13函数图像

合集下载

中考数学精学巧练备考秘籍 第3章 函数 第13课时 一次函数图象和性质(2021学年)

中考数学精学巧练备考秘籍 第3章 函数 第13课时 一次函数图象和性质(2021学年)

2017年中考数学精学巧练备考秘籍第3章函数第13课时一次函数图象和性质编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学精学巧练备考秘籍第3章函数第13课时一次函数图象和性质)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学精学巧练备考秘籍第3章函数第13课时一次函数图象和性质的全部内容。

第3章 函数【精学】考点一、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果b kx y +=(k,b是常数,k ≠0),那么y叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b)的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

k 的符号b 的符号函数图像图像特征k 〉0 b>0图像经过一、二、三象限,y 随x 的增大而增大。

b〈0图像经过一、三、四象限,y 随x 的增大而增大。

K 〈0b〉0图像经过一、二、四象限,y 随x的增大而减小b<0图像经过二、三、四象限,y 随x 的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

专题13 函数基础知识人教版八年级下册专项训练

专题13 函数基础知识人教版八年级下册专项训练

专题13函数基础知识一、知识点1.函数的传统定义:设在某变化过程中有两个变量x,y,如果对于x在某一范围内的每一个确定的值,y都有________的值与它对应,那么就称y是x的________,x叫做自变量.2.函数的表示方法有三种:________法、________法、________法.3.画函数图像的一般步骤:________、________、________.4.求函数自变量的取值范围,一般有三种情况:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,需满足分式的分母不能为0;(3)当函数表达式是二次根式时,需满足被开方数为非负数.二次根式和分式组成的“复合”形式,则要注意使函数表达式中的二次根式与分式均要有意义.二、标准例题例1:下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是() A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数例2:下列各图象中不表示y是x的函数的是( )例3:星期六早晨小明妈妈从家里出发去公园锻炼,她连续、匀速走了60分钟后回家,图中的折线段OA→AB→BC是她出发后所在位置离家的距离S(km)与行走时间t(分钟)之间的关系示意图,则下列图形中可以大致描述小明妈妈行走路线的是()A.B.C.D.例4:如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的1(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至4注满为止.图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;⑵求A的高度h A及注水的速度v;⑶求注满容器所需时间及容器的高度.例5:如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.三、练习1.函数中,自变量的取值范围是( ).A.B.C.D.2.下列各曲线中,能表示y 是x 的函数的是()A.B.C.D.3.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣74.如图是张华放学后回家行进的路程s(m)与时间t(min)的函数图象,观察图象,从中得到如下信息,其中不正确的是()A.学校离张华家1000 m B.张华用了20 min到家C.张华前10 min走了路程的一半D.张华后10 min比前10 min走得快5.如图,某工厂有甲、乙两个大小相同的容器,且中间有管道连通,现要向甲容器注水.若单位时间内的注水量不变,则从注水开始,乙容器水面上升的高度h与注水时间t之间的关系图象可能是()A.B.C.D.6.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④7.如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是()A.B.C.D.8.星期天,小明和爸爸去大剧院看电影.爸爸步行先走,小明在爸爸离开家一段时间后骑自行车去,两人按相同的路线前往大剧院,他们所走的路程s(米)和时间t(分)的关系如图所示.则小明追上爸爸时,爸爸共走了()A.12分钟B.15分钟C.18分钟D.21分钟9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.10.函数y=+的自变量x的取值范围是11.江山村的耕地面积是106(m2),这个村人均占有耕地面积x(m2)与人数n的关系是________.12.汽车油箱内存油45L,每行驶100km耗油10L,行驶过程中油箱内剩余油量y L与行驶路程s km的函数关系式是_____.13.将长为20cm,宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为_____.14.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).15.如图描述了某汽车在行驶过程中速度与时间的关系,下列说法中正确的是________.(填序号)①第3分钟时,汽车的速度是40千米/时;②第12分钟时,汽车的速度是0千米/时;③从第3分钟到第6分钟,汽车行驶了120千米;④从第9分钟到第12分钟,汽车的速度从60千米/时减小到0千米/时.16.心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.17.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.18.已知:函数y=√x+2,求x的取值范围,并在数轴上表示.19.一种树苗,栽种时高度约为80厘米,为研究它的生长情况,测得数据如下表:(1)此变化过程中_____是自变量,_____是因变量;(2)树苗高度h与栽种的年数n的关系式为_____;(3)栽种后_____后,树苗能长到280厘米.20.老师告诉小红:“离地面越高,温度越低”.并给小红出示了下面的表格:根据上表,老师还给小红出了下面几个问题,请你和小红一起来回答(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,请你用关于h的式子表示t;(3)请你利用(2)的结论求①距离地面5千米的高空温度是多少?②当高空某处温度为﹣40度时,求该处的高度.21.