣=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【题目点拨】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.25、问题1:A 、B 两型自行车的单价分别是70元和80元;问题2:a 的值为1【解题分析】问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A 、B 两型自行车的单价分别是70元和80元;问题2:由题可得,1500a ×1000+12008240a a×1000=10000, 解得a=1,经检验:a=1是分式方程的解,故a 的值为1.26、(1)a =5,b =4;m =81,n =81;(2)300人;(3)16本【解题分析】(1)根据统计表收集数据可求a ,b ,再根据中位数、众数的定义可求m ,n ;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【题目详解】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)8450030020+⨯=(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【题目点拨】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.27、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解题分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【题目详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【题目点拨】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.。

2024年江苏省泰州二中附中中考数学三模试卷(含答案)

2024年江苏省泰州二中附中中考数学三模试卷(含答案)

2024年江苏省泰州二中附中中考数学三模试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列运算正确的是( )A. a+2a=3a2B. (2ab)2=2ab2C. a2⋅a3=a5D. (a2)3=a52.某组合体如图所示,则该组合体的左视图是( )A. B.C. D.3.从数学的观点看,对以下成语及诗句中的事件判断正确的是( )A. 成语“守株待兔”是随机事件B. 成语“水中捞月”是随机事件C. 诗句“清明时节雨纷纷”是必然事件D. 诗句“离离原上草,一岁一枯荣”是不可能事件4.若一次函数y=kx+b(k≠0)的图象经过点(2,3),(3,m),则下列结论正确的是( )A. 若k>0,则m>0B. 若k>0,则m<0C. 若k<0,则m>0D. 若k<0,则m<05.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(ℎ)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是( )A. B.C. D.6.E为正方形ABCD内一点,DE⊥EC,已知下列四条线段哪一条线段长就可以求出S△BEC的值( )A. ABB. BEC. ECD. ED二、填空题:本题共10小题,每小题3分,共30分。

7.使3有意义的x的取值范围是______.x+18.因式分解:mx2−2mx+m=______..在安全范围内,I 9.某蓄电池的电压为12V,使用此蓄电池时,电流I(A)与电阻R(Ω)的函数表达式为I=12R的值随着R的值的增大而______(填“增大”、“减小”或“不变”).10.写出一个图象只经过第二、四象限的函数表达式______.11.如图是由8个全等的三角形组成的图案,则∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=______.12.如图,在4×5的网格中,每个小正方形的边长均为1.若△ABC的顶点都在格点上,则sinC的值为______.13.如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.2cm,蜡烛AB 与凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为8cm,AE//OF,则像CD的高为______.14.如图,A 、O 在网格中小正方形的顶点处,每个小方格的边长为1,在此网格中找两个格点(即小正方形的顶点)B 、C ,使O 为△ABC 的外心,则BC 的长度是______.15.已知正方形ABCD ,E 为射线DC 上一点(点D 除外),点F为点D 关于AE 的对称点,若△FCB 是等腰三角形,则∠DFA 的度数是______.16.已知菱形ABCD 和菱形AECF ,B 、E 、F 、D 在同一直线上,且∠EAF =∠ABC ,设EF BD =y,AE AB =x ,则y 关于x 的函数表达式为______.三、解答题:本题共10小题,共102分。

2024年江苏省宿迁市中考三模数学试题

2024年江苏省宿迁市中考三模数学试题

2024年江苏省宿迁市中考三模数学试题一、单选题1.2024-的相反数是( ) A .2024-B .2024C .12024-D .120242.下列运算正确的是 ( ) A .3252(2)4a b a b -= B .842a a a ÷= C . ()222a b a b -=-D .2222a b a b a b -=3.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .70°B .75°C .80°D .85°4.某市发布微信公众号可查询到当地实时空气质量状况.下面是三月某一周连续七天的空气质量指数(AQI ):28,26,26,37,33,40,117,这组数据的下列统计量中,能比较客观地反映这一周空气质量集中趋势的是( ) A .平均数B .中位数C .众数D .方差5.已知关于x 的一次函数为43y mx m =++,那么这个函数的图象一定经过( ) A .第一象限B .第二象限C .第三象限D .第四象限6.如图,BD 为ABCD Y 的对角线,分别以B ,D 为圆心,大于12BD 的长为半径作弧,两弧相交于两点,过这两点的直线分别交AD BC ,于点E ,F ,交BD 于点O ,连接BE DF ,.根据以上尺规作图过程,下列结论不一定正确的是( )A .点O 为ABCD Y 的对称中心B .BE 平分ABD ∠C .::ABE BDF S S AE ED =△△ D .四边形BEDF 为菱形7.如图,在ABC V 中,AB AC =,点D 在边AC 上(不与点A ,点C 重合),点E 在线段BC 的延长线上,且BD DE =.设AD x AC=,CEy BC =,则( )A .y x =B .2y x =C .1y x=D .2y x =8.二次函数23y x bx =++的图象过点(2,3)A ,若关于x 的一元二次方程24(x bx t t +=-为实数)在14x -<<的范围内有实数根,则t 的取值范围是( ) A .611t <<B .211t ≤<C .312t ≤<D .37t ≤<二、填空题9.分解因式:228a -=.10a 的值可以是.(写出一个即可)11.若关于x 的一元二次方程20x x m --=有两个相等实数根,则实数 m 的值为. 12.古筝是一种弹拨弦鸣乐器,又名汉筝、秦筝,是汉民族古老的民族乐器,流行于中国各地. 若古筝上有一根弦90 cm AB =,支撑点C 是靠近点A 的一个黄金分割点,则BC =cm .(结果保留根号)13.若把一个半径为5,圆心角为180︒的扇形做成圆锥的侧面,则该圆锥的底面圆的半径为. 14.如图四边形ABCD 内接于O e ,AB 是直径,∥OD BC .若124C ∠=︒,则B ∠=°.15.如图,反比例函数(0)ky k x=≠的图象上有一点P ,PA x ⊥轴于点()2,0A -,点B 为直线1x =上一点,连接AB ,PB ,若PAB V 的面积是6,则k 的值为.16.如图,在ABC V 中,90ABC ∠=︒,30ACB ∠=︒,4AB =,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是.(用含π的式子表示)17.有一列数,按一定规律排列成1,2,4,8,16,32,,---⋅⋅⋅其中某三个相邻数的积是124,则这三个数的和是.18.如图,正方形ABCD 和Rt AEF ∆,5,4AB AE AF ===,连接,BF DE .若AEF ∆绕点A 旋转,当ABF ∠最大时,ADE S ∆=.三、解答题19.计算:(1132tan602-︒⎛⎫+- ⎪⎝⎭20.(1)解方程:322112x x x=--- (2)解不等式组 ()3241213x x xx ⎧-≤-⎪⎨+>-⎪⎩21.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程,为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),将调查结果绘制成如下两幅不完整的统计图,根据图中信息解决下列问题:(1)本次随机调查了_________名学生 (2)补全条形统计图(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的约有多少人? 22.如图, 在ABC V 中,BAC ∠的平分线交BC 于点D ,DE AB ∥,DF AC ∥.(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且2AD =, 直接写出四边形AFDE 的面积.23.甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求(),x y 所有可能出现的结果总数; (2)求甲、乙两名同学选择种植同一种蔬菜的概率P .24.实验是培养学生的创新能力的重要途径之一.如图是小红同学安装的化学实验装置,安装要求为试管略向下倾斜,试管夹应固定在距试管口的三分之一处.已知试管,30cm AB =,13BE AB =,试管倾斜角α为10︒.(1)求酒精灯与铁架台的水平距离CD 的长度;(2)实验时,当导气管紧贴水槽MN ,延长BM 交CN 的延长线于点F ,且MN CF ⊥(点C D N F 、、、在一条直线上),经测得:21.7cm DE =,8MN =cm ,145ABM ∠=︒,求线段DN 的长度.(参考数据:sin100.17︒≈,cos100.98︒≈,tan100.18︒≈)25.如图,ABC V ,以BC 为直径的O e 交AB 于点D ,点E 为弧BD 的中点,连结CE 交AB 于点F ,且AF AC =.(1)判断直线AC 与O e 的位置关系,并说明理由; (2)若O e 的半径为2,4sin 5A =,求CE 的长. 26.某商店以30元/件的进价购进了某种商品,这种商品在60天内的日销售价(单位:元/件)与时间x (单位:天)之间的关系如表格所示:日销售量y (单位:件)与时间x (单位:天)之间的函数表达式为()()2014018041602x x y x x ⎧+≤≤⎪=⎨-+≤≤⎪⎩,其中x 为整数.(1)求第30天的销售利润;(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?日销售利润= (日销售价- 进价)⨯ 日销售量27.[基础巩固](1)如图1, 在ABC V 中, D 、E 、F 分别为AB AC BC ,,上的点,ADE B BF CF ∠=∠=,,AF 交DE 于点G , 求证:DG EG =;[尝试应用](2)如图2, 在(1)的条件下, 连接CD CG ,.若63CG DE CD AE ⊥==,,, 求 DEBC的值: [拓展提高](3)如图3, 在ABCD Y 中,=45ADC ∠︒,AC 与BD 交于点O , E 为AO 上一点, EG BD ∥交AD 于点G , ⊥EF EG 交BC 于点 F .若40EGF FG ∠=︒,平分8EFC FG ∠=,,求 BF 的长.28.已知:212y x bx c =++经过点()21A --,,()03B -,. (1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围; ②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠=o 时,求P 点坐标.。

