第二章 线性不变系统.

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

第二章 线性时不变系统的时域分析

第二章 线性时不变系统的时域分析

基本内容: 基本内容: (1) 系统的定义及表示 ) (2) ) 系统的基本性质 (3) ) 线性时不变系统的时域描述 (4) ) 零输入响应和零状态响应 (5) ) 单位冲激响应
重点难点: 重点难点: 零状态响应的求解方法 响应的求解方法; (1) ) 零状态响应的求解方法; 冲激响应的求解方法; (2) ) 冲激响应的求解方法;
4.稳定性 稳定性
有界输入产生有界输出,则这个系统就 是稳定系统。 所谓有界,即输入或输出的最大幅值是 一个有限值。 例系统 y[n]=nx[n] 就是一个不稳定系统, 因为,当输入 x[n] 是有界时,系统的输 出却有界,它将随着 n 值的增加而增加, 直至无穷。
三、线性时不变系统的时域描述
线性时不变系统也简称为LTI系统,其 系统, 线性时不变系统也简称为 系统 分析方法建立在信号分解的基础之上。 分析方法建立在信号分解的基础之上。 线性时不变系统具有的线性和时不变性, 线性时不变系统具有的线性和时不变性, 其响应必然是系统对这些基本信号响应 的组合。 的组合。 连续时间LTI系统用微分方程描述; 系统用微分方程描述; 连续时间 系统用微分方程描述 离散时间LTI系统用差分方程描述。 系统用差分方程描述。 离散时间 系统用差分方程描述
这个常系数线性微分方程, 这个常系数线性微分方程,其完全解由 齐次解和特解两部分组成 。 齐次解是微分方程在输入为0时的齐次 齐次解是微分方程在输入为 时的齐次 方程的解( 方程的解(式2.111) ) 而特解则是在输入的作用下满足微分方 程式(2.109) 的解。 的解。 程式
对于式(2.109)的微分方程,相应的齐次 方程为
如果系统的起始状态y(0-)≠0,则系统的 输出 y(t) 和系统的输入 x(t) 之间就不满 足线性和时不变性。然而,只要 y(0-)=0, y(t) 和 x(t) 之间就能够满足 线性和时不变的关系。

张宇-信号与系统各章内容整理48学时【最新】

张宇-信号与系统各章内容整理48学时【最新】

第一章 信号与系统主要内容重点难点1.信号的描述x[n]、x (t ),两者不同之处2.【了解】 信号的功率和能量3.【掌握】自变量变换(计算题目)、理解变换前后图片的缩放或信号的变化4.【了解】 常见信号:指数(j t j n e e w w 、)、正弦(cos cos t n w w 、)、单位冲激(()[]t n d d 、)、单位阶跃(()[]u t u n 、)5.【掌握】用阶跃函数表示矩形函数;冲激与阶跃信号的关系;冲激信号的提取作用;指数信号和正弦信号的周期性。

6.【了解】系统互联7.【掌握】系统的基本性质:记忆与无记忆性、可逆性、因果性、稳定性、时不变与线性。

对已知系统进行性质判断(掌握)1.3、5、71.00cos j n n e w w 、的周期性判断,是周期的条件,若是周期的,则周期:2.00cos j tt e w w 、的周期:自变量变换的量值确定0cos j n n e w w 、的周期性和频率逆转性。