某商店为减少A商品的积压,采取降价销售的策略,A商品原价为520元,随着不同幅度的降价,日销量(单位:件)发生相应的变化(如表):(1)从表中可以看出每降价10元,日销量增加多少件?(2)估计降价之前的日销量为多少件?(3)由表格求出日销量y(件)与降价x(元)之间的函数解析式.(4)如果售价为440元时,日销量为多少件?27.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?22.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度ℎ(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量ℎ是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,ℎ的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?专题13函数基础知识一、知识点1.函数的传统定义:设在某变化过程中有两个变量x ,y ,如果对于x 在某一范围内的每一个确定的值,y 都有________的值与它对应,那么就称y 是x 的________,x 叫做自变量.2.函数的表示方法有三种:________法、________法、________法. 3.画函数图像的一般步骤:________、________、________. 4.求函数自变量的取值范围,一般有三种情况: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,需满足分式的分母不能为0; (3)当函数表达式是二次根式时,需满足被开方数为非负数.二次根式和分式组成的“复合”形式,则要注意使函数表达式中的二次根式与分式均要有意义. 二、标准例题例1:下面每个选项中给出了某个变化过程中的两个变量x 和y ,其中y 不是x 的函数的选项是( ) A .y :正方形的面积,x :这个正方形的周长 B .y :某班学生的身高,x :这个班学生的学号 C .y :圆的面积,x :这个圆的直径 D .y :一个正数的平方根,x :这个正数 【答案】D 【解析】A. y=(14x)2=116x 2,y 是x 的函数,故A 选项错误;B. 每一个学生对应一个身高,y 是x 的函数,故B 选项错误;C. y=π(12x)2=14πx 2,y 是x 的函数,故C 选项错误;D. y=±√x ,每一个x 的值对应两个y 值,y 不是x 的函数,故D 选项正确. 故答案选:D.总结:本题考查的知识点是函数的概念,解题的关键是熟练的掌握函数的概念 例2:下列各图象中不表示y 是x 的函数的是( )A.A B.B C.C D.D【答案】D【解析】圆不能表示y是x的函数,因为对x的某一部分的取值,y的对应值不唯一,不符合函数的定义,因此答案选D.例3:星期六早晨小明妈妈从家里出发去公园锻炼,她连续、匀速走了60分钟后回家,图中的折线段OA→AB→BC是她出发后所在位置离家的距离S(km)与行走时间t(分钟)之间的关系示意图,则下列图形中可以大致描述小明妈妈行走路线的是()A.B.C.D.【答案】B【解析】观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,可以大致描述蕊蕊妈妈行走的路线是B.故选B..总结:本题考查了函数的图象,由图象分析出大致的运动路径是解题的关键.例4:如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的1(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至4注满为止.图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;⑵求A的高度h A及注水的速度v;⑶求注满容器所需时间及容器的高度.【答案】(1)10s,8s(2)A的高度hA为4 cm,注水速度v为10 cm3/s(3)注满这个容器所需时间24 s,容器的高度为24 cm【解析】(1)看函数图象可知,注满A所用时间为10s,再注满B又用了8s;(2)根据题意和函数图象得,{ℎA=10v2512−ℎA=8v10,解得{ℎA= 4v=10;答:A的高度hA是4cm,注水的速度v是10cm3/s;(3)设C的容积为ycm3,则有,4y=10v+8v+y,将v=10代入计算得y=60,那么容器C的高度为:60÷5=12(cm),故这个容器的高度是:12+12=24(cm),∵B的注水时间为8s,底面积为10cm2,v=10cm3/s,∴B的高度=8×10÷10=8(cm),注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=24(s).答:注满容器所需时间为24s,容器的高度为24cm.总结:本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息,再分析高度、时间和容积的关系即可找到解题关键.例5:如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x=4时,△ABP 的面积为y= ;(3)求AB 的长和梯形ABCD 的面积.【答案】(1)x ,y ;(2)16;(3)AB=8,梯形ABCD 的面积=26.【解析】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为:x ,y ;(2)由图可得:当点P 运动的路程x=4时,△ABP 的面积为y=16.故答案为:16;(3)根据图象得:BC=4,此时△ABP 为16,∴12AB•BC=16,即12×AB×4=16,解得:AB=8;由图象得:DC=9﹣4=5,则S 梯形ABCD=12×BC×(DC+AB )=12×4×(5+8)=26. 总结:本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.三、练习1.函数中,自变量的取值范围是 ( ). A . B . C . D .【答案】A【解析】由题意得6-x ≥0,解得故选A2.下列各曲线中,能表示 y 是 x 的函数的是( ) A . B . C . D .【解析】解:由函数的定义可知,x与y的对应关系应该是一对一的关系或多对一的关系,据此排除A,B,C,故选D.3.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【答案】C【解析】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.4.如图是张华放学后回家行进的路程s(m)与时间t(min)的函数图象,观察图象,从中得到如下信息,其中不正确的是()A.学校离张华家1000 m B.张华用了20 min到家C.张华前10 min走了路程的一半D.张华后10 min比前10 min走得快【答案】C【解析】根据函数图象可知:学校离张华家1000m;张华用了20min到家;张华前10min走了路程的不到一半;张华后10min所走的路程比前10min多,所以走得快.5.如图,某工厂有甲、乙两个大小相同的容器,且中间有管道连通,现要向甲容器注水.若单位时间内的注水量不变,则从注水开始,乙容器水面上升的高度h与注水时间t之间的关系图象可能是()A.B.C.D.