2017年苏州市中考数学二模试卷(含答案和解释)

2017年苏州市中考数学二模试卷(含答案和解释)

2017年苏州市中考数学二模试卷(含答案和解释)2017年江苏省苏州中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)�3的相反数是() A.�3 B.3 C. D. 2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为() A.0.4×103 B.0.4×104 C.4×103 D.4×104 3.(3分)下列运算中,正确的是() A. =3 B.(a+b)2=a2+b2 C.()2= (a≠0) D.a3•a4=a12 4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期 19 20 21 22 23 24 25 最低气温/℃ 2 4 5 3 4 6 7 A.4,4 B.5,4 C.4,3 D.4,4.5 5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是() A.24° B.26° C.34° D.22° 6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于() A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限 7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是() A. B. C. D. 8.(3分)因为sin30°= ,sin210°= ,所以sin210°=sin(180°+30°)=�sin30°;因为sin45°= ,sin225°= ,所以sin225°=sin(180°+45°)=�sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=�sinα,由此可知:sin240°=() A. B. C. D. 9.(3分)菱形OABC 在平面直角坐标系的位置如图所示,点B的坐标为(9,3 ),点D是AB的中点,点P在OB上,则△ADP的周长最小值为() A.3 +3 B.3 +3 C.3 D.3 10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=�x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是() A. B.2 C.1 D.二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)分解因式:x2�4= . 12.(3分)若分式的值为0,则x的值等于. 13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是(填“甲”或“乙”). 14.(3分)不等式组的最大整数解是. 15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是. 16.(3 分)如图,在边长为2的菱形ABCD 中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为. 17.(3分)已知当x=m和x=n时,多项式x2�4x+1的值相等,且m≠n,则当x=m+n�3时多项式x2�4x+1的值为. 18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明). 19.(5分)计算:�3tan30°�()�2. 20.(5分)先化简,再求值:,其中a满足a2+3a=5. 21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率. 22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论. 23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0≤x<8 10 B 8≤x<16 15 C 16≤x<24 25 D 24≤x<32 m E 32≤x<40 n 根据以上信息解决下列问题:(1)在统计表中,m= ,n= ,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数. 24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张? 25.(8分)如图,一次函数y=kx�4(k≠0)的图象与y轴交于点A,与反比例函数y= (x>0)的图象交于点B(6,b).(1)b= ;k= .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标. 26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2 ,sin∠BCP= ,求点B到AC 的距离.(3)在第(2)的条件下,求△ACP的周长. 27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD�DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P 作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O 的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值. 28.(10分)如图1,抛物线y=ax2�6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN 的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+ AE′的最小值.2017年江苏省苏州中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)�3的相反数是() A.�3 B.3 C. D.【解答】解:�3的相反数是3.故选:B. 2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103 B.0.4×104 C.4×103 D.4×104 【解答】解:4000=4×103,故选:C. 3.(3分)下列运算中,正确的是() A. =3 B.(a+b)2=a2+b2 C.()2= (a≠0) D.a3•a4=a12 【解答】解:(�3)3=�27,负数没有平方根,故A错误;(a+b)2=a2+2ab+b2,故B错误;()2= ,故C正确;a3•a4=a7,故D错误.故选:C. 4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期 19 20 21 22 23 24 25 最低气温/℃ 2 4 5 3 4 6 7 A.4,4 B.5,4 C.4,3 D.4,4.5 【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4; 4出现了2次,故众数为4.故选:A. 5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是() A.24° B.26° C.34° D.22° 【解答】解:∵AB∥CD,∠CAB=116°,∴∠ACD=180°�∠CAB=64°,∵∠E=40°,∴∠D=∠ACD�∠E=24°.故选:A. 6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限【解答】解:设反比例函数解析式为y= (k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选:A. 7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A. B. C. D.【解答】解:在2、6,3,4,1这5张卡片中,数字为偶数的有2、6、4这3张,∴得到卡片的数字为偶数的概率为,故选:C. 8.(3分)因为sin30°= ,sin210°= ,所以sin210°=sin(180°+30°)=�sin30°;因为sin45°= ,sin225°= ,所以sin225°=sin(180°+45°)=�sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=�sinα,由此可知:sin240°=() A. B. C. D.【解答】解:∵当α为锐角时有sin(180°+α)=�sinα,∴sin240°=sin(180°+60°)=�sin60°=�.故选:C. 9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3 ),点D是AB的中点,点P在OB上,则△ADP的周长最小值为() A.3 +3 B.3 +3 C.3 D.3 【解答】解:如图,连接CD交OB于P,连接PA,此时△AD P的周长最小.作BH⊥x轴于H.∵B(9,3 ),∴OH=9,BH=3 ,∵∠BHO=90°,∴OB= =6 ,∴OB=2BH,∴∠BOH=30°,∠OBH=60°,∵四边形OABC为菱形,∴设OC=BC=x,∴CH=OH�OC=9�x,在Rt△BCH中,∠BHC=90°,∴BC2=CH2+BH2,∴x2=(9�x)2+27,∴x=6,∴A(3,3 ),B(9,3 ),C(6,0),∵D为AB中点,∴D (6,3 ),∴CD=3 ,AD=3,∴△ADP的周长的最小值=AD+CD=3+3 ,故选:B. 10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=�x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB 的中点H,当点P从点O运动到点N时,点H运动的路径长是()A. B.2 C.1 D.【解答】解:由上图可知,当P在O点时,△AOB1为正三角形,当P在N点时,△ANB2为正三角形,H1,H2分别为AB1与AB2的中点,∵P在直线ON上运动,∴B1B2的运动轨迹也为直线,∵△OAB1为正三角形,∴∠OAB1=∠1+∠2=60°,同理∠NAB2=∠2+∠3=60°,∴∠1=∠3,在△OAN与△B1AB2中,,∴△OAN≌△B1AB2,∴B1B2=ON,∴点A横坐标为,∵AN⊥x轴,∴M(,0),∵直线ON的解析式为:y=�x,∴∠MON=45°,∴N (,�),∴ON=2=B1B2,∵H1,H2分别为AB1 与AB2的中点,∴H1H2= B1B2=1,故选:C.