2018年北京市朝阳区中考数学二模试卷
北京市各区2018年初三数学中考二模《解四边形综合题》汇编

2018昌平二模21△.如图,已知ACB中,∠ACB=90°,CE是△ACB的中线,分别过点A、点C作CE和AB的平行线,交于点D.(1)求证:四边形ADCE是菱形;(2)若CE=4,且∠DAE=60°,求△ACB的面积.D CA E B2018朝阳二模22.如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.2018东城二模21.如图,在菱形ABCD中,∠BAD=α,点E在对角线BD上.将线段CE绕点C顺时针旋转α,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC,求证:AC⊥CF.2018房山二模21.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.DAECB21.如图,BD 是△ABC 的角平分线,过点 D 作 DE ∥BC 交 AB 于点 E ,DF ∥AB 交 BC于点 F .(1)求证:四边形 BEDF 为菱形;(2)如果∠A = 90°,∠C = 30°,BD = 12,求菱形 BEDF 的面积.AEDB F C2018 海淀二模21.如图,在四边形 ABCD 中, A BCD , BD 交 AC 于 G ,E 是 BD 的中点,连接 AE并延长,交 CD 于点 F , F 恰好是 CD 的中点.(1)求BGGD的值;(2)若 CE EB ,求证:四边形 ABCF 是矩形.BCGAEFD22.如图,已知□A BCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD=2,求AC的长.D CA B E2018石景山二模21.如图,在四边形ABCD中,∠A=45︒,C D=BC,DE是AB边的垂直平分线,连接CE.(1)求证:∠DEC=∠BEC;(2)若AB=8,BC=10,求CE的长.DCA E B2018西城二模21.如图,在△Rt ABC中,∠ACB=90︒,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=2,tan∠ACD=12,求DE的长.2018怀柔二模20.如图,四边形ABCD是边长为2的菱形,E,F分别是AB,AD的中点,连接EF,EC,△将FAE绕点F旋转180°△得到FDM.(1)补全图形并证明:EF⊥AC;(2)若∠B=60°△,求EMC的面积.A E BFD CAB2018 顺义二模22.如图,四边形 ABCD 中,∠C =90°,AD ⊥DB ,点 E 为 AB 的中点,DE ∥BC . (1)求证:BD 平分∠ABC ;(2)连接 EC ,若∠A = 30 ,DC = 3 ,求 EC 的长.DCE2018 门头沟二模21.如图,以BC 为底边的等腰△ABC ,点 D ,E ,G 分别在 BC ,AB ,AC 上,且 EG ∥BC , DE ∥AC ,延长 GE 至点 F ,使得 BF =BE .(1)求证:四边形 BDEF 为平行四边形;(2)当∠C =45°,BD =2 时,求 D ,F 两点间的距离.AEGFBD C。
2018年北京中考二模代数综合题汇编

2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式;②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t的取值范围.2018东城二模26.在平面直角坐标系xOy中,抛物线()230=+-≠经过点()y ax bx aA-和1,0点()B,.45(1)求该抛物线的表达式;(2)求直线AB关于x轴的对称直线的表达式;(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM PN<时,求点P的横坐标x的取值范围.P2018房山二模26. 在平面直角坐标系x O y中,二次函数2=++(0y ax bx ca≠)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标; ②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D .(1)当1h =-时,求点D 的坐标; (2)当1x -≤≤≤11x -≤≤≤1时,求函数的最小值m .(用含h 的代数式表示m )2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( );(2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018平谷二模26.在平面直角坐标系中,点D是抛物线223=--()0y ax ax aa>的顶点,抛物线与x轴交于点A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM,求抛物线表达式;(3)当30°<∠ADM<45°时,求a的取值范围.2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为(),若当≤n ≤时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.3x 30x >2-1-2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m>0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+.(1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B .①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M(2,-3).(1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.x。
2018-北京市-北京市-朝阳区--初三-下学期-中考二模

A、
B、
C、
D、
22. 小阳利用刻度尺、圆柱形平底玻璃管、细铅丝、玻璃容器、水测定盐水的密度。他用刻度尺测出玻璃管的长度L= 22. 20cm。在玻璃管的下端缠上适量的细铅丝,制成一个能够测量液体密度的装置,把它放入盛水的玻璃容器中,静止后 用刻度尺测出液面上方玻璃管的长度h1=9cm,如图甲所示。再甲(水)乙把它放入盛有盐水的玻璃容器中,静止后用 刻度尺测出液面上方玻璃管的长度h2=10cm,如图乙所示。下列说法中正确的是( )