【答案】D【解析】①先注甲池水未达连接地方时,乙水池中的水面高度没变化;②当甲池中水到达连接的地方,乙水池中水面快速上升;③当乙到达连接处时,乙水池的水面持续增长较慢;④最后超过连接处时,乙水池的水上升较快,但比第②段要慢.故选:D.6.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【答案】B根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.7.如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解析】解:根据题意和图形可知:点P按B→C→D→A的顺序在边长为1的正方形边上运动,△APB的面积分为3段;当点P在BC上移动时,底边不变高逐渐变大,故面积逐渐变大;当点P在CD上移动时,底边不变,高不变,故面积不变;当点P在AD上时,高不变,底边变小,故面积越来越小直到0为止.故选:B.8.星期天,小明和爸爸去大剧院看电影.爸爸步行先走,小明在爸爸离开家一段时间后骑自行车去,两人按相同的路线前往大剧院,他们所走的路程s(米)和时间t(分)的关系如图所示.则小明追上爸爸时,爸爸共走了()A.12分钟B.15分钟C.18分钟D.21分钟【答案】C【解析】x=80x,小明解析式为:解得:k=180,爸爸的解析式y1=360045b=-1800,即y2=180x-1800,联立两直线解析式可得:80x=180x-1800,解得:x=18,故答案选C.9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.【答案】A【解析】设点P单位时间匀速运动的距离为1,由图形可知点P到线段AB的距离即为∆ABP的高,记住ℎ.×AB×t=t,图象是一条向上倾斜的正比例函数图象;当点P在线段AD上时,∆ABP为正三角形,S=12×AB×ℎ=2,图象是一条平行于x轴的常数函数图象;当点P在线段DE上时,S=12当点P 在线段EF 上时,ℎ=AD −EP =2−(t −3)=5−t ,S =12×AB ×ℎ=5−t ,图象是一条向下倾斜的一次函数图象;当点P 在线段FG 上时,ℎ=GB =1,S =12×AB ×ℎ=1,图象是一条平行于x 轴的常数函数图象 当点P 在线段GB 上时,ℎ=GB −GP =1−(t −5)=6−t ,S =12×AB ×ℎ=6−t ,图象是一条向下倾斜的一次函数图象.综上所述只有B 项的图像符合题意. 10.函数y=+的自变量x 的取值范围是【答案】x≤3且x≠2【解析】根据题意得{x−2≠03−x≥0,解得x≤3且x≠2.11.江山村的耕地面积是106(m 2),这个村人均占有耕地面积x(m 2)与人数n 的关系是________.【答案】x =106n 【解析】根据题意得:x =106n . 故答案得:x =106n12.汽车油箱内存油45L ,每行驶100km 耗油10L ,行驶过程中油箱内剩余油量y L 与行驶路程s km 的函数关系式是_____.【答案】y=45﹣0.1s (0≤s≤450)【解析】单位耗油量10÷100=0.1L ,行驶s 千米的耗油量为0.1s ,则行驶过程中油箱内剩余油量:y=45﹣0.1s (0≤s≤450). 故答案为:y=45﹣0.1s (0≤s≤450).13.将长为20cm ,宽为8cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm ,设x 张白纸粘合后的总长度为ycm ,y 与x 的函数关系式为_____.【答案】y=17x+3【解析】由题意可得:y=20x-3(x-1)=17x+3,即:y与x间的函数关系式为:y=17x+3.故答案为:y=17x+3.14.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).【答案】①②④【解析】解:①小明中途休息的时间是:60-40=20分钟,故本选项正确;=70(米/分钟),故本选项正确;②小明休息前爬山的速度为280040③小明在上述过程中所走路程为3800米,故本选项错误;’=25(米/分钟),所以小明休息前爬山的平均速度大于小明休息④因为小明休息后爬山的速度是3800−2800100−60前后爬山的平均速度,故本选项正确;故答案为:①②④.15.如图描述了某汽车在行驶过程中速度与时间的关系,下列说法中正确的是________.(填序号)①第3分钟时,汽车的速度是40千米/时;②第12分钟时,汽车的速度是0千米/时;③从第3分钟到第6分钟,汽车行驶了120千米;④从第9分钟到第12分钟,汽车的速度从60千米/时减小到0千米/时.【答案】①②④【解析】从图中可获取的信息是:①第3分时汽车的速度是40千米/时;②从第3分到第6分,汽车的速度是40千米/时;=2千米;③从第3分到第6分,汽车行驶了40×360④从第9分到第12分,汽车的速度从60千米/时减少到0千米/时.故错误的是③.故正确的有:①②④.16.心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.【答案】(1)59;(2)用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了;用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.【解析】解:(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4<59,所以用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了.当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5>59.所以用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.17.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.【答案】(1)半径r体积V;(2)V=4πr2;(3) 圆柱的体积由16πcm3变化到256πcm3.【解析】解:(1)在这个变化过程中,自变量是r,因变量是V.(2)圆柱的体积V与底面半径r的关系式是V=4πr2.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由16πcm3变化到256πcm3.故答案为:(1)r,V;(2)V=4πr2;(3)16π,256π.18.已知:函数y=√x+2,求x的取值范围,并在数轴上表示.【答案】x≥−2,数轴表示见解析.【解析】解:由函数y=√x+2,得x+2≥0,解得x≥−2,把x≥−2表示在数轴上,得19.一种树苗,栽种时高度约为80厘米,为研究它的生长情况,测得数据如下表:(1)此变化过程中_____是自变量,_____是因变量;(2)树苗高度h与栽种的年数n的关系式为_____;(3)栽种后_____后,树苗能长到280厘米.【答案】栽种以后的年数树苗的高度h=80+25n8年【解析】根据题意和表格中数据可知,(1)此变化过程中是自变量栽种以后的年数,树苗的高度是因变量;(2)树苗高度h与栽种的年数n的关系式为h=80+25n;(3)当h=280时,n=8,故栽种后8年后,树苗能长到280厘米。

