2019-2020年高三高考考前指导卷(一)数学试题含答案

合集下载

2019~2020学年第一学期高三数学试题及答案1

2019~2020学年第一学期高三数学试题及答案1

2019~2020学年第一学期高三数学试题及答案一、选择题: (本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1i)2i z +=,则=z ( ) A .-1-iB .-1+iC .1-iD .1+i2.已知向量()1,,a x =r ()2,4b =-r,()//a a b -r r r ,则x =( )A. -2B. -1C. 3D. 13.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为( )A .π6B .π3C .2π3D .5π64.平面向量a r 与b r 的夹角为60°.(2.0)a v =,||1b =r ,则||2a b +v v等于( )A. 3B. 23C. 4D. 125. 已知向量(1,tan )m θ=u r ,(1,cos )n θ=-r ,(,)2πθπ∈,若12m n ⋅=-u r r ,则角θ=( )A. 6πB. 3πC. 23πD. 56π6. 函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为( )A .B .C .D .7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为2224a b c +-,则C=( )A .2πB .3πC .4πD .6π8.设点A ,B ,C 不共线,则“AB u u u v 与AC u u uv 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9.如图,在△ABC 中,34AD AC =u u u r u u u r ,13BP BD =u u u r u u u r ,若AP BA BC λμ=+u u u r u u u r u u u r,则λμ+=( )A.89 B. 29- C. 76 D. 23-10.设有下面四个命题( )p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则12z z =;p 4:若复数z ∈R ,则z ∈R .其中的真命题为A .p 1 ,p 3B .p 1 ,p 4C . p 2 ,p 3D .p 2 ,p 411.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( )A.85-B.81C.41 D.81112.平面向量,,a b e r r r 满足1,1,3,4e a e b e a b =⋅=⋅=-=r r r r r r r ,当a b +r r 取得最小值时,a b ⋅=r r( )A. 0B. 2C. 3D. 6二.填空题。

2019-2020年高三考前试题精选 数学 含答案

2019-2020年高三考前试题精选 数学 含答案

2019-2020年高三考前试题精选数学含答案一.选择题1.若集合,则集合A. B. C. D. R2.已知集合,,且,那么的值可以是A. B. C. D.3.复数的共轭复数是a+bi(a,bR),i是虚数单位,则ab的值是A、-7B、-6C、7D、64.已知是虚数单位,.,且,则(A)(B)(C)(D)5.已知命题,命题,则下列说法正确的是A.p是q的充要条件B.p是q的充分不必要条件C.p是q的必要不充分条件D.p是q的既不充分也不必要条件6.下面四个条件中,使成立的充分而不必要的条件是A. B. C. D.7.已知数列,那么“对任意的,点都在直线上”是“为等差数列”的(A) 必要而不充分条件 (B) 既不充分也不必要条件(C) 充要条件 (D) 充分而不必要条件8.执行右边的程序框图,若输出的S是127,则条件①可以为(A)(B)(C)(D)9.阅读右面程序框图,如果输出的函数值在区间内,则输入的实数的取值范围是(A)(B)(C)开始是否输入(D )10.要得到函数的图象,只要将函数的图象( ) A .向左平移单位 B .向右平移单位 C .向右平移单位D .向左平移单位11.已知,则 ( ) A . B . C . D .12.如图所示为函数(的部分图像,其中两点之间的距离为,那么( ) A . B . C . D .13.设向量、满足:,,,则与的夹角是( ) A . B . C . D .14.如图,为△的外心,为钝角,是边的中点,则的值( ) A . B .12 C .6 D .515.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )16.如图,平面四边形中,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一个球面上,则该球的体积为( ) A. B. C. D.xy OAB第21题图ABCOM17. ,则实数a取值范围为()A B [-1,1] C D (-1,1]18.已知正项等比数列满足:,若存在两项,使得,则的最小值为()A.B.C.D.不存在19.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20 C.30 D.4020.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有()A B C D.6 .8 .12 .1621.在各项都为正数的等比数列中,,前三项的和为21,则=()A.33 B.72 C.84 D.18922.若等比数列的前项和,则A.4B.12C.24D.3623.已知、分别是双曲线的左、右焦点,为双曲线上的一点,若,且的三边长成等差数列,则双曲线的离心率是( ).A. B. C. D.24.长为的线段的两个端点在抛物线上滑动,则线段中点到轴距离的最小值是A. B. C. D.25.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A. 2B. 3C. 4D.626.函数f(x)=tan+,x的大致图象为()A B C D27.设在区间可导,其导数为,给出下列四组条件()①是奇函数,是偶函数②是以T为周期的函数,是以T为周期的函数③在区间上为增函数,在恒成立④在处取得极值,A.①②③ B.①②④ C.①③④ D.②③④28.若满足,满足,函数,则关于的方程的解的个数是()A. B.C. D.29.已知函数f(x)是R上的偶函数,且满足f(x+1)+f(x)=3,当x∈[0,1]时,f(x)=2-x,则f(-xx.5)的值为( )A.0.5 B.1.5 C.-1.5 D.130.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”.若与在上是“关联函数”,则的取值范围()A. B. C. D.二.填空题31.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为万只。