系统的时不变性与线性等性质的证明2T ωπ=02N mωπ=第二章 线性时不变系统第三章 周期信号的傅里叶级数表示FS本章内容安排基本思路:主要内容难点 ✧ 系统的单位冲激响应容易求出:令 ()()x t t d =,对应的输出即为单位冲激响应() h t ;✧ 将任意信号分解为冲激信号()[]t n d d 、的线性组合[][][]; ()()()k x n x k n k x t x t d d t d t t ¥¥-=-=-=-åò✧ 利用L TI 系统的线性和时不变性,在单位冲激响应[]() h t h n 、已知的情况下,推导连续时间和离散时间系统对任意输入x 的响应:[][][]y n =x n * h n ; y(t)=x(t)* h(t)✧ 利用输入输出的卷积关系,根据单位冲激响应[]() h t h n 、,判断ITI 系统的性质1.【掌握】卷积和2.【掌握】卷积积分3.【掌握】用[]() h t h n 、判断L TI 的性质 4.【理解】 初始松弛 5. 【掌握】任意信号与冲激信号、阶跃函数的卷积性质(对比1章冲激信号抽取作用)卷积运算中,求和或者求积时,上下限的确定本章内容安排基本思路:主要内容难点第四章 连续时间傅里变换CFT✧ L TI 系统对复指数信号st ne z 、响应容易求得:()st H s e 、()n H z z 其中()()s H s h e d t t t +--=ò、()[]kk H z h k z+-=-=å✧ 将周期信号分解为0jk tew 的线性组合,即傅立叶级数表示式:()()()0021jk tjk tTk k k k jk t k Tx t a e a e a x t e dt T πωω+∞+∞=-∞=-∞-⎧==⎪⎪⎨⎪=⎪⎩∑∑⎰✧ 傅立叶级数收敛条件分析✧ 从频域分析系统对信号的作用(3.9、3.10)1.【掌握】连续时间周期信号的傅立叶级数公式,求常见信号的傅立叶级数 2.【掌握】收敛条件、傅立叶截断时的吉伯斯现象3..【理解】滤波和频谱的概念,能够判断信号是否能通过一确定的滤波器 5.【掌握】RC 回路实现的滤波器的滤波特性分析,滤波器设计时的折衷思想。

[new]xie第二章 线性时不变系统

[new]xie第二章 线性时不变系统

1 例2: x[n] (n) 0
n h( n) h[n] 0
0n4 otherwise
1, 0 n 6
otherwise
x[k ]
1
h[n k ]
k
n k
k
n6
0
0
4
n
① n 0 时,
yy(n]) 0 [n
n n
y[n] nk n k ② 0 n 4 时, y ( n) k 0 k 0
由于LTI系统满足齐次性和可加性,并且具
有时不变性的特点,因而为建立信号与系统分析
的理论与方法奠定了基础。 基本思想:如果能把任意输入信号分解成基 本信号的线性组合,那么只要得到了LTI系统对 基本信号的响应,就可以利用系统的线性特性, 将系统对任意输入信号产生的响应表示成系统对 基本信号的响应的线性组合。
号应该可以分解成一系列移位加权的单位冲激信号的
线性组合。
至少单位阶跃与单位冲激之间有这种关系:
u(t ) ( )d (t )d
0
t

对一般信号 x(t ) ,可以将其分成很多 宽度的区段, 用一个阶梯信号 近似表示 。当 时,有: x (t ) x(t ) 0
非线性、时不变
y(t ) t 2 x(t 1) 线性、时变
y[t ]
n n0
k n n0
x[k ]
2
线性、时不变 非线性、时不变 线性、时不变
y[n] x [n 2]
y[n] x[n 1] x[n 1]
y[n] xo [n]
线性、时变
观察上述系统后,得到如下结论:

信号与系统课件

信号与系统课件

u[n] d [m]
mn
d [m]
n
n-k=m
7
离散LTI系统的时域分析—单位脉冲响应与卷积和(1)
利用单位脉冲响应h[n]求离散系统对输入信号x[n]的响应y[n]
(1)单位脉冲响应
x[n]
δ[n]
δ[n-n0]
LTI x[n] y[n]

x[n]
LTI
y[n]
(4) n>6, n–46, 即6<n 10
k
n-4
n
a n4 a 7 y[n] a 1 a k n4

6
k
注:也可以将x[n]分解成d[n]的5项移位线性组合,输出就变成了h[n]的移位线性组合
n 例2-4 x[n] u[n] u[n 5] h[n] a {u[n] u[n 7]}, a 1 求 y[n] x[n] h[n]
10
离散LTI系统的时域分析—单位脉冲响应与卷积和(4)
(4)卷积和的图示求解 1)自变量变换及翻转
x[n] * h[n]
k
x[k ]h[n k ]

x[n] x[k ]
h[n] h[k ] h[k ]
2)平移:将h[-k]随自变量n平移得h[n-k] n>0时,h[-k]向右平移n ; 3)相乘(同一k) :x[k]h[n-k] 4)求和:将相乘后的x[k]h[n-k]各点相加,即
3
本章主要内容
(1) 离散时间LTI系统的时域分析:卷积和,卷积性质 (2) 连续时间LTI系统的时域分析:卷积积分,卷积性质
(3) 单位冲激/脉冲响应与LTI系统的基本性质
(4) LTI系统的微分、差分方程描述 (5) 系统的响应分解:零输入、零状态响应 (6) 用微分方程、差分方程表征的LTI系统的框图表示

第二章 线性不变系统.

