线性系统理论-郑大钟(第二版)
线性系统理论第二版教学大纲

线性系统理论第二版教学大纲课程简介本课程是针对电子信息、自动化等专业开设的一门重要的专业必修课程,主要研究线性系统的基本概念、理论和方法。
在本课程中,学生将学习到线性系统的数学模型、传递函数、频率特性、稳定性等关键概念,并应用这些知识分析和设计系统。
教学目标1.掌握线性系统的基本概念、理论和方法。
2.熟练掌握线性系统数学模型、传递函数、频率特性、稳定性等基本概念。
3.理解线性系统的几何特性,包括极点、零点和步响应等。
4.能够利用传递函数和频率响应等方法分析和设计系统。
5.了解现代控制理论和应用。
教学内容第一章线性系统基本概念1.1 系统的概念1.2 系统的建模1.3 信号与系统的分类1.4 线性系统的定义第二章时域分析2.1 系统的时域响应2.2 系统的因果性和稳定性2.3 系统的冲击响应和阶跃响应2.4 系统的单位反馈响应和频率响应第三章频域分析3.1 傅里叶变换3.2 傅里叶反变换3.3 频域分析基本方法3.4 奇偶性和周期性3.5 Bode图和极点、零点第四章线性系统稳定性分析4.1 稳定性定义和判据4.2 极点位置和稳定性分析4.3 极点的稳定性分析4.4 稳定性判据5.1 系统的规范化5.2 系统的合成5.3 系统的简化第六章现代控制理论与应用6.1 状态空间法6.2 系统的观测与控制6.3 非线性系统控制6.4 自适应控制教学方法本课程采用讲授与实例讲解相结合的教学方法。
每个章节都将以概念讲述为主,结合例题进行讲解,力求让学生具有深刻的理论、推导能力和实际应用能力。
同时,课程中将引入现代控制理论及应用,为学生提供最新的学术发展动态。
教学评估1.平时考核(30%):包括课堂参与、作业和实验。
2.期中考试(30%):测试学生的对概念和基础知识的掌握程度。
3.期末考试(40%):测试学生对概念、基础知识和应用能力的综合掌握程度。
参考书目1.钱世光、戚传波等,《线性系统理论与设计》(第二版),科学出版社,2017。
线性系统理论(绪论)S2

1877年,E.J. Routh 稳定性分析 —— 代数判据。 年 代数判据。 1895年,A. Hurwitz 稳定性分析 —— 代数判据。 年 代数判据。
一般认为,Maxwell的代数稳定判据 代数稳定判据加上公元1922年N.米诺尔斯基的《关 代数稳定判据 《 于船舶自动操舵的稳定性》和1934年美国H.L.黑曾(Hazen)发表的《关于伺服 于船舶自动操舵的稳定性》 《 机构理论》 经典控制理论的诞生。 机构理论》论文,标志着经典控制理论 经典控制理论
课程基础 - 自动控制原理、线性代数、矩阵理论、(电路) 课程特点 - 线性多变量系统、新方法 学习方法 - 听课 + 自学 + 习题
学时与学分: 学时与学分:
学时, 学分。(13 学分。( 次课) 共54学时,3学分。( + 1次课) 学时 次课
参考书目: 参考书目:
《线性系统理论》(第2版)郑大钟,清华大学出版社 线性系统理论》 郑大钟, 《线性系统理论》史忠科著, 科学出版, 《现代控制理论》于长官著,哈尔滨工业大学出版社 《线性控制系统工程》 [美]德赖斯 (Driels M.) ,清华大学出版社 《线性系统 线性系统》 [美]T.凯拉斯著,科学出版社
绪论
从历史的角度: 从历史的角度:
控制技术和理论的发展表明了这样一个道理: 控制技术和理论的发展表明了这样一个道理 : 任何社会实践没 有理论就不能成为科学,实践也就难以深入和系统地发展。 有理论就不能成为科学,实践也就难以深入和系统地发展。 控制技术在中国和巴比伦已有数千年的历史, 控制技术在中国和巴比伦已有数千年的历史 , 但由于没有上升 为理论,只能在低级的(技艺层面上)水平上发展。 为理论,只能在低级的(技艺层面上)水平上发展。 1868年以来, 随着控制理论的建立 , 控制理论和控制技术同时 年以来,随着控制理论的建立, 年以来 开始飞速发展, 开始飞速发展,控制技术终于成为人们征服自然与改造自然的有力武 器。 由于我们中国几千年来只重技术不重理论,我们现在( 由于我们中国几千年来只重技术不重理论 , 我们现在 ( 值得称 的历史就是十六、十七世纪前“灿烂辉煌的古代文明” 道)的历史就是十六、十七世纪前“灿烂辉煌的古代文明”,自从十 十七世纪西方科学理论体系开始建立之后,就开始相对日趋末落, 六、十七世纪西方科学理论体系开始建立之后,就开始相对日趋末落, 终于到了“落后”的近代,挨打受欺,以至于“丧权辱国” 终于到了“落后”的近代,挨打受欺,以至于“丧权辱国”了。