备考2020中考数学一轮专题复习学案:专题13一次函数的图象与性质(含答案)

备考2020中考数学一轮专题复习学案:专题13一次函数的图象与性质(含答案)

备考2020中考数学一轮专题复习学案专题13 一次函数的图像与性质考试说明:1.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式.2.会画一次函数的图象,能结合图象讨论这些函数的增减变化.3.理解正比例函数概念、图象、性质.4.通过讨论一次函数与二元一次方程组的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.思维导图:知识点一:一次函数的概念知识梳理:【命题点一】一次函数的定义【典例1】函数y=(2m–1)x3m–2+3是一次函数,则m的值为_________.【答案】1【解析】∵函数y=(2m–1)x3m–2+3是一次函数,∴3m–2=1,2m–1≠0.∴m=1.故答案为1.【变式训练】1.(2019•梧州)下列函数中,正比例函数是()A.y=﹣8x B.y=8xC.y=8x2D.y=8x﹣42.要使函数y=(m–2)x n–1+n是一次函数,应满足()A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=0知识点二:一次函数的图像知识梳理:正比例函数y=kx(常数k≠0)的图象一条经过原点与点(1,k)的直线.一次函数y=kx+b(k,b 是常数,k≠0)的图象一条与y轴交于点(0,b),与x轴交于点(–bk,0)的直线.其中b叫做直线在y 轴上的截距,截距不是距离,是直线与y 轴交点的纵坐标,截距可正,可负,也可为0.【技巧】画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(–bk,0)两点.一次函数图象的平移直线y=kx+b(k≠0,b≠0)可由直线y=kx(k≠0)向上或向下平移得到.当b>0时,将直线y=kx向上平移b个单位长度,得到直线y=kx+b;当b<0时,将直线y=kx向上平移|b|个单位长度,得到直线y=kx+b.【命题点二】一次函数的图象【典例2】函数y=2x–2的图象大致是()A.B.C.D.【答案】C【解析】∵函数y=2x–2,∴函数y=2x–2经过点(1,0),(0,–2).故选C.【变式训练】1.(2019•包头)正比例函数y=kx的图象如图所示,则k的值为()A.–43B.43C.–34D.342.若b<0,则一次函数y=–x+b的图象大致是()A.B.C.D.【命题点三】一次函数图象上点的坐标【典例3】【2019•锦州】如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.14B.12C.2 D.4【答案】A【解析】∵在一次函数y=2x+1中,当x=0时,y=1,当y=0时,x=0.5,∴OA=0.5,OB=1.∴△AOB的面积=0.5×1÷2=14.故选A.【点拨】由一次函数的解析式分别求出点A和点B的坐标,即可作答.【考试方向】主要考查一次函数与坐标轴交点坐标以及三角形的面积公式.【变式训练】3.(2019•陕西)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1 B.0 C.1 D.24.(2019•天津)直线y=2x﹣1与x轴的交点坐标为_________.【命题点四】直线的平移【典例4】【2019•梧州】直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣1【答案】D【解析】直线y=3x+1向下平移2个单位,所得直线的解析式是:y=3x+1﹣2=3x﹣1.故选D.【点拨】直接利用一次函数平移规律进而得出答案.【考试方向】主要考查一次函数图象与几何变换,正确记忆平移规律是解题关键.【变式训练】5.(2019•陕西)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)6.(2019•邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2知识点三:一次函数图像的性质知识梳理:函数k,b的值大致图象经过的象限函数的性质【命题点五】正比例函数图象的性质【典例5】【2019•大庆】正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【答案】A【解析】∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三、四象限,且与y轴的负半轴相交.故选A.【点拨】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【考试方向】主要考查一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).【变式训练】1.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.–2 C.4 D.–42.(2019•本溪)函数y=5x的图象经过的象限是_________.【命题点六】一次函数图象的性质【典例6】【2019•潍坊】当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是_________.【答案】1<k<3【解析】y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0.∴k>1,k<3.∴1<k<3.故答案为1<k<3.【点拨】根据一次函数y=kx+b,k<0,b<0时图象经过第二、三、四象限,可得2﹣2k<0,k﹣3<0,即可求解.