【精品专题训练】2021年中考数学必刷压轴题二次函数抛物线与矩形问题专题训练含答案与试题解析

合集下载

【精品专题训练】2021年中考数学抛物线压轴题二次函数与直角三角形综合专题训练 含答案与试题解析

【精品专题训练】2021年中考数学抛物线压轴题二次函数与直角三角形综合专题训练 含答案与试题解析

2021年中考数学抛物线压轴题二次函数与直角三角形综合专题训练一.解答题(共11小题)1.(2020•双柏县一模)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C 三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.2.(2020•信阳模拟)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、C(0,3)、B(2,3)(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM为直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由(4个坐标).3.(2020•山亭区一模)如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.4.(2019秋•太仓市期中)如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.5.(2020•余干县模拟)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.6.如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣4,0)和点B两点,与y轴交于点C,抛物线的对称轴是x=﹣1与x轴交于点D.(1)求拋物线的函数表达式;(2)若点P(m,n)为抛物线上一点,且﹣4<m<﹣1,过点P作PE∥x轴,交抛物线的对称轴x=﹣1于点E,作PF⊥x轴于点F,得到矩形PEDF,求矩形PEDF周长的最大值;(3)点Q为抛物线对称轴x=﹣1上一点,是否存在点Q,使以点Q,B,C为顶点的三角形是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.7.(2020•马龙区一模)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为l,当t为何值时,l 的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t 的值;若不存在,说明理由.8.(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.9.如图,已知抛物线y=﹣x2+4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)在抛物线的对称轴上存在一点P,使得P A+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(不与点C,B重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=3:2,请求出点D的坐标;(4)若M为抛物线的对称轴上的一个动点,使得△MBC为直角三角形,请直接写出点M的坐标.10.(2019秋•辛集市期末)如图,已知抛物线y=﹣x2+4x+5与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得P A+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=2:3,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.11.(2019秋•江夏区校级月考)如图,直线AB经过x轴上一点A(3,0),且与抛物线y =ax2+1相交于B、C两点,点B的坐标为(1,2).(1)求抛物线和直线AB的解析式;(2)若点D是抛物线上一点,且D在直线BC下方,若S△BCD=3,求点D的坐标;(3)设抛物线顶点为M,问在抛物线上是否存在点P使△PMC是以MC为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2021年中考数学抛物线压轴题二次函数与直角三角形综合专题训练参考答案与试题解析一.解答题(共11小题)1.(2020•双柏县一模)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C 三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.【解答】解:(1)将点A、C的坐标代入函数表达式得:,解得:,故:函数的表达式为:y=x2﹣2x﹣3…①;(2)设直线AC的表达式为:y=kx+b,则:,故直线AC的表达式为:y=x﹣3,设点P(x,x2﹣2x﹣3),则点D(x,x﹣3),∴PD=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∵﹣1<0,抛物线开口向下,当x=时,PD的最大值为,此时,点P(,﹣);(3)存在,理由:①当∠ACP=90°时,由(2)知,直线AC的表达式为:y=x﹣3,故直线CP的表达式为:y=﹣x﹣3…②,①②联立并解得:x=1或0(舍去x=0),故点P坐标为(1,﹣4);②当∠P′AC=90°时,设直线AP′的表达式为:y=﹣x+b,将x=3,y=0代入并解得:b=3,故:直线AP′的表达式为:y=﹣x+3…③,联立①③并解得:x=﹣2或3(舍去x=3),故:点P′的坐标为(﹣2,5);故点P的坐标为(1,﹣4)或(﹣2,5).2.