2019-2020年高考等值预测卷(全国I卷)数学(理)试卷及答案

2019-2020年高考等值预测卷(全国I卷)数学(理)试卷及答案

高考等值试卷★预测卷 理科数学(全国I 卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

全卷满分150分,考试用时120分钟。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,请将试题卷、答题卡一并收回。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则3i(1i )-=(A )1i -- (B )1i -+ (C )1i - (D )1i +2.已知集合{|lg 2}A x x =>,{|}B x x a =≥,且A B =R R ð,则实数a 的取值范围是 (A )2a > (B )2a ≥ (C )100a > (D )100a ≥3.已知数列{}n a 的首项为1,且11n n n n a a a a +--=-对于所有大于1的正整数n 都成立,3592S S a +=,则612a a +=(A )34 (B )17 (C )36 (D )184.有关数据表明,2018年我国固定资产投资(不含农户,下同)635636亿元,增长5.9%.其中,第一产业投资22413亿元,比上年增长12.9%;第二产业投资237899亿元,增长6.2%;第三产业投资375324亿元,增长5.5%.另外,2014—2018年,我国第一产业、第二产业、第三产业投资占固定资产投资比重情况如下图所示.根据以上信息可知,下列说法中:①2014—2018年,我国第一产业投资占固定资产投资比重逐年增加;②2014—2018年,我国第一产业、第三产业投资之和占固定资产投资比重逐年增加;③224135%635636≈;④23789937532496.5%635636+≈.不正确的个数为(A )1 (B )2 (C )3 (D )45.已知π()sin(2)3f x x =+,π()cos(2)3g x x =+,则下列说法中,正确的是(A )x ∀∈R ,π()()2f x g x =- (B )x ∀∈R ,π()()4f x g x =+ (C )x ∀∈R ,π()()2g x f x =- (D )x ∀∈R ,π()()4g x f x =+6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(A )(425)π+ (B )(55)π+ (C )(525)π+ (D )(535)π+7.已知点P 为△ABC 所在平面内一点,且23PA PB PC ++=0,如果E 为AC 的中点,F 为BC 的中点,则下列结论中:①向量PA 与PC 可能平行; ②向量PA 与PC 可能垂直; ③点P 在线段EF 上; ④::21PE PF =. 正确的个数为 (A )1(B )2 (C )3 (D )48.已知椭圆22221x y a b+=(0a b >>)经过点2(1,)2,过顶点(,0)a ,(0,)b 的直线与圆2223x y +=相切,则椭圆的方程为(A )2212x y += (B )223142x y += (C )224133x y += (D )228155x y += 9.已知某品牌的手机从1米高的地方掉落时,第一次未损坏的概率为0.3,在第一次未损坏的情况下第二次也未损坏的概率为0.1.则这样的手机从1米高的地方掉落两次后仍未损坏的概率为(A )0.25 (B )0.15 (C )0.1 (D )0.0310.如果2(25)310x a x a +-+-=在区间(1,3)内有且只有一个实数解,则实数a 的取值范围是(A )716a <<(B )716a ≤<或1621425a +=(C )716a <≤ (D )716a <<或1621425a +=11.《九章算术》是中国古典数学最重要的著作.《九章算术》的“商功”一章中给出了很多几何体的体积计算公式.如图所示的几何体,上底面1111A B C D 与下底面ABCD 相互平行,且ABCD 与1111A B C D 均为长方形.《九章算术》中,称如图所示的图形为“刍童”.如果AB a =,BC b =,11A B c =,11B C d =,且两底面之间的距离为h ,记“刍童”的体积为V ,则(A )[(2)(2)]6h V c a d a c b =+++ (B )[(2)(2)]3hV c a d a c b =+++ (C )[(2)(2)]6h V c a d a c b =+++ (D )[(2)(2)]3hV c a d a c b =+++12.已知数列{}n a 的前n 项的和为n S ,且11a =-,22a =,37a =.又已知当2n >时,112332n n n n S S S S +--=-++恒成立.则使得12111722()11155k k a a a -+++≥+++ 成立的正整数k 的取值集合为(A ){|9,}k k k ≥∈N (B ){|10,}k k k ≥∈N(C ){|11,}k k k ≥∈N (D ){|12,}k k k ≥∈N第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为6;乙同学抽取了一个容量为15的样本,并算得样本的平均数为5.