线性系统理论-郑大钟(第二版)

那么系统的任何一个内部变量在t≥t0各时刻的运动行为也就随之而完全确定
(2).状态变量组最小性的物理特征 (3). 状态变量组最小性的数学特征 (4). 状态变量组的不唯一性 (5).系统任意两个状态变量组之间的关系 (6)有穷维系统和无穷维系统 (7)状态空间的属性
动态系统的分类
从机制的角度 1.连续变量动态系C统 VDS 从特性的角度 1.线性系统
2.离散事件动态系D统 EDS
2.非线性系统
从作用时间 1.连续时间系统 连续系统按其参数 1.集中参数系:属 统有穷维系统 类型的角度 2.离散时间系统 的空间分布类型 2分 . 布参数系:属 统于无穷维系统
本书中仅限于研究线性系统和集中参数系统
复频率域描述即传递函数描述
g(s)u y( (s s) )snb n a 1 n s n 1 s1 n 1 b 1s a 1sb 0a 0 (2)系统的内部描述
状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征—— 状态方程和输出方程。
(3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不
线性系统
线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。
若表征系统的数学描述为L 系统模型
L ( c 1 u 1 c 2 u 2 ) c 1 L ( u 1 ) c 2 L ( u 2 )
系统模型是对系统或其部分属性的一个简化描述
①系统模型的作用:仿真、预测预报、综合和设计控制器 ②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示 ③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷
线性系统理论(郑大钟第二版)第4章

§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性 考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t ) k1
y(t ) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。 对于线性定常连续系统,外部稳定的充要条件是系统传递函数 的全部极点具有负实部。
n
it
i 1
i i
2.非线性系统情况 对于非本质性的非线性系统,可以在一定条件下用它的近似 线性化模型来研究它在平衡点的稳定性。
非线性自治系统: x f ( x)
f ( x )为n维非线性向量函数,并对各状态变量连续可微。
xe 0
是系统的一个平衡点。
将f ( x )在平衡点xe 邻域展成泰勒级数: f ( x ) f ( xe )
(t t0 )
则称平衡状态 xe 是稳定的。 可以将下式看成为状态空间中以 xe 为球心,以 为半径的一个超 球体,球域记为 S ( ) ;把上式视为以 xe为球心,以 为半径的一个 超球体,球域记为 S ( ) 。球域 S ( )依赖于给定的实数 和初始时间t 0 。
平衡状态 xe 是稳定的几何解释: 从球域 S ( )内任一点出发的运动 x(t; x0 , t0 )对所有的 t t0 都不超越球域 S ( ) 。 x2 一个二维状态空间中零平衡 S ( ) xe 0 是稳定的几何解释 状态 如右图 。 S ( ) 如果 与 t 0 无关,称为是 一致稳定,定常系统是一致 稳定的。 上述稳定保证了系统受扰运动的有 界性,通常将它称为李雅普诺夫意义 下的稳定,以区别于工程意义的稳定 (还应该具有对于平衡状态的渐进性)。
新编〈信息、控制与系统〉系列教材

新编〈信息、控制与系统〉系列教材