二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)分解因式:x2�4= (x+2)(x�2).【解答】解:x2�4=(x+2)(x�2).故答案为:(x+2)(x�2). 12.(3分)若分式的值为0,则x的值等于 3 .【解答】解:由题意得:x�3=0,且x≠0,解得:x=3,故答案为:3. 13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是乙(填“甲”或“乙”).【解答】解:∵S甲2=3,S乙2=2.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙. 14.(3分)不等式组的最大整数解是 2 .【解答】解:,由①得,x<3;由②得,x≥�1;∴不等式组的解为�1≤x<3,它所包含的整数为�1,0,1,2.∴它的最大整数解为2.故答案为2. 15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是 =3π,故答案为:3π. 16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为2�.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE= ,由折叠易得△ABB′为等腰直角三角形,∴S△ABB′= BA•AB′=2,S△ABE=1,∴CB′=2BE�BC=2 �2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2�.故答案为:2�. 17.(3分)已知当x=m和x=n时,多项式x2�4x+1的值相等,且m≠n,则当x=m+n�3时多项式x2�4x+1的值为�2 .【解答】解:∵x=m 和x=n时,多项式x2�4x+1的值相等,∴y=x2�4x+1的对称轴为直线x= =�,解得m+n=4,∴x =m+n�3=4�3=1,x2�4x+1=12�4×1+1=�2.故答案为:�2 18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7 ∴AB= =5 ,∵l2∥l3,∴ = ∴DG= CE= ,∴BD=BG�DG=7�= ,∴ = .故答案为:.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明). 19.(5分)计算:�3tan30°�()�2.【解答】解:原式=2 �3× �4= �4. 20.(5分)先化简,再求值:,其中a满足a2+3a=5.【解答】解:原式= ÷ = ÷ = • = ,当a2+3a=5时,原式= . 21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.【解答】解:画树状图如下:由上面的树状图可知,一共有4种情况,一男一女所占的情况有2种,∴概率为 = . 22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC= BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形. 23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0≤x<8 10 B 8≤x<16 15 C 16≤x<24 25 D 24≤x<32 m E 32≤x<40 n 根据以上信息解决下列问题:(1)在统计表中,m= 30 ,n= 20 ,并补全条形统计图.(2)扇形统计图中“C 组”所对应的圆心角的度数是90°.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.【解答】解:(1)抽查的总人数是:15÷15%=100(人),则m=100×30%=30,n=100×20%=20..故答案是:30,20;(2)扇形统计图中“C组”所对应的圆心角的度数是:360°× =90°.故答案是:90°;(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900× =450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人. 24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?【解答】解:设甲、乙两种票各买x张,y张,根据题意,得:,解得:,答:甲、乙两种票各买20张,15张. 25.(8分)如图,一次函数y=kx�4(k≠0)的图象与y轴交于点A,与反比例函数y= (x>0)的图象交于点B(6,b).(1)b= 2 ;k= 1 .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.【解答】解:(1)∵点B在反比例函数y= (x>0)的图象上,将B(6,b)代入y= ,得b=2,∴B(6,2),∵点B在直线y=kx�4上,∴2=6k�4,解得k�1,故答案为:2,1.(2)∵点C的横坐标为3,把x=3代入y=x�4,得y=�1,∴C(3,�1),∵CD∥y轴,∴点D的横坐标为3,把x=3代入y= ,可得y=4,∴D(3,4).由平移可得,△OCD≌△O'C'D',设O'(a,),则C'(a+3,�1),∵点C'在直线y=x�4上,∴ �1=a+3�4,∴ =a,∵a>0,∴a=2 ,∴O'(2 ,2 ),∴D'(2 +3,2 +4). 26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2 ,sin∠BCP= ,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【解答】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180° ∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC ∴BD∥PC ∴∠PCB=∠DBC ∵BC=2 ,sin∠BCP= ,∴sin∠BCP=sin∠DBC= = = ,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN,∵AC为直径,∴∠ANC=90°,∴Rt△ACN 中,AC= =5,又CD=2,∴AD=AC�CD=5�2=3.∵BD∥CP,∴ ,∴CP= .在Rt△ACP中,AP= = , AC+CP+ AP=5+ + =20,∴△ACP 的周长为20. 27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD�DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE 上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为(t�1)cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【解答】解:(1)由勾股定理可知AB= =10.∵D、E分别为AB和BC的中点,∴DE= AC=4,AD= AB=5.∴点P在AD上的运动时间= =1s,当点P在线段DE上运动时,DP段的运动时间为(t�1)s,∵DE段运动速度为1cm/s,∴DP=(t�1)cm,故答案为:t�1.(2)当正方形PQMN与△ABC重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP时,重叠部分为五边形,∴3>t�1,t<4,DP>0,∴t�1>0,解得t>1.∴1<t<4.∵△DFN∽△ABC,∴ = = = ,∵DN=PN�PD,∴DN=3�(t�1)=4�t,∴ = ,∴FN= ,∴FM=3�= , S=S梯形FMHD+S矩形DHQP,∴S= ×( +3)×(4�t )+3(t�1)=�t2+3t+3(1<t<4).(3)①当圆与边PQ相切时,如下图,当圆与PQ相切时,r=PE,由(1)可知,PD=(t�1)cm,∴PE=DE�DP=4�(t�1)=(5�t)cm,∵r 以0.2cm/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5�t,解得:t= s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t�1)cm,则PE=CQ=(5�t)cm,MQ=3cm,∴MC=mq+cq=5�t+3=(8�t)cm,∴1+0.2t=8�t,解得:t= s.∵P到E点停止,∴t�1≤4,即t≤5,∴t= s(舍),综上所述,当t= s时,⊙O与正方形PQMN的边所在直线相切. 28.(10分)如图1,抛物线y=ax2�6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+ AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2�6ax+6,得64a�48a+6=0,∴16a=�6,a=�,∴y=�x2+ x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴ ,解得:,∴直线AB的解析式为y=�x+6.(2)∵E(m,0),∴N(m,�m+6),P(m,� m2+ m+6).∵PE∥OB,∴△ANE∽△ABO,∴ = ,∴ = ,解得:AN= .∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵ = ,∴ = ,∴PM= AN= × =12�m.又∵PM=�m2+ m+6�6+ m=�m2+3m,∴12�m=�m2+3m,整理得:m2�12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴ = .∵0°<α<90°,∴d>0,∴ = ,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为 = = = ,∴ AE′=QE′,∴BE′+ AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ= =2,∴BE′+ AE′的最小值为2 .。