已知甲、乙两同学抽取的样本合在一起正好组成一个容量为25的样本,则合在一起后的样本的平均数为_____________.14.已知α是第四象限角,且π3sin()35α+=,则πsin()12α+=_____________. 15. 在平面直角坐标系xOy 中,过点(1,0)的一条直线与函数3()1f x x =-的图像交于P ,Q 两点,则线段PQ 长的最小值是 .16.双曲线22221x y a b-=的左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,P 为双曲线上一点,已知直线1PA ,2PA 的斜率之积为2425,1260F PF ∠=,1F 到一条渐近线的距离为6,则:(1)双曲线的方程为_______________;(2)△12PF F 的内切圆半径与外接圆半径之比为_______________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(12分)已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB 边上的高为332. (1)求B ∠的大小;(2)求cos 3cos AC A B +的值.18.(12分)如图,AB ,CD 分别是圆柱1OO 下底面、上底面的直径,AD ,BC 分别是圆柱的母线,ABCD 是一个边长为2的正方形,E ,F 都是下底面圆周上的点,且30EAB ∠=,45FAB ∠=,点P 在上底面圆周上运动.(1)判断直线AF 是否有可能与平面PBE 平行,并说明理由; (2)判断直线BE 是否有可能与平面P AE 垂直,并说明理由;(3)设平面P AE 与平面ABCD 所成夹角为θ(90θ≤),求cos θ的取值范围.19.(12分)为了了解青少年的创新能力与性别的联系,某研究院随机抽取了若干名青少年进行测试,所得结果如图1所示.图1更进一步,该研究院对上述测试结果为“优秀”的青少年进行了知识测试,得到了每个人的知识测试得分x 和创新能力得分y ,所得数据如下表所示.x 31 33 3538 39 42 45 45 47 49 52 54 57 57 60 y 6 6 7 9 9 9 10 12 12 12 13 15 16 18 19 x 63 65 65 68 71 71 73 75 77 80 80 80 83 83 84 y 21 24 25 27 31 33 36 40 42 44 46 49 51 57 54 x 84 85 86 87 90 90 91 92 93 95 y59 62 64 68 71 75 80 88 83 90根据这些数据,可以作成图2所示的散点图.图2(1)通过计算说明,能否有95%的把握认为性别与创新能力是否优秀有关.附:22(),()()()()n ad bc K a b c d a c b d -=++++2()0.0500.0100.001.3.841 6.63510.828P K k k ≥(2)从测试结果为“优秀”的青少年中,随机抽取2人,用X 表示抽得的人中,知识测试得分和创新能力得分都超过70分的人数,求(1)P X =.(3)根据前述表格中的数据,可以计算出y 关于x 的回归方程为ˆ 1.2747.92yx =-: ①根据回归方程计算:当[50,70]x ∈时,ˆy的取值范围. ②在图2中作出回归直线方程,并尝试给出描述y 与x 关系的更好的方案(只需将方案用文字描述即可,不需要进行计算).20.(12分)已知抛物线24y x =的焦点为F ,倾斜角为锐角的直线l 与抛物线交于A ,B 两点,且直线l 过点(2,0)-,||13AB =.(1)求直线l 的方程;(2)如果C 是抛物线上一点,O 为坐标原点,且存在实数t ,使得()OC OF t FA FB =++,求||FC .21.(12分)已知函数sin ()xf x x =. (1)求曲线()y f x =在ππ(,())22f 处的切线方程;(2)求证:2()16x f x >-;(3)求证:当0 1.1x <≤时,ln(1)()x f x x+>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为2cos 2sin x t y t θθ=-+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1ρ=,且直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 与直线l 的一般方程,并求直线l 的斜率的取值范围; (2)设(2,2)P --,且::||||57PA PB =,求直线l 的斜率.23.[选修4-5:不等式选讲](10分) 已知函数()|21||1|f x x x =+--. (1)求不等式()3f x >的解集; (2)如果“x ∀∈R ,25()2f x t t ≥-”是真命题,求t 的取值范围.。