(2020•信阳模拟)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、C(0,3)、B(2,3)(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM为直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由(4个坐标).【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0)、C(0,3)、B(2,3),∴,解得,所以,抛物线解析式为y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+b(k≠0),则,解得,所以,直线AB的解析式为y=x+1,设点P的横坐标为x,∵PQ∥y轴,∴点Q的横坐标为x,∴PQ=(﹣x2+2x+3)﹣(x+1),=﹣x2+x+2,=﹣(x﹣)2+,∵点P在线段AB上,∴﹣1≤x≤2,∴当x=时,线段PQ的长度最大,最大值为;(3)由(1)可知,抛物线对称轴为直线x=1,①AB是直角边时,若点A为直角顶点,则直线AM的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,此时,点M的坐标为(1,﹣2),若点B为直角顶点,则直线BM的解析式为y=﹣x+5,当x=1时,y=﹣1+5=4,此时,点M的坐标为(1,4),②AB是斜边时,设点M的坐标为(1,m),则AM2=(﹣1﹣1)2+m2=4+m2,BM2=(2﹣1)2+(m﹣3)2=1+(m﹣3)2,由勾股定理得,AM2+BM2=AB2,所以,4+m2+1+(m﹣3)2=(﹣1﹣2)2+(0﹣3)2,整理得,m2﹣3m﹣2=0,解得m=,所以,点M的坐标为(1,)或(1,),综上所述,抛物线的对称轴上存在点M(1,﹣2)或(1,4)或(1,)或(1,),使△ABM为直角三角形.3.(2020•山亭区一模)如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).4.(2019秋•太仓市期中)如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)﹣4a=4,解得:a=﹣1,则抛物线的表达式为:y=﹣x2+bx+4,将点A的坐标代入上式并解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4…①;(2)抛物线的对称轴为:x=,点D(3,4),过点D作x轴的垂线交BP于点H,交x轴于点G,过点H作HR⊥BD与点R,则BG=1,GD=4,tan∠BDG=,∠DBP=45°,设:HR=BR=x,则DR=4x,BD=5x==,x=,BH=x,BG=1,则GH==,故点H(3,),而点B(4,0),同理可得直线HB的表达式为:y=﹣x+…②,联立①②并解得:x=4或﹣(舍去4),故点P(﹣,);(3)设点M(,m),而点A(﹣1,0)、点C(0,4),则AM2=+m2,CM2=+(m﹣4)2,AC2=17,①当AM是斜边时,+m2=+(m﹣4)2+17,解得:m=;②当CM是斜边时,同理可得:m=﹣;③当AC是斜边时,同理可得:m=或;综上,点M的坐标为:(,)或(,﹣)或(,)或(,).5.(2020•余干县模拟)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.【解答】解:(1)由题意可列方程组:,解得:.故抛物线解析式为:y=x2﹣x﹣2;(2)连结BE,由(1)知,抛物线解析式为:y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=4,∵∠AOC=90°,∴AC=,设直线AC的解析式为:y=kx+b,则,解得:.∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:==,∴=.6.如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣4,0)和点B两点,与y轴交于点C,抛物线的对称轴是x=﹣1与x轴交于点D.(1)求拋物线的函数表达式;(2)若点P(m,n)为抛物线上一点,且﹣4<m<﹣1,过点P作PE∥x轴,交抛物线的对称轴x=﹣1于点E,作PF⊥x轴于点F,得到矩形PEDF,求矩形PEDF周长的最大值;(3)点Q为抛物线对称轴x=﹣1上一点,是否存在点Q,使以点Q,B,C为顶点的三角形是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=﹣x2+bx+c的对称轴是x=﹣1,∴﹣=﹣1,b=﹣2,∴y=﹣x2﹣2x+c,把A(﹣4,0)代入得:﹣16+8+c=0,∴c=8,∴拋物线的函数表达式为:y=﹣x2﹣2x+8;(2)∵点P(m,n)为抛物线上一点,且﹣4<m<﹣1,如图1,∴n═﹣m2﹣2m+8,∵四边形PEDF是矩形,∴矩形PEDF的周长=2PE+2PF=2(﹣1﹣m)+2(﹣m2﹣2m+8)=﹣2m2﹣6m+14=﹣2(m+)2+,∵﹣2<0,∴当m=﹣时,矩形PEDF的周长有最大值是;(3)存在点Q,使以点Q,B,C为顶点的三角形是直角三角形,∵点Q为抛物线对称轴x=﹣1上一点,∴设Q(﹣1,y),由对称得:B(2,0),∵C(0,8),∴QB2=(2+1)2+y2=9+y2,QC2=(﹣1)2+(y﹣8)2=1+(y﹣8)2,BC2=22+82=4+64=68,分三种情况:①当∠QCB=90°时,QB是斜边,∴QB2=QC2+BC2,∴9+y2=1+(y﹣8)2+68解得:y=∴Q(﹣1,);②当∠QBC=90°时,QC是斜边,∵QC2=BC2+QB2,∴1+(y﹣8)2=68+9+y2,解得:y=﹣,∴Q(﹣1,﹣);③当∠BQC=90°时,BC是斜边,∵BC2=BQ2+QC2,∴68=1+(y﹣8)2+9+y2,解得:y=4±,∴Q(﹣1,4+)或(﹣1,4﹣);综上,点Q的坐标是(﹣1,)或(﹣1,﹣)或(﹣1,4+)或(﹣1,4﹣).7.