《单片机原理及其应用》袁涛李月香杨胜利编著
《微弱信号检测》(第二版)高晋占编著
《模式识别》(第三版)张学工编著
《系统仿真导论》(第二版)肖田元范文慧编著
《光纤传感原理与应用技术》赵勇编著
《制造企业的产品生命周期管理》张和明熊光楞编著
《人工神经网络与模拟进化计算》(第二版)阎平凡张长水编著
《微弱信号检测》高晋占编著
《企业信息化总体设计》李清陈禹六编著
《工业数据通信与控制网络》阳宪惠编著
《模式识别》(第二版)边肇祺张学工等编著
《神经网络与模糊控制》张乃尧阎平凡编著
《面向控制的系统辨识导论》周彤著
《嵌入式系统的构建》慕春棣主编
《计算机控制系统》王锦标编著
《运动控制系统》尔桂花窦日轩编著
《现代信号处理》(第二版)张贤达著
《自动控制理论例题习题集》王诗宓杜继宏窦曰轩编著
《线性系统理论》(第二版)郑大钟
《线性系统理论习题与解答》(第二版)郑大钟编著。
线性系统理论(绪论)

008
绪论
5、线性系统理论的研究对象
p研究对象为线性系统:
实际系统理想化模型, 可用线性微分方程或差分方程来描述。 p研究动态系统,动力学系统:
用一组微分方程或差分方程来描述,
对系统的运动和各种性质给出严格和定量的数学描述。 数学方程具有线性属性时,则为线性系统,满足叠加性。
009
绪论
例:某系统的数学描述为L,任意两个输入变量 u1和
u2以及任意两个有限常数 c1和 c2,必有: L ( c1u1 + c 2 u 2 ) = c1 L (u1 ) + c 2 L (u 2 )
数学处理上的简便性,可使用的数学工具: 数学变换(傅里叶变换,拉普拉斯变换)、线性代数 实际系统——非线性的,有条件地线性化。
线性定常系统——方程中每个系数均为常数。
故设计方法为试行错误法,无法得到“最好的设计”。
给定传递函数
闭环特性分析
与给定指标比较
004
绪论
1950年代 , 是控制理论的“混乱时期”。
1960年代 , 产生了“现代控制理论”(状态空间法)。 庞特里亚金极大值原理 贝尔曼 动态规划法 可控、可观性理论
卡尔曼
极点配置
观测器
内模原理 至1970年代前半期,为状态空间法的全盛时期。
1895年,赫尔维茨稳定性分析——代数判据。
1945年, 波特频率法。 1948年,伊万思根轨迹法。
至此,古典控制理论(传递函数法)体系确定。
003
补
补
补
绪论
2、古典控制理论的局限性
①局限于线性定常系统:难以解决非线性、时变系统等问题。 ②采用输入/输出描述(传函),忽视了系统结构的内在特性, 难以解决多输入多输出系统(耦合)。 ③处理方法上,只提供分析方法,而不是综合方法。
博士生入学线性系统理论考试大纲

博士生入学线性系统理论考试大纲第一部分 考试说明一、 考试性质线性系统理论是控制科学与控制工程学科的基础课。
本门考试的应考范围以基于状态空间描述和方法的近代控制理论为主,注重考察考生是否已经掌握控制学科最基本的理论知识。
它的评价标准是本学科或者相近学科的优秀硕士毕业生能达到及格或及格以上水平,以保证被录取者具有基本的控制学科基础知识,并有利于在专业上择优选拔。
二、 考试形式与试卷结构(一)答卷方式:闭卷,笔试。
(二)答卷时间:180分钟(三)题型比例:全部题型为计算、分析题,满分100分。
(四)主要参考书目:1.郑大钟编著,线性系统理论(第一部分),清华大学出版社,2002年第二版2.段广仁编著,线性系统理论,哈尔滨工业大学出版社,1997年第二部分 考查要点一、 线性系统的数学描述系统的传递函数描述,状态空间描述,两种描述形式的比较和相互转换。
线性系统在坐标变换下的特性。
组合系统的状态空间描述。
二、 线性系统的运动分析状态转移矩阵及其性质。
脉冲响应矩阵。
线性时变系统运动分析。
线性定常系统的运动分析。
线性连续系统的时间离散化。
线性离散系统的运动分析。
三、 线性系统的能控性和能观测性线性系统的能控性和能观测性的定义。
线性连续系统(含时变系统)的能控性、能观测性判据。
线性离散系统的能控性、能观性判据。
对偶原理。
能控、能观测与传递函数。
线性系统的能控性、能观性指数。
能控和能观测规范形。
线性系统的结构分解。
四、 系统运动的稳定性Lyapunov 意义下运动稳定性的定义。