2020年6月苏州大学2020届高三高考考前指导卷(一)数学答案(含附加题)

2020年6月苏州大学2020届高三高考考前指导卷(一)数学答案(含附加题)

1 绝密★启用前江苏省苏州大学2020届高三高考考前指导卷(一)数学试题参考答案解析2020年6月一、填空题:本大题共14小题,每小题5分,共计70分.1.{|12}x x <≤ 2.23.280 4.1(0]2, 5.2 6.527.56 8.π2- 9.13 10.12- 11.5306612.4 13.4[1]33-, 14解答与提示:1.{|12}A B x x =<≤.2. 2i (2i)(1i)22i 1i 222a a a a z +++-+===+-.因为z 为纯虚数,所以2020a a -=⎧⎨+≠⎩,,解得2a =. 3.由图可知,时速在区间[8090)[110120),,,的频率为(0.010.02)100.3+⨯=,所以时速在区间[90110),的频率为10.3-,所以时速在区间[90,110)的车辆约为4000.7280⨯=辆. 4.由1200x x -⎧⎨>⎩≥,,解得102x <≤,即函数()f x 的定义域为1(0]2,. 5.离心率c e a =所以2λ=. 6.执行第一次循环105S i ==,;执行第二次循环207S i ==,;执行第三次循环349S i ==,;执行第四次循环5211S i ==,,终止循环. 所以52S =.7.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,三辆车的出车顺序可能为:123,132,213,231,312,321.方案一坐“3号”车可能:132,213,231,所以136P =;方案二坐“3号”车可能:312,321,所以226P =.则该嘉宾坐到“3号”车的概率1256P P P =+=. 8.()cos sin f x x x x '=-,所以在π2x =处的切线的斜率为ππ()22k f '==-.。