2018-北京市-北京市-朝阳区--初三-下学期-中考二模
总分:170分 答题时间:120分钟 姓名: 日期:
注:本试卷共34道题,其中单选题15题(每题5分),多选题7题(每题5分),填空题2题(每题5分),计算题2题(每题5 分),实验探究题7题(每题5分),材料综合题1题(每题5分) 一、单选题(共15题,每题5分,共75分)
16. 吐鲁番是全国有名的“火炉”,常年高温少雨,水贵如油。当地流行使用坎儿井,大大减少了输水过程中的蒸发 16. 和渗漏。坎儿井由明渠、暗渠、竖井组成,如图所示,井内的水温在夏季约比外界低5~10℃.下列关于坎儿井能够减 少水的蒸发的说法中正确的是( )
A、
降低了水的温度
B、
减慢了水的表面空气流速
24. 图中物体的长度为________cm。 24.
四、计算题(共2题,每题5分,共10分)
25. 一个导体在工作时其两端电压为12V,通过它的电流为0.4A,导体的电阻多大?假如加在该导体两端的电压为 25. 24V,导体的电阻不变,这时通过导体的电流和导体消耗的电功率各多大?
26. 工人使用如图所示的滑轮组,在5s内将重400N的物体A匀速提升3m,已知拉力F为250N.在此过程中,不计绳重和 26. 轮与轴间的摩擦。求: (1)该滑轮组的机械效率; (2)工人做功的功率。
2018年北京市各区中考数学二模试卷分类汇编5【四边形】含解析

2018年高考文科数学各地二模试题分类汇编专题5【四边形】【2018·西城二模】1.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于.【答案】20【2018·昌平二模】2.如图,已知△ACB中,∠ACB=90°,CE是△ACB的中线,分别过点A、点C作CE和AB的平行线,交于点D.(1)求证:四边形ADCE是菱形;(2)若CE=4,且∠DAE=60°,求△ACB的面积.【答案】(1)证明:∵AD//CE,CD//AE∴四边形AECD为平行四边形………………………1分∵∠ACB=90°,CE是△ACB的中线∴CE=AE…………………………………2分∴四边形ADCE是菱形(2)解:∵CE=4,AE=CE=EB∴AB =8,AE=4∵四边形ADCE 是菱形,∠DAE =60°∴∠CAE =30°…………………………………3分∵在Rt △ABC 中,∠ACB=90°,∠CAB =30°,AB =83cos 2AC CAB AB ∠==,142CB AB ==∴AC =43…………………………………4分∴1832ABC S AC BC ∆=⋅=…………………………………………………5分【2018·朝阳二模】3.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若∠ABC =60°,且AD =DE =4,求OE 的长.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∵DE =CD ,∴AB =DE .∴四边形ABDE 是平行四边形.………………………………2分(2)解:∵AD =DE =4,∴AD =AB =4.∴□ABCD 是菱形.………………………………3分∴AB =BC ,AC ⊥BD ,BO =BD 21,∠ABO =ABC ∠21.又∵∠ABC =60°,∴∠ABO =30°.在Rt △ABO 中,2sin =∠⋅=ABO AB AO ,32cos =∠⋅=ABO AB BO .∴BD =34.∵四边形ABDE 是平行四边形,∴AE ∥BD ,34==BD AE .又∵AC ⊥BD ,∴AC ⊥AE .在Rt △AOE 中,13222=+=AO AE OE .……………………………5分【2018·东城二模】4.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上.将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF .(1)求证:BE =DF ;(2)连接AC ,若EB =EC ,求证:AC CF ⊥.【答案】(1)证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠.∵ECF α=∠,∴BCD ECF ∠=∠.∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到,∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,,∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分(2)解:∵四边形ABCD 是菱形,∴ACB ACD ∠=∠,AC BD ⊥.∴+90ACB EBC ∠=︒∠.∵=EB EC ,∴=EBC BCE ∠∠.由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠.∴90ACF =︒∠.∴AC CF ⊥.---------------------------------------------------------------------5分【2018·房山二模】5.已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果∠BDC =30°,DE =2,EC =3,求CD 的长.【答案】解:(1)∵AD=CD,EA=EC,DE=DE∴△ADE≌△CDE∴∠ADE=∠CDE∵AD∥BC∴∠ADB=∠DBC∴∠DBC=∠BDC∴BC=CD∴AD=BC又∵AD∥BC∴四边形ABCD是平行四边形…………………………………………………2′∵AD=CD∴四边形ABCD是菱形…………………………………………………………3′(2)作EF⊥CD于F∵∠BDC=30°,DE=2∴EF=1,DF=3……………………………………………………………………4′∵CE=3∴CF=22∴CD=22+3…………………………………………………………………5′【2018·丰台二模】6.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【答案】(1)证明:∵DE∥BC,DF∥AB,∴四边形BEDF为平行四边形………………1分∴∠1=∠3.