Lyaounov 第二方法的主要定理。
线性系统稳定性判据。
离散系统的稳定性及其判据。
系统的外部稳定性和内部稳定性。
五、 线性反馈系统的综合状态反馈和输出反馈。
极点配置问题及其解的存在条件。
状态反馈极点配置问题的求解方法。
状态反馈可镇定条件和算法。
线性二次型最优控制问题。
全维和降维状态观测器。
引入观测器的状态反馈控制系统的特性。
第三部分 考试样题题一、(20分)已知时变系统的状态方程为⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡++=12)(,)(01)(00120)(002t X t t u t X t t t X其中)sin()(00t t t t u -=-是从0t 时刻开始的正弦信号,试求解该方程。
线性系统理论-郑大钟(3-4章)

1
2 n
n 1 n
t e n
1
0 1
21
n 1 2
(n 1)1 (n 1)(n 2) n 3 1 2! n2 (n 1)1 n 1 1 1
矩阵指数函数的算法 1:定义法
e At I At
1 2 2 A t 2!
只能得到eAt的数值结果,难以获得eAt解析表达式,但用计算机计算,具 有编程简单和算法迭代的优点。 2:特征值法
A P 1 AP
A PA P 1
e At Pe A t P 1
P为变换A为约当规范型的变换矩阵 1)若A的特征值为两两互异
如果系统矩阵A(t),B(t)的所有元在时间定义区间[t0,tα]上为时间t的连续实函数,输 入u(t)的所有元为时间t的连续实函数,那么状态方程的解x(t)存在且唯一。 从数学观点,上述条件可减弱为: ①系统矩阵A(t)的各个元aij(t)在时间区间[t0,tα]上为绝对可积,即:
t
t0
| aij (t ) | dt ,
-1
te1t 1t e e3t
0 2tet e 2t 1 3tet 2et 2e 2t 2 tet et e 2t
e At 0 I 1 A 2 A2 (2tet e 2t ) I (3tet 2et 2e 2t ) A (tet et e 2t ) A2 2et e 2t 0 e t e 2t 0 et 0 2et 2e 2t 0 et 2e 2t
s3 ( s 1)( s 2) 2 ( s 1)( s 2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g(s b0 an1sn1 a1s a0
(2)系统的内部描述
状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征—— 状态方程和输出方程。
(3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不
线性系统理论研究对象是 (线性的)模型系统,不是 物理系统。
1.2 线性系统理论的基本概貌
线性系统理论是一门以研究线性系统的分析与综合的理论和方法为基本任 务的学科。
线性系统理论着重研究线性系统状态的运动规律和改变这种规律的可能性 和方法,以建立和揭示系统结构、参数、行为和性能间确定的和定量的关系。
能控或不能观测的部分。
内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性。
状态和状态空间的定义
u1
yq
状态变量组: 一个动力学系统的状态变量组定义为 u2 能完全表征其时间域行为的一个最小
x1, x2,, xn
y2
内部变量组
up
yq
状态: 一个动力学系统的状态定义为由其状态变量组 x1(t), x2 t,, xn (t)
动态系统: 所谓动态系统,就是运动状态按确定规律或确定统计规律随时间演化 的一类系统——动力学系统。
动态系统是系统控制理论所研究的主体,其行为有各类变量间的关系来表征。
1.输入变量组
u
系统变量可区分为三类形式 2.内部状态变量组
3.输出变量组
y x
系统动态过程的数学描述 1.白箱描述:内部描述(状态方程和输出方程) 2.黑箱描述: 外部描述(输入, 输出变量组的关系)
线性系统
线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。