第二章 线性不变系统.

§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理 空间缩放
注意空域坐标(x,y)的扩展,导致频域中坐标(fx,fy)的 压缩及频谱幅度的变化. 反之亦然.
g(x) g(ax) a=2
1
x 1/2 0 1/2
空域压缩
1
x 1/4 0 1/4
F.T. 频域扩展 F.T.
2. 若已知线性系统的脉冲响应函数, 则系统 的输出为脉冲响应函数的线性组合.
§2.1 线性系统
任意复杂的输入函数可以分解为脉冲 函数的线性组合
根据d 函数的卷积性质或d 函数的筛选性质:
f ( x, y)


f ( ,h)d ( x , y h)ddh
此式的物理意义: 脉冲分解 函数 f(x, y)可以看成输入(x, y)平面上不同位置处 的许多d 函数的线性组合.每个位于( h)的d 函 数的权重因子是 f ( h).

利用d 函数的筛选性质
2
G( f )G * ( f )df G ( f ) df
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理
设 g(x,y)
F.T.
5. 卷积定理
G(fx,fy),
h(x,y)
F.T.
H(fx,fy),
空域中两个函数的卷积, 其F.T.是各自F.T.的乘积.
{g(x,y)* h(x,y)}= G(fx,fy) . H(fx,fy)
空域中两个函数的乘积, 其F.T.是各自F.T.的卷积.
{g(x,y) . h(x,y)}= G(fx,fy) * H(fx,fy)
将时、空域的卷积运算,化为频域的乘积运算,特别有用. 亦可用于求复杂函数的F.T.和复杂函数的卷积

第二章 线性时不变系统

第二章 线性时不变系统
利用多项式算法求卷积和的逆运算 已知 y[n] h[n] x[n] 已知 y[n] x[n] h[n]
9
例5 y[n] 6,5,24,13,22,10,n 0,1,2,3,4,5 h[n] 3,1,4,2 n 0,1,2,3
y[n] x[n]h[n] 求 x[n]
2 t 5t2 x(t)
x[n] x[k] [n k] 离散的信号分解成脉冲
k
信号的 线性组合的形式
把任意一个序列表示成一串移位的单位脉冲序列 [n k]
的线性组合,而这个线性组合式中的权因子就是 x[k]
4
二. 离散时间线性时不变系统卷积和表示
[n] h[n]
[n k] h[n k]
时不变
x[k] [n k] x[k]h[n k] 齐次性
11
二. 连续时间线性时不变系统的卷积积分表示
(t) h (t)
(t k)
x(k) (t k)
x(k) (t k)
k
h (t k)
时不变
x(k
)h
(t
k
)
齐次性
x(k)h (t k) 可加性
k
xˆ(t)
yˆ (t )
y(t) x( )h(t )d x(t) h(t)
12
卷积的计算
(1)由定义计算卷积积分
例:设某一线性时不变系统的输入为x(t),其单位冲
激响应为h(t) x(t) eatu(t) , a 0 h(t) u(t)
试求 x(t) h(t)
x(t) h(t) ea u( )u(t )d
t ea d ,
0
t0
0,
t0
1 1 eat u(t) a
1

信号与系统王明泉第二章习题解答

信号与系统王明泉第二章习题解答
(1)零输入响应 满足方程
其 值
方程特征根 , ,故零输入响应
将初始值代入上式及其导数,得
由上式解得 , ,所以
(2)零状态响应 是初始状态为零,且 时,原微分方程的解,即 满足方程

及初始状态 。先求 和 ,由于上式等号右端含有 ,令
积分(从 到 )得
将 、 和 代入微分方程可求得 。对以上三式等号两端从 到 积分,并考虑到 , ,可求得
解:(1)求齐次解
特征方程为:
特征根为:
所以,
(2)求特解
(3)全响应
将 代入系统方程得
(1)
将初始条件代入
得:
所以全响应为:
2.5 已知描述某线性时不变连续系统的微分方程为