2019-2020年高三下学期高考预测联考(一)数学(理)试题含答案.doc

2019-2020年高三下学期高考预测联考(一)数学(理)试题含答案.doc

2019-2020年高三下学期高考预测联考(一)数学(理)试题含答案一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{11},{|A x B x x =->=<<,则 A .AB R = B .A B φ=C .B A ⊆D .A B ⊆2、设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =-+,则12z z ⋅= A .5 B .-5 C .4i -+ D .4i --3、定义域为R 的四个函数32,sin ,,xy e y x y x y x ====-中,偶函数的个数是 A .1 B .2 C .3 D .44、设向量,a b 满足(1,3),(2,2)a b a b +=-=,则a b ⋅= A .1 B .2 C .3 D .55、设实数,x y 满足约束条件22022x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则231x y z x ++=+的最小值为A .3B .13 C .7 D .536、函数3y x =和y =D ,若利用计算机产生()0,1内的两个均匀随机数,x y ,则点(,)x y 恰好落在区域D 的概率为 A .512 B .13 C .38 D .237、(1)nax by ++(,a b 为常数,,,a b n N *∈)的展开式中不含x 的项的系数之和为343,则b 的 值为A .5B .6C .7D .8 8、某几何体单的三视图如图所示,则其表面积为 A .3πB C .322π+D 2+ 9、形如(0,0)by c b x c=>>-的函数应其图象类似于汉字中的“囧”字,故我们把其生动第称为“囧函数”,若函数()21(0,1)x x f x aa a ++=>≠有最小值,则当1,1cb =-=时的“囧函数”与函数2log y x =的图象交点个数为A .1B .2C .4D .610、已知F 为抛物线22y x =的焦点,点A 、B 在该抛物线上且位于x 轴的两侧,8OA OB ⋅=(其中O 为坐标原点),则ABO ∆与BFO ∆面积之和的最小值是A .9B .12CD .第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