若表征系统的数学描述为L 系统模型
L (c1u1 c2u 2 ) c1L (u1) c2L (u 2 )
系统模型是对系统或其部分属性的一个简化描述
①系统模型的作用:仿真、预测预报、综合和设计控制器 ②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示 ③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷
2.2 线性系统的状态空间描述
描述系统输入、输出和状态变量之间关系的方程组称为系统的状态空间描述
(动态方程或运动方程),包括状态方程(描述输入和状态变量之间的关系)和 输出方程(描述输出和输入、状态变量之间的关系)。
线性系统理论
郑大钟 清华大学出版社
第一章 绪 论
第一部分 线性系统的时间域理论
第二部分 线性系统的复频率域理论
第二章 线性系统的状态空间描述 第三章 线性系统的运动分析 第四章 线性系统的能控性和能观测性 第五章 系统运动的稳定性 第六章 线性反馈系统的时间域综合
第一章 绪论
控制理论发展概况: 第一阶段 20世纪40—60年代 经典控制理论 第二阶段 20世纪60—70年代 现代控制理论 第三阶段 20世纪70—
多变量频域方法
一是频域方法
二是多项式矩阵方法
第一部分: 线性系统时间域理论
线性系统时间域理论是以时间域数学模型为系统描述,直接在时间域内分析 和综合线性系统的运动和特性的一种理论和方法
第二章 线性系统的状态空间描述
2.1 状态和状态空间
系统动态过程的两类数学描述
u1
y1
u2
x1, x2,, xn
大系统理论 (广度) 智能控制理论 (深度)
线性系统理论是系统控制理论的一个最为基础和最为成熟的分支。它以 线性代数和微分方程为主要数学工具,以状态空间法为基础分析和设计控制 系统。
第一章 绪论
1.1系统控制理论的研究对象
系统是系统控制理论的研究对象 系统:是由相互关联和相互制约的若干“部分”所组成的具有特定功能的一个“整体
y2
up
yq
(1) 系统的外部描述
u1
y1
外部描述常被称作为输出—输入描述
u2
x1, x2 ,, xn
y2
例如.对SISO线性定常系统:时间域的外部描述: u p
yq
y(n) an1 y(n1) a1 y(1) a0 y bn1u(n1) b1u (1) b0u
复频率域描述即传递函数描述
主要内容: 数学模型 → 分析理论 → 综合理论 发展过程: 经典线性系统理论→现代线性系统理论 主要学派: 状态空间法
几何理论 把对线性系统的研究转化为状态空间中的相应几何问题, 并采用几何语言来对系统进行描述,分析和综合
代数理论 把系统各组变量间的关系看作为是某些代数结构之间的 映射关系,从而可以实现对线性系统描述和分析的完全的 形式化和抽象化,使之转化为纯粹的一些抽象代数问题
系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
那么系统的任何一个内部变量在t≥t0各时刻的运动行为也就随之而完全确定
(2).状态变量组最小性的物理特征 (3). 状态变量组最小性的数学特征 (4). 状态变量组的不唯一性 (5).系统任意两个状态变量组之间的关系 (6)有穷维系统和无穷维系统 (7)状态空间的属性
状态空间为建立在实数域R上的一个向量空间R n
动态系统的分类
从机制的角度 1.连续变量动态系统CVDS 从特性的角度 1.线性系统
2.离散事件动态系统DEDS
2.非线性系统
从作用时间 1.连续时间系统 连续系统按其参数 1.集中参数系统: 属有穷维系统 类型的角度 2.离散时间系统 的空间分布类型 2.分布参数系统: 属于无穷维系统
本书中仅限于研究线性系统和集中参数系统
所组成的一个列向量
x1 (t)
x(t)
x2 (t)
xn
(t
)
状态空间: 状态空间定义为状态向量的一个集合,状态空间的维数等同于状态 的维数
几点解释 (1)状态变量组对系统行为的完全表征性
只要给定初始时刻 t0 的任意初始状态变量组 x1(t0 ), x2 t0 ,, xn (t0 )
和t≥t0 各时刻的任意输入变量组 u1 (t), u2 t ,, u p (t)