2017年江苏省连云港市中考数学试卷(2)

2017年江苏省连云港市中考数学试卷(2)

2017年江苏省连云港市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)计算a•a2的结果是()A.a B.a2C.2a2D.a33.(3分)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数4.(3分)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=5.(3分)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小6.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是37.(3分)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>08.(3分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O 方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)分式有意义的x的取值范围为.10.(3分)计算(a﹣2)(a+2)=.11.(3分)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为.12.(3分)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.13.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=°.14.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.15.(3分)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是.16.(3分)如图,已知等边三角形OAB与反比例函数y=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:﹣(﹣1)﹣+(π﹣3.14)0.18.(6分)化简•.19.(6分)解不等式组.20.(8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(10分)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC 上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.23.(10分)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.24.(10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.(10分)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).26.(12分)如图,已知二次函数y=ax 2+bx +3(a ≠0)的图象经过点A (3,0),B (4,1),且与y 轴交于点C ,连接AB 、AC 、BC .(1)求此二次函数的关系式;(2)判断△ABC 的形状;若△ABC 的外接圆记为⊙M ,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点A 1、B 1、C 1,△A 1B 1C 1的外接圆记为⊙M 1,是否存在某个位置,使⊙M 1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.(14分)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE=DG ,求证:2S 四边形EFGH =S 矩形ABCD .(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1. 如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S .如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩与S之间的数量关系,并说明理由.形ABCD迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已=11,HF=,求EG的长.知AH>BF,AE>DG,S四边形EFGH(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.2017年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)(2017•连云港)2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:2的绝对值是2.故选:B.【点评】此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握正数的绝对值是它本身.2.(3分)(2017•连云港)计算a•a2的结果是()A.a B.a2C.2a2D.a3【分析】根据同底数幂的乘法,可得答案.【解答】解:a•a2=a3,故选:D.【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.3.(3分)(2017•连云港)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)(2017•连云港)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=【分析】根据相似三角形的性质判断即可.【解答】解:∵△ABC∽△DEF,∴=,A不一定成立;=1,B不成立;=,C不成立;=,D成立,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等、相似三角形(多边形)的周长的比等于相似比、相似三角形的面积的比等于相似比的平方是解题的关键.5.(3分)(2017•连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,因此左视图的面积最小.故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.(3分)(2017•连云港)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.【点评】考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.7.(3分)(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0【分析】依据抛物线的对称性可知:(2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(﹣2,y1)关于y轴对称点的坐标为(2,y1).又∵a>0,0<1<2,∴y2<y1.故选:C.【点评】本题主要考查的是二次函数的性质,熟练掌握二次函数的对称性和增减性是解题的关键.8.(3分)(2017•连云港)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0【分析】根据题意求得A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…于是得到A2017与A1重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴A0A2017=2R=4.故选A.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)(2017•连云港)分式有意义的x的取值范围为x≠1.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(3分)(2017•连云港)计算(a﹣2)(a+2)=a2﹣4.【分析】根据平方差公式求出即可.【解答】解:(a﹣2)(a+2)=a2﹣4,故答案为:a2﹣4.【点评】本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键.11.(3分)(2017•连云港)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为 6.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将6800000用科学记数法表示为:6.8×106.故答案为:6.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是1.【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4m=0,解之即可得出结论.【解答】解:∵关于x的方程x2﹣2x+m=0有两个相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m=0,解得:m=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.13.(3分)(2017•连云港)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=56°.【分析】根据四边形的内角和等于360°求出∠C,再根据平行四边形的邻角互补列式计算即可得解.【解答】解:∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF中,∠C=360°﹣∠EAF﹣∠AEC﹣∠AFC=360°﹣56°﹣90°﹣90°=124°,在▱ABCD中,∠B=180°﹣∠C=180°﹣124°=56°.故答案为:56.【点评】本题考查了平行四边形的性质,四边形的内角和,熟记平行四边形的邻角互补是解题的关键.14.(3分)(2017•连云港)如图,线段AB与⊙O相切于点B,线段AO与⊙O 相交于点C,AB=12,AC=8,则⊙O的半径长为5.【分析】连接OB,根据切线的性质求出∠ABO=90°,在△ABO中,由勾股定理即可求出⊙O的半径长.【解答】解:连接OB,∵AB切⊙O于B,∴OB⊥AB,∴∠ABO=90°,设⊙O的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故答案为:5.【点评】本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO,主要培养了学生运用性质进行推理的能力.15.(3分)(2017•连云港)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b的值代入即可求出值.【解答】解:∵函数y=与y=﹣2x﹣6的图象的交点坐标是(a,b),∴将x=a,y=b代入反比例解析式得:b=,即ab=3,代入一次函数解析式得:b=﹣2a﹣6,即2a+b=﹣6,则+===﹣2,故答案为:﹣2.【点评】此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a与b的关系式是解本题的关键.16.(3分)(2017•连云港)如图,已知等边三角形OAB与反比例函数y=(k >0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线OM:y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解答】解:如图,过O作OM⊥AB于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数y=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°==,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=x,∴OB=x,∴=,∴BF=,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴==,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)(2017•连云港)计算:﹣(﹣1)﹣+(π﹣3.14)0.【分析】先去括号、开方、零指数幂,然后计算加减法.【解答】解:原式=1﹣2+1=0.【点评】本题考查了实数的运算,零指数幂,属于基础题,熟记实数运算法则即可解题.18.(6分)(2017•连云港)化简•.【分析】根据分式的乘法,可得答案.【解答】解:原式=•=.【点评】本题考查了分式的乘法,利用分式的乘法是解题关键.19.(6分)(2017•连云港)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣3x+1<4,得:x>﹣1,解不等式3x﹣2(x﹣1)≤6,得:x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2017•连云港)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为0.34;样本成绩的中位数落在分数段70≤x<80中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【分析】(1)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得a、b、c的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(3)总数乘以80分以上的频率即可.【解答】解:(1)本次调查的作品总数为18÷0.36=50(幅),则c=17÷50=0.34,a=50×0.24=12,b=50×0.06=3,其中位数为第25、26个数的平均数,∴中位数落在70≤x<80中,故答案为:0.34,70≤x<80;(2)补全图形如下:(3)600×(0.24+0.06)=180(幅),答:估计全校被展评作品数量是180幅.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2017•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:,由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.22.(10分)(2017•连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E 分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.23.(10分)(2017•连云港)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x 轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【分析】(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.【解答】解:(1)∵OB=4,∴B(0,4)∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴AD•OB=5,∴(m+2)•m=5,即m2+2m﹣10=0,解得m=﹣1+或m=﹣1﹣(舍去),∵∠BOD=90°,∴点B的运动路径长为:×2π×(﹣1+)=π.【点评】本题考查的是待定系数法求一次函数的解析式以及三角形面积公式和弧长计算,难度一般.24.(10分)(2017•连云港)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【分析】(1)根据总销售收入=直接销售蓝莓的收入+加工销售的收入,即可得出y关于x的函数关系式;(2)由采摘量不小于加工量,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.【解答】解:(1)根据题意得:y=[70x﹣(20﹣x)×35]×40+(20﹣x)×35×130=﹣350x+63000.答:y与x的函数关系式为y=﹣350x+63000.(2)∵70x≥35(20﹣x),∴x≥.∵x为正整数,且x≤20,∴7≤x≤20.∵y=﹣350x+63000中k=﹣350<0,∴y的值随x的值增大而减小,∴当x=7时,y取最大值,最大值为﹣350×7+63000=60550.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【点评】本题考查了一次函数的应用、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据数量关系,找出y与x的函数关系式;(2)根据一次函数的性质,解决最值问题.25.(10分)(2017•连云港)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【分析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可;【解答】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈1000×0.8=800米.∴S=•AB•CE=×1400×800=560000平方米.△ABC(2)连接AD,作DF⊥AB于F.,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400米,∵AE=AC•cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=EB﹣AE=400米,在Rt△ADF中,AD==400=565.6米.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.26.(12分)(2017•连云港)如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【分析】(1)直接利用待定系数法求出a,b的值进而得出答案;(2)首先得出∠OAC=45°,进而得出AD=BD,求出∠OAC=45°,即可得出答案;(3)首先利用已知得出圆M平移的长度为:2﹣或2+,进而得出抛物线的平移规律,即可得出答案.【解答】解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠OAC=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y=(x﹣)2﹣或y=(x﹣)2﹣.【点评】此题主要考查了二次函数综合以及二次函数的平移、等腰直角三角形的性质等知识,正确得出圆M的平移距离是解题关键.27.(14分)(2017•连云港)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求=S矩形ABCD.(S表示面积)证:2S四边形EFGH实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB 边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S=S矩形ABCD+S.四边形EFGH如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD与S 之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF=,求EG 的长.(2)如图5,在矩形ABCD 中,AB=3,AD=5,点E 、H 分别在边AB 、AD 上,BE=1,DH=2,点F 、G 分别是边BC 、CD 上的动点,且FG=,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.【分析】问题呈现:只要证明S △HGE =S 矩形AEGD ,同理S △EGF =S 矩形BEGC ,由此可得S 四边形EFGH =S △HGE +S △EFG =S 矩形BEGC ; 实验探究:结论:2S四边形EFGH =S 矩形ABCD ﹣.根据=,=,=,=,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题. 【解答】问题呈现:证明:如图1中,。