2019-2020年高考前模拟数学试题 含答案

2019-2020年高考前模拟数学试题 含答案

2019-2020年高考前模拟数学试题含答案1.已知全集,集合,则▲.2.在复平面内,复数(为虚数单位)对应的点到原点的距离为▲.3.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为▲.4.有个兴趣小组,甲、乙两位同学各参加其中一个小组,且他们参加各个兴趣小组是等可能的,则甲、乙两位同学参加同一个兴趣小组的概率为▲.5.执行如图所示的程序框图,则输出的结果是▲.6.已知等比数列满足,,则该数列的前5项的和为▲.7.过双曲线的左焦点作垂直于实轴的弦,为右顶点,若,则该双曲线的离心率为▲.8.若指数函数的图象过点,则不等式的解集为▲.9. 如图,在正方体中,,为的中点,则三棱锥的体积为▲cm3.10.已知点,,圆:上存在点,使,则圆心横坐标的取值范围为▲.11.设过曲线上任意一点处的切线为,总有过曲线上一点处的切线,使得,则实数的取值范围为▲.12.已知为数列的前项和,,,若关于正整数的不等式的解集中的整数解有两个,则正实数的取值范围为▲.13.已知△中,M为线段BC上一点,,,,则△的面积最大值为▲.14.对任意的实数,当,恒有成立,则实数的最小值为▲.二、解答题:本大题共6小题,共计90分,请在答题..纸.指定区域内.....作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在Δ中,角,,所对的边分别为,,,已知.(1)求证:,,成等差数列;(2)若,,求Δ的面积.16.(本小题满分14分)如图,在直三棱柱中,,.点是上一点,且平面平面(1)求证:;(2)求证:平面.17.(本小题满分14分)如图,有一块等腰直角三角形的草坪,其中,根据实际需要,要扩大此草坪的规模,在线段上选取一点,使为平行四边形. 为方便游客参观,现将铺设三条观光道路.设.(1)用表示出道路的长度;(2)当点距离点多远时,三条观光道路的总长度最小?18. (本小题满分16分)已知椭圆的离心率为,分别为椭圆的上、下顶点,.(1)求椭圆的方程;(2)设是椭圆上的两点(异于点),的面积为.①若点坐标为,求直线的方程;②过点作直线,交椭圆于点,求证:.19. (本小题满分16分)已知函数(为自然对数的底数)(1)求的单调区间;(2)是否存在正.实数使得,若存在求出,否则说明理由;(3)若存在不等实数,使得,证明:.20. (本题满分16分)已知数列,满足,,,,其中,设数列的前项和分别为.(1)若对任意的恒成立,求;(2)若常数且对任意的,恒有,求的值;(3)在(2)的条件下且同时满足以下两个条件(ⅰ)若存在唯一的值满足;(ⅱ) 恒成立.问:是否存在正整数,使得,若存在,求的值;若不存在,说明理由.徐州市xx年高考数学信息卷数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域.........内.作答..,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4 1:几何证明选讲](本小题满分10分)如图,是圆的直径,弦,的延长线相交于点,垂直的延长线于点. 求证:B .[选修4-2:矩阵与变换](本小题满分10分)变换是逆时针旋转的旋转变换,对应的变换矩阵是;变换对应用的变换矩阵是.求函数的图象依次在,变换的作用下所得曲线的方程.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.AC DEF(第21-A 题)D.[选修4—4:不等式选讲](本小题满分10分)已知都是正实数,且,求证: .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)高三年级成立篮球、足球、排球活动兴趣小组,学生是否参加哪个兴趣小组互不影响.已知某同学只参加篮球兴趣小组的概率为0.08,只参加篮球和足球兴趣小组的概率为0.12,至少参加一个兴趣小组的概率是0.88.若学生参加的兴趣小组数为,没有参加的兴趣小组数为,记.(1)求该同学参加排球活动兴趣小组的概率;(2)求的分布列和数学期望.23.(本小题满分10分)设个实数;满足下列条件:①;②,;③,.设.(1)设,求证:;(2)如果,求证:.徐州市xx 年高考数学信息卷数学Ⅰ参考答案一、 填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题..纸相应位置.....上.. 1.2. 3. 70 4. 5. 124 6. 31 7. 8.9.10. 11. 12.13. 14.1 二、解答题:本大题共6小题,共计90分,请在答题..纸.指定区域内.....作答,解答时应写出文字说明、证明过程或演算步骤. 15.(1)证明:∵,∴由正弦定理得, ……………………2分化简得,sin sin sin cos sin cos 3sin A C A C C A B +++= ∴∴ ……………………4分 ∴ ∴ ∴,,成等差数列. ……………………6分 (2)解:∵,, 由余弦定理得,即 ……………………8分∴ ……………………10分 又∵∴ ……………………12分 ∴Δ的面积. ……………………14分16.证明:(1),,平面平面,……………………2分又在直三棱柱中,,, =,平面,平面,111111⊂⊂BB BF B BB BB C C BF BB C C ,……………………6分 平面; ……………………8分 (2)连结 ,设 ,连结 , 且,,是等腰直角三角形的斜边 上的高线,且……………………10分 也是斜边 上的中线,即点 为边的中点,的中位线 , ……………………12分平面. ……………………14分17.解:(1)在 中,,……………………2分 又四边形 为平行四边形 ,, ……………………6分 (2)设三条观光道路的总长度为 ,则f AD AE EC θθθθ42=++=+2-cos ()sin sin ……………………8分由 得,由 得 ;当时, 是减函数,当时, 是增函数;当时,取得最小值,此时 . ……………………14分 18.解:(1)由题意得:222,2c a a b c b ⎧=⎪⎪⎪=+⎨⎪=⎪⎪⎩解得:故椭圆的方程为:. …………………………………4分(2)①当点坐标为时,,因为的面积为,所以点到直线:的距离为,…6分 故点在直线或上.代入椭圆方程,得或 ………………………8分故直线的方程为或. …………………………………………10分 ②先证明.设,,若直线的斜率不存在,易得, 从而可得.………………11分(第16题图)BACEFG A 1B 1C 1若直线的斜率存在,设直线的方程为,代入,得,解得, ……………………………………………12分所以1211||||||22OMNS m x x m ∆=⋅-==(在轴同(异)侧都成立) 即,得.………………………13分所以,所以221212121212() OM ON y y k x x km x x m k k x x x x +++⋅==…………………………14分又设,得, 因为,,所以,即.………………………………………………………16分19. 解:(1)函数的单调递减区间是,单调递增区间为.(2)不存在正实数使得成立.事实上,由(1)知函数在上递增,而当,有,在上递减,有,因此,若存在正实数使得,必有.令1()(1)(1)(1)x x x F x f x f x x e e+=+--=+-,则,因为,所以,所以为上的增函数,所以,即,故不存在正实数使得成立.(3)若存在不等实数,使得,则和中,必有一个在,另一个在,不妨设,. ①若,则,由(Ⅰ)知:函数在上单调递减,所以; ②若,由(Ⅱ)知:当,则有,而所以11112(2)[1(1)][1(1)]()()f x f x f x f x f x -=+->--==,即而,由(Ⅰ)知:函数在上单调递减,所以,即有,由(Ⅰ)知:函数在上单调递减,所以;综合①,②得:若存在不等实数,使得,则总有.20. 解:(1)由题设可知数列构成以为首项,2为公差的等差数列故 -----------3分 (2)因为,所以, 故得所以因为,所以,所以,故 ---9分(3)因为,所以或者当时,12112(1242)21012m m m m m T b ----≤+++++=-+=-<-舍去 当时,12112(1242)221012m m m m m m T b ----≥-++++=-=->- 故 -----------9分因为所以 令,则,得故满足的值为1,2,3 ---------12分当,若,则数列前4项为:满足若,则数列前4项为:不满足舍去;若,则数列前4项为:不满足舍去;若,则数列前4项为:不满足舍去;当,若,则数列前3项为:不满足舍去;若,则数列前3项为:不满足舍去;若,则数列前3项为:不满足舍去;当,若,则数列前2项为:满足;若,则数列前2项为:不满足舍去;所以存在正整数,使得,此时,或者。