∵BD是△ABC的角平分线,∴∠1=∠2.∴∠2=∠3.∴BF=DF.∴四边形BEDF为菱形.………………………2分(2)解:过点D作DG⊥BC于点G,则∠BGD=90°.∵∠A=90°,∠C=30°,∴∠ABC=60°.由(1)知,BF=DF,∠2=30°,DF∥AB,∴∠DFG=∠ABC=60°.∵BD=12,∴在Rt△BDG中,DG=6.∴在Rt△FDG中,DF=43.………………………4分∴BF=DF=43.∴S 菱形BEDF 243BF DG =⋅=.………………………5分(其他证法相应给分)【2018·海淀二模】7.如图,在四边形ABCD 中,AB CD ,BD 交AC 于G ,E 是BD 的中点,连接AE 并延长,交CD 于点F ,F 恰好是CD 的中点.(1)求BGGD 的值;(2)若CE EB =,求证:四边形ABCF 是矩形.【答案】(1)解:∵AB ∥CD ,∴∠ABE =∠EDC .∵∠BEA =∠DEF ,∴△ABE ∽△FDE .∴AB BEDF DE =.∵E 是BD 的中点,∴BE =DE .∴AB =DF .∵F 是CD 的中点,∴CF =FD .∴CD =2AB .∵∠ABE =∠EDC ,∠AGB =∠CGD ,∴△ABG ∽△CDG .∴12BG ABGD CD ==.(2)证明:∵AB ∥CF ,AB =CF ,∴四边形ABCF 是平行四边形.∵CE =BE ,BE =DE ,∴CE =ED .∵CF =FD ,∴EF 垂直平分CD .∴∠CFA =90°.∴四边形ABCF 是矩形.【2018·石景山二模】8.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,DE 是AB 边的垂直平分线,连接CE .(1)求证:DEC BEC ∠=∠;(2)若8AB =,10BC =,求CE 的长.【答案】(1)证明:∵DE 是AB 边的垂直平分线,∴DE AB ⊥,4AE EB ==,…………1分∵45A ∠=︒,∴DE AE EB ==,又∵DC CB =,CE CE =,∴△EDC ≌△EBC .∴45DEC BEC ∠=∠=︒.…………2分(2)解:过点C 作CH AB ⊥于点H ,可得,CH EH =,设EH x =,则4BH x =-,在Rt △CHB 中,222CH BH BC +=,………3分即22(4)10x x +-=,解之,13x =,21x =(不合题意,舍),…………4分即3EH =.∴232CE EH ==.…………5分【2018·西城二模】9.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形;(2)若AC =2,1tan 2ACD ∠=,求DE 的长.【答案】(1)证明:如图2.∵CD ⊥AB 于点D ,BE ⊥AB 于点B ,∴90CDA DBE ∠=∠=︒.∴CD ∥BE . (1)分又∵BE=CD ,∴四边形CDBE 为平行四边形.……………2分又∵90DBE ∠=︒,∴四边形CDBE 为矩形.………………………………………………3分(2)解:DE=BC=4【2018·海淀二模】10.如图,四边形ABCD 中,90C ∠=°,BD 平分ABC ∠,3AD =,E 为AB 上一点,4AE =,5ED =,求CD 的长.图2【答案】证明:∵3AD =,4AE =,5ED =,∴222AD AE ED +=.∴90A ∠=︒.∴DA AB ⊥.∵90C ∠=︒.∴DC BC ⊥.∵BD 平分ABC ∠,∴DC AD =.∵3AD =,∴3CD =.。
最新北京市中考数学二模分类26题代数综合

2018北京市中考数学二模分类26题代数综合题2018东城二模 26.在平面直角坐标系中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点是轴上的动点,过点作垂直于轴的直线,直线与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点的横坐标P x 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标xOyP x P x l l P记为(),若当≤n ≤时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( );(2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.3x 30x >2-1-2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D .(1)当1h =-时,求点D 的坐标; (2)当1x -≤≤≤1≤1时,求函数的最小值m .(用含h 的代数式表示m )2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M (2,-3). (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.2018房山二模26. 在平面直角坐标系x O y 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018平谷二模26.在平面直角坐标系中,点D 是抛物线223y ax ax a =--()0a >的顶点,抛物线与x轴交于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式;时,求a的取值范围.②若D点坐标(4,0),当PD AD。
北京市2018年中考数学二模试题汇编反比例综合题