2024届江苏省苏州市张家港第一中学中考三模数学试题含解析

2024届江苏省苏州市张家港第一中学中考三模数学试题含解析

2024学年江苏省苏州市张家港第一中学中考三模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1392.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A5B3C5D.33.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1074.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-5.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE7.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.118.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.9.如图所示,ABC△的顶点是正方形网格的格点,则sin A的值为()A.12B5C25D.101010.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A 15B.14C15D417二、填空题(共7小题,每小题3分,满分21分)11.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.12.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .13.如图所示,直线y=x+1(记为l 1)与直线y=mx+n (记为l 2)相交于点P (a ,2),则关于x 的不等式x+1≥mx+n 的解集为__________.14.已知关于x 的方程x 2-2x -k =0有两个相等的实数根,则k 的值为__________.15.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.16.已知:如图,△ABC 的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为_____.17.在某一时刻,测得一根长为1.5m 的标杆的影长为3m ,同时测得一根旗杆的影长为26m ,那么这根旗杆的高度为_____m .三、解答题(共7小题,满分69分)18.(10分)如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB =4,AC =6,求sin ∠ACB 的值;(3)若23DF FO ,求证:CD =DH .19.(5分)如图1,已知抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.(3)如图2,连接BC ,PB ,PC ,设△PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.20.(8分)如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.21.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.41423.(12分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.24.(14分)计算:2sin30°﹣(π2031|+(12)﹣1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【题目详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.【题目点拨】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.2、C【解题分析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则;∴AC+BC=(m.答:树高为(故选C.3、B【解题分析】试题解析:0.00 000 069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4、B【解题分析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.5、C【解题分析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.6、C【解题分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【题目详解】∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选C.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.7、B【解题分析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.8、D【解题分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【题目详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB22AE BE=5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【题目点拨】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.9、B【解题分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【题目详解】解:连接CD(如图所示),设小正方形的边长为1,∵22112DBC=∠DCB=45°,∴CD AB⊥,在Rt△ADC中,10AC=,2CD=,则25 sin510CDAAC===.故选B.【题目点拨】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.10、A【解题分析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC=2241-=15,则cos B=BCAB=154,故选A二、填空题(共7小题,每小题3分,满分21分)11、1.【解题分析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题12、2.【解题分析】试题分析:若22m n x y --与423m n x y +是同类项,则:4{22m n m n -=+=,解方程得:2{2m n ==-.∴3m n -=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.13、x≥1【解题分析】把y=2代入y=x+1,得x=1,∴点P 的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n 相应的函数值,因而不等式x+1≥mx+n 的解集是:x≥1,故答案为x≥1.【题目点拨】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14、-3【解题分析】试题解析:根据题意得:△=(2)2-4×1×(-k )=0,即12+4k=0, 解得:k=-3,15、113407, 北京市近两年的专利授权量平均每年增加6458.5件.【解题分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【题目详解】 解:∵北京市近两年的专利授权量平均每年增加:106948940316458.52-=(件), ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.【题目点拨】此题考查统计图的意义,解题的关键在于看懂图中数据.16、1【解题分析】【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=12BC,从而得2ADEABCS DES BC⎛⎫= ⎪⎝⎭,据此建立关于x的方程,解之可得.【题目详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=12 BC,∴△ADE∽△ABC,则2ADEABCS DES BC⎛⎫= ⎪⎝⎭=14,即121124x-=,解得:x=1,即四边形BCED的面积为1,故答案为1.【题目点拨】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.17、13【解题分析】根据同时同地物高与影长成比列式计算即可得解.【题目详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【题目点拨】本题考查投影,解题的关键是应用相似三角形.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)34;(3)证明见解析.【解题分析】(1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =14CE ,根据等腰三角形的性质证明. 【题目详解】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中, BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =1.在Rt △ABD 中,AB =1,BD =8,∠ADE =∠ACB ,∴sin ∠ADB =68=34,即sin ∠ACB =34; (3)证明:由(2)知,OA 是△BDE 的中位线,∴OA ∥DE ,OA =12DE . ∴△CDF ∽△AOF , ∴CD DF AO OF ==23,∴CD=23OA=13DE,即CD=14CE,∵AC=AE,AH⊥CE,∴CH=HE=12 CE,∴CD=12 CH,∴CD=DH.【题目点拨】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.19、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC 92,此时点P的坐标为(32,154).【解题分析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【题目详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段=∴P 点到直线BC 的距离的最大值为272928832⨯=, 此时点P 的坐标为(32,154).【题目点拨】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S 关于t 的函数表达式;②利用二次函数的性质结合面积法求出P 点到直线BC 的距离的最大值.20、(1)(0,3);(2)112y x =-. 【解题分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【题目详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222(13)OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.21、(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解题分析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【题目详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<,∴当x 25<时,W 随x 的增大而增大,10x 16,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【题目点拨】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.22、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【解题分析】根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.【题目详解】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=CDBC,∴CD=BC sin∠CBD=22.∵∠CBD=15°,∴BD=CD=22.在Rt△ACD中,sin A=CDAC,tan A=CDAD,∴AC=CDsinA≈220.59≈1.8,AD=CDtanA=2236tan︒,∴AB=AD﹣BD=2236tan︒﹣22=2 1.4140.73⨯﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【题目点拨】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.23、(3)证明见解析; (3)AB=3.【解题分析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【题目详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=221312=5,∴AB=AD+BD=33+5=3.【题目点拨】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.24、3【解题分析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×1233点睛:此题主要考查了实数运算,正确化简各数是解题关键.。