【考试方向】本题考查一次函数图象与系数的关系;掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.【变式训练】3.(2019•广安)一次函数y =2x ﹣3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、三、四D .一、二、四4.(2019•成都)已知一次函数y =(k ﹣3)x +1的图象经过第一、二、四象限,则k 的取值范围是_________. 知识点四: 一次函数与方程、不等式知识梳理:【命题点七】一次函数与二元一次方程组【典例7】【2019•贵阳】在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1,y −k 2x =b 2的解是_________.【答案】{x =2,y =1【解析】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组{y −k 1x =b 1,y −k 2x =b 2的解是{x =2,y =1.故答案为{x =2,y =1. 【变式训练】1.已知直线l 1:y =–3x +b 与直线l 2:y =–kx +m 在同一坐标系中的图象交于点(1,–2),那么方程组{3x +y =b ,kx +y =m的解是( ) A .{x =1,y =−2B .{x =1,y =2C .{x =−1,y =−2D .{x =−1,y =22.若以二元一次方程x +2y –b =0的解为坐标的点(x ,y )都在直线y =–12x +b –1上,则常数b =( ) A .12 B .2 C .–1 D .1【命题点八】一次函数与一元一次不等式【典例8】【2019•遵义】如图所示,直线l 1:y =32x +6与直线l 2:y =–52x +–2交于点P (–2,3),不等式32x +6>–52x +–2的解集是( )A .x >–2B .x ≥–2C .x <–2D .x ≤–2【答案】A【解析】由图象可知,当x >–2时, 32x +6>–52x +–2.∴不等式32x +6>–52x +–2的解集是x >–2.故选A . 【变式训练】3.(2019•黔东南州)如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为_________.4.(2019•烟台)如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c的解为_________.参考答案知识点11.【答案】A【解析】A 、y =﹣8x ,是正比例函数,符合题意;B 、y =8x ,是反比例函数,不合题意;C 、y =8x 2,是二次函数,不合题意;D 、y =8x ﹣4,是一次函数,不合题意.故选A .2.【答案】C【解析】∵函数y =(m –2)x n –1+n 是一次函数,∴m –2≠0,n –1=1.∴m ≠2,n =2.故选C . 知识点21.【答案】B【解析】由图知,点(3,4)在函数y =kx 上,∴3k =4,解得k =43.故选B .2.【答案】C【解析】∵一次函数y =–x +b 中,k =–1<0,b <0,∴一次函数的图象经过二、三、四象限.故选C .3.【答案】A【解析】∵正比例函数y =﹣2x 的图象经过点O (a ﹣1,4),∴4=﹣2(a ﹣1),解得:a =﹣1.故选A .4.【答案】(12,0)【解析】根据题意知,当直线y =2x ﹣1与x 轴相交时,y =0.∴2x ﹣1=0,解得x =12. ∴直线y =2x +1与x 轴的交点坐标是(12,0).故答案为(12,0). 5.【答案】B【解析】由“上加下减”的原则可知,将函数y =3x 的图象向上平移6个单位长度所得函数的解析式为y =3x +6.∵此时与x 轴相交,则y =0,∴3x +6=0,即x =﹣2,∴点坐标为(﹣2,0),故选B .6.【答案】B【解析】∵将直线l 1向下平移若干个单位后得直线l 2,∴直线l 1∥直线l 2,∴k 1=k 2,∵直线l 1向下平移若干个单位后得直线l 2,∴b 1>b 2,∴当x =5时,y 1>y 2,故选B .知识点31.【答案】B【解析】把x =m ,y=4代入y =mx 中,可得m =±2.∵y 的值随x 值的增大而减小,∴m =–2.故选B .2.【答案】一、三【解析】函数y =5x 的图象经过第一、三象限.故答案为:一、三.3.【答案】C【解析】∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限.故选C.4.【答案】k<3【解析】y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3.故答案为k<3.知识点41.【答案】A【解析】∵直线l1:y=–3x+b与直线l2:y=–kx+m在同一坐标系中的图象交于点(1,–2),∴方程组{3x+y=b,kx+y=m的解是{x=1,y=−2.故选A.2.【答案】B【解析】∵以二元一次方程x+2y–b=0的解为坐标的点(x,y)都在直线y=–12x+b–1上,直线解析式乘以2得2y=–x+2b–2,变形为2y+x–2b+2=0,∴–b=–2b+2,解得b=2.故选B.3.【答案】x<4【解析】∵一次函数y=ax+b(a、b为常数,且a>0)的图象如图所示,经过点A(4,1),且函数值y 随x的增大而增大,∴不等式ax+b<1的解集为x<4.故答案为x<4.4.【答案】x≤1【解析】点P(m,3)代入y=x+2,得m=1,∴P(1,3).结合图象可知x+2≤ax+c的解为x≤1.故答案为x≤1.。