反比例综合题2018昌平二模22.如图,在平面直角坐标系中,一次函数与反比例函数的图xOy +(0)y ax b a =≠ky k x=≠(0)象交于点A (4,1)和B (,). 1-n (1)求n 的值和直线的表达式;+y ax b =(2)根据这两个函数的图象,直接写出不等式的解集.0kax b x+-<2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线与函数的图象的两个交点分别61+=x k y )0(2>=x xk y 为A (1,5),B .(1)求的值;21,k k (2)过点P (n ,0)作x 轴的垂线,与直线和函数的图象的交点分别为点61+=x k y )0(2>=x xk y M ,N ,当点M 在点N 下方时,写出n 的取值范围.x2018东城二模22. 已知函数的图象与函数的图象交于点.1y x=()0y kx k =≠(),P m n (1)若,求的值和点P 的坐标;2m n =k (2)当时,结合函数图象,直接写出实数的取值范围.m n ≤k 2018房山二模22. 如图,在平面直角坐标系xOy 中,直线与双曲线相交于y kx m =+2y x=-点A (m ,2).(1)求直线的表达式;y kx m =+(2)直线与双曲线的另一个交点为B ,点P 为x 轴上一点,若,直接y kx m =+2y x=-AB BP =写出P 点坐标.2018丰台二模22.在平面直角坐标系xOy 中,直线l :. 21(0)y mx m m =-+≠(1)判断直线l 是否经过点M (2,1),并说明理由;(2)直线l 与反比例函数的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标. ky x=2018海淀二模22.已知直线过点,且与函数l (2,2)P 的图象相交于两点,与轴、(0)ky x x =>,A B x 轴分别交于点,如图所示,四边形y ,C D 均为矩形,且矩形的面,ONAE OFBM OFBM 积为.3(1)求的值;k (2)当点的横坐标为时,求直线的解析式及线B 3l 段的长;BC (3)如图是小芳同学对线段的长度关系的思考示意图.,AD BC 记点的横坐标为,已知当时,线段的长随的增大而减小,请你参考小芳的示B s 23s <<BC s 意图判断:当时,线段的长随的增大而 . (填“增大”、“减小”或3s ≥BC s 1“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数的图象与直线y =x -2交于()0ky k x=≠点A (a ,1).(1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数的图象于点N (x 1,y 2),结合函数的图象,直接写出的取值范围.()0ky k x=≠12y y -2018石景山二模22.在平面直角坐标系中,直线与轴,轴分别交于点,B ,与反比例xOy 1:2l y x b =-+x y 1(,0)2A 函数图象的一个交点为.(),3M a (1)求反比例函数的表达式;(2)设直线与轴,轴分别交于点C ,D ,且,直接写出的值 .2:2l y x m =-+x y 3OCD OAB S S ∆∆=m2018西城二模23. 如图,在平面直角坐标系xOy 中,函数()的图象经过点,AB ⊥x 轴于点my x=0x <(4,)A n -B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当时,求y kx b =+2CF CE =点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线相交于A ,B 两点,A 点)0(≠=m xmy 坐标为(-3,2),B 点坐标为(n ,-3).(1)求一次函数和反比例函数表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数与反比例函数(k ≠0)的图象相交于点y x =kyx= .(2,2)M (1)求k 的值;(2)点是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数、反比例函数(0,)P a y x =的图象相交于点、,当时,画出示意图并直接写出a 的取值范ky x=1(,)A x b 2(,)B x b 12x x <围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数(x >0)的图象与直线交于点A (1,m ).ky x=21y x =+(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线于点B ,交函数21y x =+(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点.ky x=①当时,求线段AB 上的整点个数;3n =②若(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个ky x=整点,直接写出n 的取值范围.。
2018年北京市朝阳区中考数学二模试卷-含详细解析

2018年北京市朝阳区中考数学二模试卷副标题一、选择题(本大题共8小题,共16.0分)1.若代数式的值为零,则实数x的值为()A. B. C. D.2.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是()A. B.C. D.4.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是()A. B. C. D.5.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A. 3B. 4C. 5D. 66.已知a2-5=2a,代数式(a-2)2+2(a+1)的值为()A. B. C. 1 D. 117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A. ①②B. ②③C. ③④D. ④8.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D. 6二、填空题(本大题共8小题,共16.0分)9.写出一个比大且比小的有理数:______.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有______(只填写序号).11.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=____.13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:______.15.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有______(只填写序号).16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.三、计算题(本大题共2小题,共10.0分)17.解不等式-3>2x-1,并把解集在数轴上表示出来.18.