2023年江苏省苏州市工业园区星湾中学中考数学零模试卷+答案解析

2023年江苏省苏州市工业园区星湾中学中考数学零模试卷+答案解析

2023年江苏省苏州市工业园区星湾中学中考数学零模试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果为()A.2B.C.4D.2.下列运算正确的是()A. B. C. D.3.以下调查中,适合采用全面调查的是()A.了解全市同学每周睡眠的时间B.调查一批灯管的使用寿命C.调查春节联欢晚会的收视率D.鞋厂检测生产的鞋底能承受的弯折次数4.如图,已知AB是的直径,,AD平分,则的度数是()A. B.C. D.5.如图,,,,则的度数为()A. B.C. D.6.如图,在矩形ABCD中,将沿AE折叠得到,延长EF交AD边于点M,若,,则MF的长为()A. B.8 C.6 D.7.如图,抛物线交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点点C在点D右边,对称轴为直线,连接AC,AD,若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为B.C. D.8.在中,,P为AC上一动点,若,,则的最小值为()A.5B.10C.D.二、填空题:本题共8小题,每小题3分,共24分。

9.有理数的相反数是_________________.10.数据8,9,10,11,12的方差为____.11.若关于x的一元一次不等式组的解集为,则a的取值范围是_______.12.如图所示,电路图上有A、B、C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光,现在任意闭合其中一个开关,则小灯泡发光的概率等于_________________.13.如图,半径为的与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则___________________.14.关于x的一元二次方程有两个相等的实数根,则______.15.如图所示,正方形ABCD的对角线交于点O,P是边CD靠近点D的四等分点,连接PA,PB分别交BD,AC于M,连接MN,则的值是__________________.16.如图,在矩形ABCD中,,以点C为圆心作与直线BD相切,点P是上一个动点,连接AP交BD于点T,则的最大值是____.三、计算题:本大题共2小题,共12分。

2024年江苏省徐州市铜山区中考三模数学试题(含答案)

2024年江苏省徐州市铜山区中考三模数学试题(含答案)