2019-2020年高三高考模拟卷(一)文科数学 含答案

2019-2020年高三高考模拟卷(一)文科数学 含答案

2019-2020年高三高考模拟卷(一)文科数学 含答案注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题纸时,必须使用0.5毫米的黑色墨水签字笔书写,作图时,可用2B 铅笔.要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸,试题卷上答题无效.3.答卷前将密封线内的项目填写清楚.一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的个选项中,只有一个选项符合题目要求,把正确选项的代号涂在答题卡上. 1.已知复数是虚数单位,则复数的虚部是A .B .C .D . 2.设集合,,,则图中阴影部分表示的集合为 ( ) A . B . C . D . 3 .已知为实数,则是的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要 4.已知实数x ,y 满足条件的最大值为A .B .C .D . 5.若一个底面是正三角形的三棱锥的俯视图如图所示,则其主视图与侧视图面积之比等于A .B .C .D .6.已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率为,为A .B .C .D . 7.定义下列四个函数中,当自变量变为原来的2倍,函数值变为原来的4倍的函数是 A .函数,其中自变量为球半径,函数值为此球的体积 B 的体积C D 积。

8.如右图所示的函数图像,A . B . C . D .9.设在三角形ABC 中,A 、B 、C 的对边分别为a 则直线与直线的位置关系是A.垂直B.平行且不重合C.重合D.相交且不垂直10.如图所示的程序框图,它的输出结果是A.B.C.D.11.在中,向量满足,下列说法正确的是①;②;③存在非零实数使得A.①②B.①③C.②③D.①②③12.已知,,且成等比数列,则A.有最大值B.有最大值C.有最小值D.有最小值第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共2页, 所有题目的答案考生须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试卷上; 如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.作图时,可用2B铅笔,要字体工整,笔迹清晰.在草稿纸上答题无效.考试结束后将答题卡上交.2.答卷前将密封线内的项目填写清楚,密封线内答题无效.二、填空题:本大题共4个小题,每小题4分,共16分.13.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图,甲班学生身高的众数与乙班学生中位数之差为_________14.已知且,则15.若表示等差数列的项和,若,则______16.函数,在各项均为正数的数列中对任意的都有成立,则数列的通项公式为______三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程和演算步骤,务必在答题纸指定的位置作答。