已知关于x的一元二次方程x2+2(m-1)x+m2-3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.四、解答题(本大题共10小题,共58.0分)19.计算:-3tan30°+(2018-π)0-()-1.20.如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.(1)依题意补全图形;(2)猜想AE与CD的数量关系,并证明.21.如图,在平面直角坐标系xOy中,直线y=k1x+6与函数y=(x>0)的图象的两个交点分别为A(1,5),B.(1)求k1,k2的值;(2)过点P(n,0)作x轴的垂线,与直线y=k1x+6和函数y=(x>0)的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.22.如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.23.AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=2,求CE的长.24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.25.在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC 于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.2x y(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.已知二次函数y=ax2-2ax-2(a≠0).(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象开口向上,当-1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;(3)对于该二次函数图象上的两点A(x1,y1),B(x2,y2),设t≤x1≤t+1,当x2≥3时,均有y1≥y2,请结合图象,直接写出t的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.28.对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,①在点P1(1,1),P2(0,),P3(,)中,直线m的平行点是______;②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.答案和解析1.【答案】A【解析】解:∵代数式的值为零,∴x=0,故选:A.根据分式值为0的条件:分子=0且分母≠0,求解即可.本题考查了分式值为0的条件,掌握分式值为0的条件:分子=0且分母≠0是解题的关键.2.【答案】B【解析】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:B.一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|c|,ab<0,a+c=1,b-a=1-(-2)=3,故选:C.根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b,c的值.5.【答案】D【解析】解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:D.因为⊙O的半径与这个正n边形的边长相等,推出这个多边形的中心角=60°,构建方程即可解决问题;本题考查正多边形与圆,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.【答案】D【解析】解:由题意可知:a2-2a=5,原式=a2-4a+4+2a+2=a2-2a+6=5+6=11故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.【答案】B【解析】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为=,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.【答案】A【解析】解:∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD -S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=12-,故选:A.根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.【答案】答案不唯一,如:2【解析】解:到之间可以为:2(答案不唯一),故答案为:2(答案不唯一).直接利用接近与的数据得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出比大且比小的无理数是解题关键.10.【答案】③【解析】解:①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为:③.根据直线与点的位置关系即可求解.考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义,是基础题型.11.【答案】m+n-n【解析】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴DF=BF•tan∠DBF=n.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴AB=BE-AE=CD+DF-AE=m+n-n.故答案为:m+n-n.延长BA交CE于点E,设CF⊥BF于点F,通过解直角三角形可求出DF、AE 的长度,再利用AB=CD+DF-AE即可求出结论.本题考查了解直角三角形的应用,通过解直角三角形求出DF、AE的长度是解题的关键.12.【答案】2【解析】解:∵BD=CD,∴=,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE为△ABC的中位线,∴OE=AC=×6=3,∴DE=OD-OE=5-3=2.故答案为2.