2024年九年级第三次质量检测数学试题注意事项1.本试卷共6页,满分为140分,考试时间为120分钟.2.答题前,请将姓名、考试号用0.5毫米黑色字迹的签字笔填写在本试卷及答题卡指定位置.3.答案全部涂、写在答题卡上,写在本卷上无效.考试结束后,只交答题卡.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)1.2024的相反数是( )A.B. C.2024D.2.如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列计算正确的是( )A. B. C. D.4.函数中,自变量的取值范围是( )A. B. C. D.5.九(1)班采用民主投票的方式评选一名“最有责任心的班干部”,班里每位同学从5名候选人中选择一名无记名投票,根据投票结果判断最终当选者所需要考虑的统计量是( )A.平均数B.众数C.中位数D.方差6.如图,同学们将平行于凸透镜主光轴的红光和紫光射入同一个凸透镜,折射光线,交于点,与主光轴分别交于点,,由此发现凸透镜的焦点略有偏差.若,,则的度数为( )A.165°B.160°C.155°D.145°7.如图所示,把一个长方形纸片沿折叠后,点,分别落在,的位置.若,则等于( )1202412024-2024-32a a a -=325a a a ⋅=321a a ÷=()235aa =12y x =-x 2x >2x ≥2x ≠2x <AB CD BM DN O 1F 2F 165ABM ∠=︒160CDN ∠=︒12F OF ∠EF D C D 'C '65EFB ∠=︒AED '∠A.50°B.65°C.70°D.25°8.如图,是半圆的直径,点,在半圆上,,连接,,,过点作,交的延长线于点.设的面积为,的面积为,若,则的值为( )C. D.二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.7的算术平方根是________.10.因式分解:________.11.方程的解是:________.12.《中国核能发展报告2024》蓝皮书显示,2023年我国核能发电量为3662.43亿千瓦时,相当于造林771000公顷,则数据771000用科学记数法表示为________.13.在平面直角坐标系中,函数与的图像交于点.则代数式的值为________.14.若关于的一元二次方程有两个不相等的实数根,则实数的取值范围为________.15.若圆锥底面半径为,侧面展开图的面积为,则圆雉母线长为________.16.如图,是直径,点,在上,若,则 ________.AB O C D CD BD =OC CA OD B EB AB ⊥OD E OAC △1S OBE △2S 1223S S =tan ACO ∠75322a ab +=3221x x =--x =1y x =-()40y x x=>(),P a b 11a b -x 220x x k ++=k 1.5cm 26cm πcm AB O C D O 66DAB ∠=︒ACD ∠=17.如图,为等边三角形,点恰好在反比例函数的图象上,且轴于点.若点的坐标为,则的值为________.18.如图,中,,点是边的中点,点和分别在边和上,,.若,,则的长为________.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步㵵)19.(本题10分)计算:(1)(2)20.(本题10分)(1)解方程:(2)解不等式组:21.(本题7分)暑期即将来临,我市某校为了了解学生喜欢的休闲去处,设计了如下的调查问卷,并在全校学生中随机抽取部分学生进行了调查,随后根据调查结果绘制了统计图(均不完整).下列,你最喜欢的休闲去处是?(单选)( )A.吕梁风景区;B.云龙湖;C.加勒比水上世界;D.大龙湖;E.潘安湖ABC △B ()0,0ky k x x=≠<BA x ⊥A C (0,1)k ABC △90BAC ∠=︒D BC E F AB AC BE BD =CF CD =2DE=DF =BC 11|2024|6π-⎛⎫-+- ⎪⎝⎭2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭22530x x -+=453,121.35x x x -≤⎧⎪-+⎨<⎪⎩调查结果的条形统计图 调查结果的扇形统计图根据以上信息,解答下列问题:(1)本次接受调查的总人数是________人,并把条形统计图补充完整.(2)扇形统计图中,选项的人数百分比是________,E 选项所在扇形的圆心角的度数是________.(3)若该校共有学生2500名,则其中大约有多少名学生最喜欢去“云龙湖”?22.(本题7分)徐州作为“中国最具幸福感城市”之一,有着丰富的旅游资源.某天甲、乙两人来徐州旅游,两人分别从、、三个景点中随机选择一个景点游览.(1)甲选择景点的概率为________;(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择景点的概率.23.(本题8分)甲、乙两名学生到离校的“人民公园”参加志愿者活动,甲同学步行,乙同学骑自行车,骑自行车速度是步行速度的4倍,甲出发后乙同学出发,两名同学同时到达,求乙同学骑自行车的速度.24.(本题8分)如图,在菱形中,是对角线,点是线段延长线上的一点,在线段的延长线上截取,连接,,,.试判断四边形的形状,并说明理由.25.(本题8分)太阳能路灯具有安全性能高、节能环保、经济实用等特点,己被广泛应用于主、次干道,工厂,旅游景点等场所.如图是太阳能板及支架部分的示意图,是太阳能板,点与点是支架部分与太阳能板的连接点,点是支架部分与灯杆的连接点,点是灯杆上一点,支架的长为,与灯杆的夹角,支架的长为,与灯杆的夹角,点,,,,,在同一竖直平面内,求点和点距地面的高度差.(结果精确到,参考数据:,,,,,)C A B C A C 2.4km 30mim ABCD ACE AC CA AF CE =DF BF DE BE FBED EF A B C D AC 48cm AC 25ACD ∠=︒BC 23cm BC 50BCD ∠=︒A B C D E F A B 1cm sin 250.42︒≈cos 250.91︒≈tan 250.47︒≈sin 500.77︒≈cos500.64︒≈tan 50 1.19︒≈26.(本题8分)如图,已知在中,,以为圆心,的长为半径作圆,是的切线与的延长线交于点.(1)请用无刻度的直尺和圆规过点作的垂线交的延长线于点.(保留作图痕迹,不写作法)(2)在(1)的条件下,连接.试判断直线与的位置关系,并说明理由;27.(本题10分)【问题情境】如图1,是外的一点,直线分别交于点、.小明认为线段是点到上各点的距离中最短的线段,他是这样考虑的:在上任意取一个不同于点的点,连接、,则有,即,由得,即,从而得出线段是点到上各点的距离中最短的线段.小红认为在图1中,线段是点到上各点的距离中最长的线段,你认为小红的说法正确吗?请说明理由.图1 图2 图3【直接运用】如图3,在中,,,以为直径的半圆交于,是上的一个动点,连接,则的最小值是______;【构造运用】如图4,在边长为2的菱形中,,是边的中点,是边上一动点,将沿所在的直线翻折得到,连接,请求出长度的最小值.ABC △AB AC =A AB CE A BA E A BC EC D BD BD A P O PO O A B PA P O O A C OC CP OP OC PC <+OP OC PC -<OA OC =OP OA PC -<PA PC <PA P O PB P O Rt ABC △90ACB ∠=︒2AC BC ==BC AB D P CDAP AP ABCD 60A ∠=︒M AD N AB AMN △MN A MN '△A C 'A C '图4图5【深度运用】如图5,已知点在以为直径,为圆心的半圆上,,以为边作等边,则的最大值是________.28.(本题10分)已知二次函数.(1)求证:该函数的图像与轴总有两个公共点;(2)若该函数图像与轴的两个交点坐标分别为,,且,求证:;(3)若,,都在该二次函数图像上,且,结合函数图像,写出的取值范围是________.2024年九年级第三次质量检测数学试题参考答案及评分标准一、选择题(每小题3分,共24分)题号12345678选项DCBCBDAA二、填空题(每小题3分,共30分)910、11、12、13、14、15、416、2417、 18、三、解答题(共86分)19.(1)原式 (4分). (5分)(2)原式 (9分). (10分)20.(1) . (1分)C AB O 4AB =BC BCD △AD ()230y ax bx a =+->x x ()1,0x ()2,0x 123x x =-240b a -=()1,A t y ()24,B y -()12,C t y +213y y ->>t ()a ab +1-57.7110⨯14-1k <-2024162=+--2021=()22222x x x x -+=⋅-+2x =-2a =5b =-3c =()22454231b ac -=--⨯⨯=. (3分),. (5分)(2)解不等式①,得.(7分)解不等式②,得.(9分)所以不等式组的解集为.(10分)21.(1)300(1分)见下图(2)26%(4分) 36°,(5分)(3)(名),答:大约有1050名学生最喜欢去“云龙湖”.(7分)22.(1)(2分)(2)根据题意画树状图如下:(列表参照给分) (5分)共有9种等可能的情况,其中甲、乙两人中至少有一人选择C 景点的情况有5种,(甲、乙两人中至少有一人选择景点). (7分)23.解:设甲同学步行的速度为,则乙同学骑自行车的速度为, (1分)由题意得:,(4分)解得:,(5分)经检验,是原方程的解,且符合题意,(6分),(7分)答:乙同学骑自行车的速度为.(8分)24.解:四边形是菱形. (1分)理由:连接交于点,(2分)四边形是菱形,,,,(5分),, (6分),四边形是平行四边形, (7分),四边形是菱形. (8分)514x ±==132x =21x =2x ≤8x >-82x -<≤250042%1050⨯=13P ∴C 59=/xkm h 4/xkm h 2.4 2.430460x x -=3.6x = 3.6x =44 3.614.4x ∴=⨯=14.4/km h FBEC BD AC O ABCD OA OC ∴=OB OD =AC BD ⊥AF CE = OF OE ∴=OD OB = ∴FBED BD EF ⊥ ∴FBED25解:如答图,过点作交的延长线于点,过点作交的延长线于点. (2分)在中,,,,,,,(4分)在中,,,,,,,(6分),(7分)答:点A 和点B 距地面的高度差约为29cm. (8)26.(1)如图所示:第(1)题图 第(2)题图(本题解法不唯一,其它解法参照给分) (4分)(2)与相切.为切线,,(5),,垂直平分,. (6分)又,,,.与相切. (8分)27.解:【问题情境】如答图1,在圆上任意取一个不同于点的点,连接、.A AG CD ⊥CD GB BH CD ⊥CD H Rt ACG △90AGC ∠=︒25ACG ∠=︒48AC =cos CG ACG AC ∠=0.9148CG∴≈43.68CG ∴=Rt BCH △90BHC ∠=︒50BCH ∠=︒23BC =cos CH BCH BC ∠= 0.6423CH∴≈14.72CH ∴=43.6814.7228.9629GH cm ∴=-=≈BD A EC A 90ACD ∴∠=︒AB AC = AD BC ⊥AD ∴BC DB DC ∴=AB AC = AD AD =ABD ACD ∴△≌90ABD ACD ∴∠=∠=︒BD ∴A O B C OC OP在中,. (1分),,即.(2分)线段是点到圆上各点的距离中最长的线段.(3分).(5分)【构造运用】由折叠知,是的中点,,点,,都在以为直径的圆上.如图3,以点为圆心,为半径画,连接.当长度取最小值时,点在上. (6分)过点作于点,在边长为6的菱形中,,为中点,,,,,,.(7分),;(8分)【深度运用】 (10分)答图1答图2答图328.(1)证明: (1分),, (3分)∴该函数的图像与轴总有两个公共点. (4分)(2)证明:由题意得,,, (5分),,. (7分),,,. (8分)(3)或(10分)注:以上答案仅供参考,如有其它解法参照给分POC △OP OC PC +>OB OC = OP OB PC ∴+>PB PC >∴PB P O 1-A M AM '=M AD MA MA MD '∴==∴A 'A D AD M MA M MC A C 'A 'MC M MH DC ⊥F ABCD 60A ∠=︒M AD 22MD AD CD ∴===60HDM ∠=︒30HMD ∠=︒1122HD MD ∴==cos30HM DM ∴=⨯︒=52HC =MC ∴==1A C MC MA ''∴=-=-2+()224312b a b a -⋅-=+20b ≥ 0a >2102b a +∴>x 12b x x a +=-123x x a⋅=-123x x =- 22b x a ∴=132b x a=-123x x a ⋅=- 3322b b a a a∴-⋅=-24b a ∴=240b a ∴-=6t <-43t -<<-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省苏州市中考数学模拟试卷(三) 一、选择题(共10小题,每小题3分,满分30分) 1.(3分)﹣的倒数是( )