当激励为 时,系统的完全响应为 , 。试求其零输入响应、零状态响应、自由响应和强迫响应。
解:由全响应得初始条件 ,
(1)求零输入响应
在时域中,子系统级联时,总的冲激响应等于子系统冲激响应的卷积。
因果系统的冲激响应为
(2)阶跃响应
一线性时不变系统,当其初始状态为零时,输入为单位阶跃函数所引起的响应称为单位阶跃响应,简称阶跃响应,用 表示。阶跃响应是激励为单位阶跃函数 时,系统的零状态响应
阶跃响应 与冲激响应 之间的关系为

2.2.6卷积积分
(1)卷积积分的概念
一般情况下,如有两个信号 和 做运算
此运算定义为 和 的卷积(Convolution),简记为

(2)卷积积分的图解法
用图解法能直观地说明卷积积分的计算过程,而且便于理解卷积的概念。两个信号 和 的卷积运算可通过以下几个步骤来完成:
第一步,画出 和 波形,将波形图中的 轴改换成 轴,分别得到 和 的波形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.7 傅里叶变换 Fourier Transform
常用傅里叶变换对
5. {d (x-a)}=exp(-j2pfxa) {exp(j2pfax)}= d (fx-fa)
6.
1 {cos (2pf 0 x) [d ( f x f 0 ) d ( f x f 0 )] 2 1 {sin(2pf 0 x) [d ( f x f 0 ) d ( f x f 0 )] 2j
0
圆对称函数的F.T. 仍是圆对称函数, 称为F-B (傅-贝)变 换,记为
-1{G()}
G() =
{g(r)}, g(r) =
§1-2 二维傅里叶变换 2-D Fourier Transform
傅里叶-贝塞尔变换
例: 利用F-B变换求圆域函数的F.T.
1, r 1 , 定义: circ(r ) 0, 其它 r x2 y 2
1
是圆对称函数
{circ(r )} 2p rJ 0 (2pr )dr
0
作变量替换, 令r’ =2pr, 并利用:
J
0
2p 0
x
0 ( )d
xJ1 ( x)
J1 (2p )
{circ(r )}
1 2p
2

r ' J 0 (r ' )dr'

§1.7 傅里叶变换 Fourier Transform
用算符表示系统
g(x, y) = ℒ{f(x, y)}
线性系统定义:
输入
f(x, y)
ℒ{
}
输出
g(x, y)
令 g1(x, y) = ℒ{f1(x, y)}, g2(x, y) = ℒ{f2(x, y)} 若对任意复常数a1, a2有: ℒ{a1 f1 (x, y) + a2 f2 (x, y) } = ℒ{a1 f1 (x, y)} + ℒ{a2 f2 (x, y) } = a1 ℒ{f1 (x, y)} + a2 ℒ{f2 (x, y) } = a1 g1 (x, y) + a2 g2 (x, y)
g ( ) H ( f ) exp( j 2pf )d


应用位移定理
H ( f ) g ( ) exp( j 2pf )d


H ( f ).G ( f )
应用F.T.定义
§1-2 二维傅里叶变换 2-D Fourier Transform
二、 极坐标下的二维傅里叶变换和傅里叶-贝塞尔变换 特别适合于圆对称函数的F.T.
四、 F.T.定理 -- Parseval定理的证明



g ( x) dx g ( x) g * ( x)dx
2

G ( f ) exp( j 2pfx)df G * ( f ' ) exp( j 2pf ' x)df ' dx
g (r , ) d G( , ) exp[ j 2pr cos( )]d
0 0
2p

§1-2 二维傅里叶变换 2-D Fourier Transform
傅里叶-贝塞尔变换
当 f 具有圆对称性,即仅是半径r的函数:f(x,y)= g(r,) = g (r). 依F.T.定义:
F.T.是线性变换
2. 空间缩放 Scaling (相似性定理)
1 fx f y {g (ax, by) G , ab a b
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理 空间缩放
注意空域坐标(x,y)的扩展,导致频域中坐标(fx,fy)的 压缩及频谱幅度的变化. 反之亦然.
交换积分顺序,先对x求积分:





G( f )G * ( f ' )dfdf ' exp[ j 2p ( f f ' ) x]dx


利用复指函数的F.T.
G( f )G * ( f ' )d ( f ' f )dfdf '

f 2 f 2 x y f x cos 频域 1 f y tan ( f ) f y sin x
§1-2 二维傅里叶变换 2-D Fourier Transform
极坐标下的二维傅里叶变换
则在极坐标中:
F ( cos , sin ) d f (r cos , r sin ) exp[ j 2pr cos( )]rdr
复指函数的F.T.是移位的d 函数
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理