函数的图像与图像的性质

函数的图像与图像的性质

方程解在函数图像上表示方法
方程解与函数图像交点
方程的解对应于函数图像与x轴的交 点,即函数值为0的点。
交点坐标与解的关系
交点的横坐标即为方程的解,纵坐标 为0。
利用函数图像求解方程近似解
观察法
通过观察函数图像与x轴的交点位置,可以大致估计方程的近 似解。
数值计算法
利用计算机或计算器进行数值计算,通过逼近法得到方程的 近似解。
02
二次函数图像
二次函数的图像是一条抛物线,开口 方向、顶点和对称轴是抛物线的主要 特点。
01
三角函数图像
三角函数的图像包括正弦函数、余弦 函数和正切函数等,它们具有周期性 、振幅和相位等特点。
05
03
指数函数图像
指数函数的图像是一条从左到右上升 的曲线,底数决定了曲线的增长速度 。
04
对数函数图像
判断方法
通过计算$f(-x)$并与$f(x)$比较 ,或者利用图像关于原点或$y$轴 的对称性来判断。
周期性识别及周期计算
周期函数定义
若存在正数$T$,使得对于函数 $f(x)$的定义域内任意$x$,都 有$f(x+T)=f(x)$,则称$f(x)$为 周期函数,$T$为$f(x)$的周期

最小正周期
连线
用平滑的曲线将各点连接起来 ,得到函数的图像。
变换法绘制复杂函数图像
基本函数图像
01
掌握一些基本函数的图像,如一次函数、二次函数、指数函数
、对数函数等。
函数的四则运算
02
通过函数的四则运算(加减乘除)将复杂函数拆分为简单函数
进行图像绘制。
函数的复合
03
将复杂函数拆分为内外两个函数,先画出内函数的图像,再根

中考复习-第13课时 一次函数的图象和性质

中考复习-第13课时 一次函数的图象和性质

一 次 函 数
不等式: ③kx+b>0, ④kx+b<0.
豫考探究
► 类型之一 一次函数的图象与性质
命题角度: 1.一次函数的概念 2.一次函数的图象与性质
①③ 例1 在下列函数中,y是x的一次函数的有_____________. (填写序号)
5 ①y=2x; ②y= ; ③y=-3x+1; ④y=x2. x
y x b<0 y O x
一次 函数 y=kx+b (k≠0)
y O
图象经过一、 图象经过一、 二、三象限 三、四象限
性质
图象经过一、 二、四象限
图象经过二、 三、四象限
y随x的增大而增大
y随x的减小而减小
【注意】(1)正比函数性质只与k值有关,与b的取值无关.图象 过一、三象限k>0;图象过二、四象限k<0. (2)一次函数y=kx+b的图象可由正比例函数y=kx的平移 得到,b>0时,上移b个单位; b<0时,上移∣b∣个单位.
b , 0)的一条直线;正比例函数y=kx的图象是经过原点 点(0,b),和点( k
(0,0)和(1,k)的一条直线。 【注意】因为一次函数的图象是一条直线,所以由两点确定一条直线 可知画一次函数图象时,只要取两个点即可.
2.一次函数的性质
图象 K>0
正比例 函数 y=kx (k≠0)
K<0
y O b>0 x b<0 y x O x O b>0 y x O
坐标.
[解析] (1)将 x=2,y=-3 代入 y=kx-4,用待定系数法求 解.(2)向上平移 6 个单位,即将(1)中的函数解析式中的常数项加 6.