先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到OE=AC=3,入境计算OD-OE即可.本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义和外心的性质.也考查了垂径定理.13.【答案】113407;北京市近两年的专利授权量平均每年增加6458.5件【解析】解:∵北京市近两年的专利授权量平均每年增加:=6458.5(件),∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.(理由须支撑推断的合理性)依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.本题考查用样本估计总体、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】(4,2)【解析】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.本题考查的是正方形的性质、旋转变换的性质、平移的性质,掌握坐标与图形的变化中的旋转和平移性质是解题的关键.15.【答案】②③【解析】解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是=0.2,此结论正确;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:②③.根据事件的类型及概率的意义找到正确选项即可.本题考查了概率的意义,大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.16.【答案】到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).17.【答案】解:去分母,得 3x+1-6>4x-2,移项,得 3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.【答案】解:(1)△=[2(m-1)]2-4(m2-3)=-8m+16.∵方程有两个不相等的实数根,∴△>0.即-8m+16>0.解得m<2;(2)∵m<2,且m为非负整数,∴m=0或m=1,当m=0时,原方程为x2-2x-3=0,解得x1=3,x2=-1,不符合题意舍去,当m=1时,原方程为x2-2=0,解得x1=,x2=-,综上所述,m=1.【解析】(1)利用根与系数的关系得到△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.19.【答案】解:原式=2-3×+1-2=-1.【解析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)如图:(2)AE与CD的数量关系为AE=CD.证明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【解析】(1)利用题中几何语言画图;(2)利用等腰三角形的性质得∠A=45°.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰直角三角形和角平分线的性质.21.【答案】解:(1)∵A(1,5)在直线y=k1x+6上,∴k1=-1,∵A(1,5)在>的图象上,∴k2=5.(2)观察图象可知,满足条件的n的值为:0<n<1或者n>5.【解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用图象法解决问题.22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形;(2)∵AD=DE=4,∴AD=AB=4.∴▱ABCD是菱形,∴AB=BC,AC⊥BD,BO=,∠ABO=.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,AO=AB•sin∠ABO=2,.∴BD=.∵四边形ABDE是平行四边形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【解析】(1)根据平行四边形的性质和判定证明即可;(2)根据菱形的判定和三角函数解答即可.本题考查了平行四边形的判定与性质以及菱形的判定,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.23.【答案】(1)证明:连接OC.∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°-∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)解:连接AE,过点B作BF⊥CE于点F.∵E是AB中点,∴=,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,.∴.∴CF=BF=1.∵∠CEB=∠CAB=30°,∴.∴.【解析】(1)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD 得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.24.【答案】(1)①②3.4;3棵;(2)70.【解析】【分析】本题主要考查频数分布直方图,解题的关键是掌握众数、平均数的定义及样本估计总体思想的运用.(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【解答】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是=3.4,众数为3,故答案为:3.4;3;(2)估计该小区采用这种形式的家庭有300×=70户,故答案为:70.25.【答案】3.5【解析】解:(1)60(2)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x所以,当(2)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.2.根据题意作图测量即可.本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.26.【答案】解:(1)该二次函数图象的对称轴是直线x==1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,-1≤x≤5,∴当x=5时,y的值最大,即M(5,).