4. 帕色伐(Parseval)定理
设 g(x,y) F.T. G(fx,fy),
g ( x, y )
2
dxdy

G( f x , f y )
2
df x df y
空间位移:原函数在空域中的平移,相应的频谱函数 振幅分布不变,但位相随频率线性改变.
{g(x-a, y-b)}= G(fx, fy) exp[-j2p(fxa+fyb)]
频率位移:原函数在空间域的相移,导致频谱的位移.
{g(x,y) exp[j2p(fax+fby)]}= G(fx- fa, fy- fb) 推论: 由 {1}= d (fx,fy) {exp[j2p(fax+fby)]}= d (fx- fa, fy- fb)
§1-2 二维傅里叶变换Fourier Transform
卷积定理的证明
左 exp( j 2pfx)dx g ( )h( x )d



交换积分顺序:
g ( ) h( x ) exp( j 2pfx) dx d
g(x) g(ax) a=2
1
x 1/2 0 1/2
空域压缩
1
x 1/4 0 1/4
F.T. 频域扩展 F.T.
G(f) 1 1/2
f 1 G( x ) a a
-1
0
1
f
-2
0
2
f
§1-2 二维傅里叶变换Fourier Transform
四、 F.T.定理
3. 位移定理 Shifting
设 g(x,y) F.T. G(fx,fy),
常用傅里叶变换对
1. 2 2. {1}=d (fx,fy); {d (fx,fy)}=1 1 与d 函数互为F.T.
{comb( x) comb( f )
x 1 f ) comb( ) comb(
梳状函数的F.T.仍为梳状函数
3. 4.
{rect(x)}=sinc(f); {sinc(x)}= rect(f) rect与sinc 函数互为F.T. {Gaus(x)} = Gaus(f ) 高斯函数的F.T.仍为高斯函数
则称该系统为线性系统。
§2.1
输入
线性系统
}
输出
线性系统具有叠加性质
f1(x, y)
输入
ℒ{ ℒ{Βιβλιοθήκη g1(x, y)输出
f2(x, y)
}
g2(x, y)
输入
ℒ{
}
输出
线性系统对几个激励的线性组合的整体响应等于 单个激励所产生的响应的线性组合。
§2.1 线性系统
线性系统具有叠加性质 线性系统对各个输入的响应是互相独立的。
2、脉冲响应和叠加积分
系统对输入脉冲函数的输出称为脉冲响应
系统对处于原点的脉冲函数的响应:
h(x, y) = ℒ {d(x, y)}
系统对输入平面上坐标为(h)处的脉冲函数的响应:
h(x, y; h) = ℒ {d (x-, y- h)}
在线性系统中引入脉冲响应的意义: 1. 任意复杂的输入函数可以分解为脉冲函 数的线性组合;
0 0 2p
令:
G( , ) F ( cos , sin ) g (r , ) f (r cos , r sin )
G( , ) d rg (r , ) exp[ j 2pr cos( )]dr
0 0 2p
则极坐标下的的二维傅里叶变换定义为:
{g(x,y)* h(x,y)}= G(fx,fy) . H(fx,fy)
空域中两个函数的乘积, 其F.T.是各自F.T.的卷积.
{g(x,y) . h(x,y)}= G(fx,fy) * H(fx,fy)
将时、空域的卷积运算,化为频域的乘积运算,特别有用. 亦可用于求复杂函数的F.T.和复杂函数的卷积
复习
§1-2 二维傅里叶变换 2-D Fourier Transform
四、 F.T.定理 -- F.T.的基本性质
设 g(x,y) F.T. G(fx,fy), h(x,y)
1. 线性定理 Linearity
F.T.
H(fx,fy),
{ag(x,y)+b h(x,y)}=a G(fx,fy) + b H(fx,fy)
G( , ) rg (r ) exp[ j 2pr cos( )]d d r
0 0

{
2p

利用贝塞尔函数关系

2p
0
exp[ ja cos( )]d 2pJ 0 (a)
0
G( ) 2p rg (r ) J 0 (2pr )dr g (r ) 2p G( ) J 0 (2pr )d
相关文档
最新文档