2019-2020年高三第一次考试数学 含答案

2019-2020年高三第一次考试数学 含答案

2019-2020年高三第一次考试数学含答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,集合,则A. B. C. D.2.已知函数的定义域为,则函数的定义域为A. B. C. D.3.下列函数中,在其定义域内,既是奇函数又是减函数的是A. B. C. D.4.已知点在角的终边上,且,则的值为A. B. C. D.5.下列说法错误的是A.若,则;B.“”是“”的充分不必要条件;C.命题“若,则”的否命题是:“若,则”;D.已知,,则“”为假命题.6.设函数的定义域为,是的极小值点,以下结论一定正确的是A.B.是的极大值点C.是的极小值点D.是的极大值点7.设,函数的导数是,若是偶函数,则A. 1B. 0C.D.8.已知函数,若,则实数A. B. C. D. 或9.已知函数的图像是下列四个图像之一,且其导函数的图像如右图所示,则该函数的图像是10.函数()sin()(0)f x x ωϕω=+>的图象如图所示,为了得到函数的图象,只需将的图象A .向左平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向右平移个单位长度11.定义在上的函数,是它的导函数,且恒有成立,则A .B .C .D .12.函数与函数的图象所有交点的横坐标之和为A .8B .9C .16D .17第Ⅱ卷二、填空题 (本大题共4小题,每小题5分,共20分.把答案填在答题中横线上)13.已知,且,则 .14.已知奇函数的图象关于直线对称,当时,,则 .15.一物体沿直线以速度的单位为:秒,的单位为:米/秒的速度做变速直线运动,则该物体从时刻秒至时刻秒间运动的路程是 .16.若实数满足222(3ln )(2)0b a a c d +-+-+=,则的最小值为 .三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知.(Ⅰ)求的值;(Ⅱ)若是第二象限的角,化简三角式,并求值.18.(本小题满分12分)提高立交桥的车辆通行能力可改善整个城市的交通状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三高考考前指导卷(一)数学试题含答案一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()ay x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________.7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,|||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =c a +b +bc的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面PAB ⊥平面ABCD ,PA ⊥AB . (1)求证:BD ⊥平面PAC ;(2)已知点F 在棱PD 上,且PB ∥平面FAC ,求DF :FP .17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;A B C D F P(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△PAB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S =成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.-12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 1112.(-1,1) 13.214.2-12 二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎫cos A -352+435. 所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面PAB ⊥平面ABCD ,平面PAB 平面ABCD = AB , PA ⊥AB ,PA ⊂平面PAB ,∴ PA ⊥平面ABCD .∵BD ⊂平面ABCD ,∴PA ⊥BD .连结AC BD O =,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD , ∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒.则AC ⊥BD .∵AC PA A =,∴BD ⊥平面PAC .(2)∵PB //平面FAC ,PB ⊂平面PBD ,平面PBD 平面FAC= FO ,∴FO ∥PB ,∴D F D OP F O B=.又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足: 当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =c a =32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=.(2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).P FDCBA O联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-4x y . 所以直线l 方程为0014x x y y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -,△PAB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝⎛⎭⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)由题意:e x <x -mx有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可,设h (x )=x -e x x ,h ′(x )=1-e xx -e x 2x=1-e x ⎝⎛⎭⎫x +12x ,因为x +12x ≥212=2>1,且x ∈(0,+∞)时e x >1, 所以1-e x ⎝⎛⎭⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =(2a 1+d )3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1. (2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3.(ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝⎛⎭⎫S n +12,所以S n =⎝⎛⎭⎫S 1+12·13n --12=12·3n -12. 当n ≥2时,a n =S n -S n -1=12·3n -12-⎝⎛⎭⎫12·13n --12=13n -,而a 1=1也满足a n =13n -. 所以,数列{a n }的通项公式是a n =13n -.。

相关文档
最新文档