把M(5,)代入y=ax2-2ax-2,解得a=.∴该二次函数的表达式为y=.当x=1时,y=,∴N(1,).(3)t的取值范围-1≤t≤2.【解析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)当t≤x1≤t+1,x2≥3时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q 左边或重合时,满足条件,可得t+1≤3或-1≤t,由此即可解决问题;本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.【答案】45【解析】(1)解:∵AB=AC,M是BC的中点,∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案为:45…………………………………………(1分)(2)解:如图,连接DB.∵AB=AC,∠BAC=90°,M是BC的中点,∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.………………………………(2分)∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.………………………………………(3分)∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.…………………………………………………………………………(4分)(3)CE= CD.………………………………………………………………………(5分)证明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.……………………………………………………………………(6分)∴DF=EF.由②可知,CF=.………………………………………………………………(7分)∴CE=EF+CF=DF+CF=CD+CF=CD.(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)证明△EAF≌△DAF,得DF=EF,由②可知,CF=可得结论.本题考查了三角形全等的性质和判定、等腰直角三角形的判定与性质、四边形的内角和定理、等腰三角形三线合一的性质等知识,属于基础题,但本题已知相等线段较多,要认真识别.28.【答案】P2,P3【解析】解:(1)①因为P2、P3到直线y=x的距离为1,所以根据平行点的定义可知,直线m的平行点是P2,P3,故答案为P2,P3.②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.设该直线与x轴交于点A,与y轴交于点B.如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.所以OB=.直线AB与⊙O的交点即为满足条件的点Q.连接OQ1,作Q1N⊥y轴于点N,可知OQ1=.在Rt△OHQ1中,可求HQ1=3.所以BQ1=2.在Rt△BHQ1中,可求NQ1=NB=.所以ON=.所以点Q1的坐标为(,).同理可求点Q2的坐标为(,).如图2,当点B在原点下方时,可求点Q3的坐标为(,)点Q4的坐标为(,),综上所述,点Q的坐标为(,),(,),(,),(,).(2)如图,直线OE的解析式为y=x,设直线BC∥OE交x轴于C,作CD⊥OE 于D.当CD=1时,在Rt△COD中,∠COD=60°,∴OC==,设⊙A与直线BC相切于点F,在Rt△ACE中,同法可得AC=,∴OA=,∴n=,根据对称性可知,当⊙A在y轴左侧时,n=-,观察图象可知满足条件的N的值为:≤n≤.(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为y=x,设直线BC∥OE交x轴于C,作CD⊥OE 于D.设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;本题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
2018朝阳数学(二)

… … …… ○… ……… 外 …… …… ○…… … …装 …… ……○ … …… …订 ……… … ○… …… …线… … …… ○… ………
… … …… ○… ……… 内 …… …… ○…… … …装 …… ……○ … …… …订 ……… … ○… …… …线… … …… ○… ………
… … …… ○… ……… 外 …… …… ○…… … …装 …… ……○ … …… …订 ……… … ○… …… …线… … …… ○… ………
22. 如图,AB 是⊙O 的直径,AC 是上半圆的弦,过点 C 作⊙O 的切线 DE 交 AB 的延 长线于点 E,且 AD DE 于 D,与⊙O 交于点 F。 (1)判断 AC 是否是∠DAE 的平分线?并说明理由; (2)连接 OF 与 AC 交于点 G,当 AG=GC=1 时,求切线 CE 的长。 (1)求办公楼 AB 的高度; (2)若要在 A,E 之间挂一些彩旗,请你求出 A,E 之间的距离。 (参考数据:sin22°≈
24. 如图 1,正方形 ABCD 的一边 AB 在直尺一边所在直线 MN 上,点 O 是对角线 AC、BD 的交点,过点 O 作 OE⊥MN 于点 E。
(1)如图 1,线段 AB 与 OE 之间的数量关系为 。 (请直接填结论) (2)保证点 A 始终在直线 MN 上,正方形 ABCD 绕点 A 旋转 θ(0<θ<90°) ,过点 B 作 BF⊥MN 于点 F。 ①如图 2,当点 O、B 两点均在直线 MN 右侧时,试猜想线段 AF、BF 与 OE 之间存 在怎样的数量关系?请说明理由。 ②如图 3,当点 O、B 两点 分别在直线 MN 两侧时,此时①中结论是否依然成立呢? 若成立,请直接写出结论;若不成立,请写出变化后的结论并证明. ③当正方形 ABCD 绕点 A 旋转到如图 4 的位置时, 线段 AF、BF 与 OE 之间的数量关 系为 。 (请直接填结论)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年北京市朝阳区中考数学二模试卷
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合
题意的选项只有一个.