最全反三角函数概念图像完整版.doc

最全反三角函数概念图像完整版.doc

反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心):,该点切线斜率为-1反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点:,该点切线斜率为-1渐近线:渐近线:名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中n为任意数数学术语将y作为的主值限在y=x对称。

其,π/2]arcsin x x的角,该角的范围在[-π/2,π/2]在[0,π]上的反函数,叫做反余弦函数。

arccosx的角,该角的范围在[0,π]区间内。

【图中蓝线】⑶在(-π/2,π/2)上的反函数,叫做反正切函数。

arctan x表示一x的角,该角的范围在(-π/2,π/2)区间内。

【图中绿线】注释:【图的画法根据反函数的性质即:反函数图像关于y=x对称】反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1] ,值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;y=arccot(x),定义域(-∞,+∞),值域(0,π),图象无;sin(arcsin x)=x,定义域[-1,1],值域[-1,1] arcsin(-x)=-arcsinx 证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccos x)=x,arccos(-x)=π-arccos x tan(arctan x)=x,arctan(-x)=-arctanx反三角函数其他公式:arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arccot(-x)=π-arccotx arcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1) arctan x = x - x^3/3 + x^5/5 -……举例当x∈[-π/2,π/2] 有arcsin(sinx)=x x∈[0,π],arccos(cosx)=x x∈(-π/2,π/2),arctan(tanx)=x x∈(0,π),arccot(cotx)=x x>0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy)) 例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2基本知识:1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;2.掌握反三角函数的定义域和值域,y=arcsinx, x∈[-1, 1], y∈[-,], y=arccosx, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围;3.符号arcsinx 可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]上的一个实数;同样符号arccosx可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数;4.y=arcsinx等价于siny=x, y∈[-,], y=arccosx等价于cosy=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;5.注意恒等式sin(arcsinx)=x, x∈[-1, 1] , cos(arccosx)=x, x∈[-1, 1], arcsin(sinx)=x, x∈[-,], arccos(cosx)=x, x∈[0, π]的运用的条件;6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用;7.注意恒等式arcsinx+arccosx=, arctgx+arcctgx=的应用。

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。

例4、(2017南通一调)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1) 当a =38时,求函数f (x )的最小值;(2) 若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3) 若函数f (x )有两个零点,求实数a 的取值范围.例5、(2016南通一调)已知函数f (x )=a +x ln x (a ∈R ).(1) 求f (x )的单调区间;(2) 试求f (x )的零点个数,并证明你的结论.题型三 函数零点问题的不等式的证明函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围以及证明零点方面的不等问题时,这些问题时要用到这三者的灵活转化。