A.﹣ B. C.3 D.﹣3 2.(3分)下列运算正确的是( ) A.a2+a5=a7 B.(﹣a2)3=a6 C.a2﹣1=(a+1)(a﹣1) D.(a+b)2=a2+b2

3.(3分)下列图形中,中心对称图形有( )

A.1个 B.2个 C.3个 D.4个 4.(3分)有一种细胞直径约为0.000 058cm.用科学记数法表示这个数为( ) A.5.8×10﹣6 B.5.8×10﹣5 C.0.58×10﹣5 D.58×10﹣6 5.(3分)在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下: 金额(元) 20 30 35 50 100 学生数(人) 3 7 5 15 10 则在这次活动中,该班同学捐款金额的众数和中位数是( ) A.30,35 B.50,35 C.50,50 D.15,50 6.(3分)使有意义的x的取值范围是( ) A. B. C. D. 7.(3分)如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是( ) A. B. C.6 D.10 8.(3分)下列命题正确的是( ) A.两个等边三角形全等 B.各有一个角是40°的两个等腰三角形全等 C.对角线互相垂直平分的四边形是菱形 D.对角线互相垂直且相等的四边形是正方形 9.(3分)如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )

A. B. C. D. 10.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P以每秒一个单位的速度沿着B﹣C﹣A运动,⊙P始终与AB相切,设点P运动的时间为t,⊙P的面积为y,则y与t之间的函数关系图象大致是( ) A. B. C. D. 二、填空题(共8小题,每小题3分,满分24分) 11.(3分)2﹣1等于 . 12.(3分)分解因式:2a2﹣8= . 13.(3分)“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了 元. 14.(3分)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是 .

15.(3分)如图,圆锥的底面半径为3cm,高为4cm,那么这个圆锥的侧面积是 cm2.

16.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需 个五边形. 17.(3分)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为 .

18.(3分)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论: ①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是. 其中正确结论的序号是 .

三、解答题(共10小题,满分76分) 19.(5分)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.

20.(5分)解不等式组. 21.(6分)先化简(﹣)•,再从0,1,2中选一个合适的x的值代入求值. 22.(6分)为解决“最后一公里”的交通接驳问题,某市投放了大量公租自行车使用,到2014年底,全市已有公租自行车25000辆,租赁点600个,预计到2016年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是 2014年底平均每个租赁点的公租自行车数量的1.2倍,预计到2016年底,全市将有租赁点多少个? 23.(8分)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2. (1)求k的取值范围; (2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值. 24.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率. 25.(8分)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点. (1)当k=1时,求A、B两点的坐标; (2)当k=2时,求△AOB的面积; (3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=,求n的值.

26.(10分)阅读材料: 在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目: 在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b. 解:在△ABC中,∵=∴b====3. 理解应用: 如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里. (1)判断△A1A2B2的形状,并给出证明; (2)求乙船每小时航行多少海里?

27.(10分)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x. (1)用关于x的代数式表示BQ,DF. (2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长. (3)在点P的整个运动过程中, ①当AP为何值时,矩形DEGF是正方形? ②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案). 28.(10分)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q. (1)这条抛物线的对称轴是 ,直线PQ与x轴所夹锐角的度数是 ; (2)若两个三角形面积满足S△POQ=S△PAQ,求m的值; (3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值. 2017年江苏省苏州市中考数学模拟试卷(三) 参考答案与试题解析

一、选择题(共10小题,每小题3分,满分30分) 1.(3分)﹣的倒数是( )

A.﹣ B. C.3 D.﹣3 【解答】解:的倒数是﹣3. 故选:D.

2.(3分)下列运算正确的是( ) A.a2+a5=a7 B.(﹣a2)3=a6 C.a2﹣1=(a+1)(a﹣1) D.(a+b)2=a2+b2 【解答】解:A、a2与a5是加不是乘,不能利用同底数幂的乘法进行计算,故本选项错误; B、(﹣a2)3=﹣a2×3=﹣a6,故本选项错误; C、a2﹣1=(a+1)(a﹣1),故本选项正确; D、(a+b)2=a2+2ab+b2,故本选项错误. 故选C.

3.(3分)下列图形中,中心对称图形有( )

A.1个 B.2个 C.3个 D.4个 【解答】解:第一个图形是中心对称图形; 第二个图形是中心对称图形; 第三个图形是中心对称图形; 第四个图形不是中心对称图形. 故共3个中心对称图形. 故选C.

4.(3分)有一种细胞直径约为0.000 058cm.用科学记数法表示这个数为( ) A.5.8×10﹣6 B.5.8×10﹣5 C.0.58×10﹣5 D.58×10﹣6 【解答】解:0.000 058=5.8×10﹣5. 故选:B.

5.(3分)在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下: 金额(元) 20 30 35 50 100 学生数(人) 3 7 5 15 10 则在这次活动中,该班同学捐款金额的众数和中位数是( ) A.30,35 B.50,35 C.50,50 D.15,50 【解答】解:50元的有15人,人数最多,故众数为50分; 处于中间位置的数为第20、21两个数, 为50分,50分,中位数为=50分. 故选C.

6.(3分)使有意义的x的取值范围是( ) A. B. C. D.

【解答】解:根据题意得:3x﹣1≥0,解得x≥. 故选C.

7.(3分)如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是( )

相关文档
最新文档