1.(2分)若代数式的值为零,则实数x的值为()
A.x=0B.x≠0C.x=3D.x≠3
2.(2分)如图的平面图形绕直线l旋转一周,可以得到的立体图形是()
A.B.C.D.
3.(2分)中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是()
A.B.
C.D.
4.(2分)如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是()
A.|a|=|c|B.ab>0C.a+c=1D.b﹣a=1
5.(2分)⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()
A.3B.4C.5D.6
6.(2分)已知a2﹣5=2a,代数式(a﹣2)2+2(a+1)的值为()A.﹣11B.﹣1C.1D.11
7.(2分)小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:
①这栋居民楼共有居民140人
②每周使用手机支付次数为28~35次的人数最多
③有的人每周使用手机支付的次数在35~42次
④每周使用手机支付不超过21次的有15人
其中正确的是()
A.①②B.②③C.③④D.④
8.(2分)如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为()
A.B.C.D.6
二、填空题(本题共16分,每小题2分)
9.(2分)写出一个比大且比小的有理数:.
10.(2分)直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有(只填写序号).
11.(2分)2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为.
12.(2分)如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=.
13.(2分)鼓励科技创新、技术发明,北京市2012﹣2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约件,你的预估理由是.
14.(2分)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的
三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.
15.(2分)下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次
时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差
别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以
上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85
其中合理的有(只填写序号).
16.(2分)下面是“作三角形一边上的高”的尺规作图过程.
已知:△ABC.
求作:△ABC的边BC上的高AD.
作法:如图2,
(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;
(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.
请回答:该尺规作图的依据是.
三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27
题,每小题5分,第28题8分)
17.(5分)计算:﹣3tan30°+(2018﹣π)0﹣()﹣1.
18.(5分)解不等式﹣3>2x﹣1,并把解集在数轴上表示出来.
19.(5分)如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
(1)依题意补全图形;
(2)猜想AE与CD的数量关系,并证明.
20.(5分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为非负整数,且该方程的根都是无理数,求m的值.
21.(5分)如图,在平面直角坐标系xOy中,直线y=k1x+6与函数y=(x>0)的图象的两个交点分别为A(1,5),B.
(1)求k1,k2的值;
(2)过点P(n,0)作x轴的垂线,与直线y=k1x+6和函数y=(x>0)的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.
22.(5分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到
E,使DE=CD,连接AE.
(1)求证:四边形ABDE是平行四边形;
(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.
23.(5分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.
(1)连接BC,求证:BC=OB;
(2)E是中点,连接CE,BE,若BE=2,求CE的长.
24.(5分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):
1 1
2
3 2 3 2 3 3
4 3 3 4 3 3
5 3 4 3 4 4 5 4 5 3 4 3 4 5 6
(1)对以上数据进行整理、描述和分析:
①绘制如下的统计图,请补充完整;
②这30户家庭2018年4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.
25.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,
60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE ⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm0123456
y/cm 6.9 5.3 4.0 3.3 4.56
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.
26.(7分)已知二次函数y=ax2﹣2ax﹣2(a≠0).
(1)该二次函数图象的对称轴是直线;
(2)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;
(3)对于该二次函数图象上的两点A(x1,y1),B(x2,y2),设t≤x1≤t+1,当x2≥3时,均有y1≥y2,请结合图象,直接写出t的取值范围.
27.(7分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM 到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
28.(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,
①在点P1(1,1),P2(0,),P3(,)中,直线m的平行点是;
②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐
标.
(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.
2018年北京市朝阳区中考数学二模试卷
参考答案
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合
题意的选项只有一个.
1.A;2.B;3.C;4.C;5.D;6.D;7.B;8.A;
二、填空题(本题共16分,每小题2分)
9.答案不唯一,如:2;10.③;11.m+n﹣n;12.2;13.113407;
北京市近两年的专利授权量平均每年增加6458.5件;14.(4,2);15.②
③;16.到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;
三角形的高的定义;两点确定一条直线;
三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27
题,每小题5分,第28题8分)
17.;18.;19.;20.;21.;22.;
23.;24.3.4棵;3棵;70;25.3.5;26.;27.45;28.P2,P3;。