高中数学函数的图像ppt课件

高中数学函数的图像ppt课件
34
真题透析 例 (2010 年高考湖南卷)函数 y=ax2+bx 与 y = logb x(ab≠0,|a|≠|b|)在同一直角坐标系中的图
a
像可能是( )
35
【解析】 从对数的底数入手进行讨论,再 结合各个选项的图像从抛物线对称轴的取值 范围进行判断,故选D. 【答案】 D 【名师点评】 (1)本题易出现以下错误:① 忽视 y= logb x 中底数的绝对值,误认为 a,b
(2)图像的左右平移,只体现出x的变化,与x 的系数无关;图像的上下平移,只与y的变化 有关.
19
识图 对于给定函数的图像,可从图像上下左右分布范 围,变化趋势,特殊点的坐标等方面进行判断, 必要时可借助解方程、解(证)不等式等手段进行 判断,未必非要写出函数的解析式进行判断.
20
例2
(2010年高考山东卷)函数y=2x-x2的图像
过点 P 且与 AB 垂直的截面面积记为 y,则 y=
12f(x)的大致图像是(
)
38
解析:选A.先从起始点排除B,D,再用验证 法,当点P为OA的中点时,截面面积大于大圆 面积的一半,即可判定A正确.
39
x+1,x∈[-1,0 2.已知 f(x)=x2+1,x∈[0,1] ,则下 列函数的图像错误的是( )
11
5.已知下列曲线: 以下编号为①②③④的四个方程 ① x- y=0;②|x|-|y|=0;③x-|y|=0; ④|x|-y=0. 请按曲线 A、B、C、D 的顺序,依次写出与 之对应的方程的编号________.
答案:④②①③
12
考点探究•挑战高考
考点突破
作图 1.熟悉基本初等函数的图像. 2.会通过函数的性质确定图像的形状:如奇偶 性→对称性;函数值的正负→x轴上方下方;渐 近线→变化趋势;过哪些特殊点、定点;极值、 最值等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.幂函数的图象过点⎝ ⎛⎭
⎪⎫2,14,则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 2.已知函数y =ax 2
+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是(
)
3.已知幂函数f (x )=x α
的部分对应值如下表: 则不等式f (|x |)≤2的解集是( ) A .{x |-4≤x ≤4} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}
D .{x |0<x ≤2}
4.已知函数f (x )=x 2
+ax +b ,且f (x +2)是偶函数,则f (1),f ⎝ ⎛⎭⎪⎫52,f ⎝ ⎛⎭
⎪⎫72的大小关系
是( )
A .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72
B .f (1)<f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52
C .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭
⎪⎫52 D .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭
⎪⎫52<f (1)
5.已知函数f (x )=mx 2
+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( )
A .(0,1)
B .(0,1]
C .(-∞,1)
D .(-∞,1] 6.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别为a m(0<a <12)、4 m ,不考虑树的粗细.现在想用16 m 长的篱笆,借助墙角围成一个矩形的花圃ABCD .设此矩形花圃的面积为S m 2
,S 的最大值为
f (a ),若将这颗树围在花圃内,则函数u =f (a )的图象大致是( )
二、填空题
7.已知(0.71.3)m
<(1.30.7)m
,则m 的范围是________.
8.方程x2-mx+1=0的两根为α、β,且α>0,1<β<2,则实数m的取值范围是________.
9.设函数g(x)=x2-2(x∈R),
10.函数f(x)=(m2-m-5)x m-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.
当m=-2时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故m=3.
11.已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.12.设二次函数f(x)=x2+ax+a,方程f(x)-x=0的两根x1和x2满足0<x1<x2<1.
(1)求实数a的取值范围;
(2)试比较f(0)f(1)-f(0)与1
16
的大小,并说明理由.
13.已知函数f(x)=x2-4ax+2a+6(a∈R).
(1)若函数的值域为[0,+∞),求a的值;
(2)若函数值为非负数,求函数f(a)=2-a|a+3|的值域.
1.设函数f (x )在定义域内可导,y =f (x )的图象如右图,则导函数y =
f ′(x )的图象可能为( )
2.如右图是张大爷晨练时所走的离家距离(y )与行走时间(x )之间函数关系
的图象,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )
3.设函数y =f (x )定义在实数集上,则函数y =f (x -1)与y =f (1-x )的图象关于( ) A .直线y =0对称 B .直线x =0对称 C .直线y =1对称
D .直线x =1对称
4.(2011·全国新课标高考)已知函数y =f (x )的周期为2,当x ∈[-1,1]时,f (x )=
x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )
A .10个
B .9个
C .8个
D .1个
5.函数f (x )=⎩⎪⎨


log 3x ,x >0cos πx ,x <0
的图象上关于y 轴对称的点共有( )
A .0对
B .1对
C .2对
D .3对
6.已知图①中的图象对应的函数为y =f (x ),则图②的图象对应的函数为( )
A .y =f (|x |)
B .y =|f (x )|
C .y =f (-|x |)
D .y =-f (|x |)
7.(2013·广东模拟)若实数t 满足f (t )=-t ,则称t 是函数f (x )的一个次不动点.设函数f (x )=ln x 与函数g (x )=e x
(其中e 为自然对数的底数)的所有次不动点之和为m ,则m 的取值是________.
8.直线y =1与曲线y =x 2
-|x |+a 有四个交点,则a 的取值范围是________. 9.已知定义在区间[0,1]上的函数y =f (x ),图象如图所示.对满足0<
x 1<x 2<1的任意x 1,x 2,给出下列结论:
①f (x 1)-f (x 2)>x 1-x 2;
②x 2f (x 1)>x 1f (x 2); ③
f x 1+f x 2
2
<f (
x 1+x 2
2
).
其中正确结论的序号是________.(把所有正确结论的序号都填上)
10.已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍,横坐标不变,得到函数y =g (x )的图象.
(1)求y =g (x )的解析式及定义域; (2)求函数F (x )=f (x -1)-g (x )的最大值.
11.设函数f (x )=x +1
x
的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数
为g (x ).
(1)求g (x )的解析式;
(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.
12.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ). (1)证明:函数y =f (x )的图象关于直线x =2对称;
(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式. 13.已知函数f (x )=⎩⎪⎨⎪⎧
|lg x |,0<x ≤10,-1
2
x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=
f (c ),则abc 的取值范围是( )
A .(1,10)
B .(5,6)
C .(10,12)
D .(20,24)。

相关文档
最新文档