(2020•马龙区一模)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为l,当t为何值时,l 的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t 的值;若不存在,说明理由.【解答】解:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,∴当t=时,l有最大值,l最大=;(3)∵S△P AD=×PM×(x D﹣x A)=PM,∴PM的值最大时,△P AD的面积中点,最大值=×=.∴t=时,△P AD的面积的最大值为.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD是直角三角形,当∠APD=90°时,PK=AD,∴(t﹣)2+(﹣t2+2t+3﹣)2=×18,整理得t(t﹣3)(t2﹣t﹣1)=0,解得t=0或3或,∵点P在第一象限,∴t=.当∠P AD=90°,可得P(1,4),∴t=1,综上所述,满足条件的t的值为1或.8.(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).9.如图,已知抛物线y=﹣x2+4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)在抛物线的对称轴上存在一点P,使得P A+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(不与点C,B重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=3:2,请求出点D的坐标;(4)若M为抛物线的对称轴上的一个动点,使得△MBC为直角三角形,请直接写出点M的坐标.【解答】解:(1)∵抛物线y=﹣x2+4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.∴当x=0时,y=5,当y=0时,﹣x2+4x+5=0,∴﹣(x﹣5)(x+1)=0,∴x1=5或x2=﹣1,∴点A坐标为(﹣1,0),点B坐标为(5,0),点C坐标为(0,5);(2)∵抛物线的对称轴为x=2,∴点A与点B关于直线x=2对称,∴P A+PC=PB+PC,∴当点P在BC上时,P A+PC有最小值,连接BC交对称轴为点P,则点P为所求点,∵点B坐标为(5,0),点C坐标为(0,5),∴直线BC的解析式为:y=﹣x+5,∴当x=2时,y=3,∴点P(2,3);(3)设点D(m,﹣m2+4m+5),则点E(m,﹣m+5),∵S△BDE:S△BEF=3:2,∴=,∴=,∴m1=,m2=5(舍去),∴点D(,);(4)设点M(2,n),∵点B坐标为(5,0),点C坐标为(0,5),∴MB2=9+n2,MC2=4+(n﹣5)2,BC2=50,若MB为斜边,则9+n2,=4+(n﹣5)2+50,解得:n=7,若MC为斜边,同理可求n=﹣3;若BC为斜边时,同理可求n=6或﹣1;综上所述:点M的坐标为(2,7)或(2,﹣3)或(2,6)或(2,﹣1).10.(2019秋•辛集市期末)如图,已知抛物线y=﹣x2+4x+5与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得P A+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=2:3,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.【解答】解:(1)令y=0,则x=﹣1或5,令x=0,则y=5,故点A、B、C的坐标分别为:(﹣1,0)、(5,0)、(0,5);(2)抛物线的对称轴为:x=2,点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,直线BC的表达式为:y=﹣x+5,当x=2时,y=3,故点P(2,3);(3)设点D(x,﹣x2+4x+5),则点E(x,﹣x+5),S△BDE:S△BEF=2:3,则,即:=,解得:m=或5(舍去5),故点D(,);(4)设点M(2,m),而点B、C的坐标分别为:(5,0)、(0,5),则MB2=9+m2,MC2=4+(m﹣5)2,BC2=50,①当MB为斜边时,则9+m2=4+(m﹣5)2+50,解得:m=7;②当MC为斜边时,同理可得:m=﹣3;③当BC为斜边时,同理可得:m=6或﹣1;综上点M的坐标为:(2,7)或(2,﹣3)或(2,6)或(2,﹣1).11.(2019秋•江夏区校级月考)如图,直线AB经过x轴上一点A(3,0),且与抛物线y =ax2+1相交于B、C两点,点B的坐标为(1,2).(1)求抛物线和直线AB的解析式;(2)若点D是抛物线上一点,且D在直线BC下方,若S△BCD=3,求点D的坐标;(3)设抛物线顶点为M,问在抛物线上是否存在点P使△PMC是以MC为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+3…①,同理将点B的坐标代入抛物线表达式并解得:抛物线的表达式为:y=x2+1…②;(2)联立①②并解得:x=1或﹣2,故点C(﹣2,5),如图1,过点D作y轴的平行线交BC于点H,设点D(x,x2+1),则点H(x,﹣x+3),则S△BCD=3=DH×(x B﹣x C)=(﹣x+3﹣x2﹣1)×(1+2),解得:x=﹣1或0,故点D(0,1)或(﹣1,2);(3)如图2,点M的坐标为:(0,1),点C(﹣2,5),则直线CM函数表达式中的k值为:﹣2,(Ⅰ)当∠PCM=90°时,则直线CP的函数表达式为:y=x+m,将点C的坐标代入上式并解得:m=6,故直线PC的表达式为:y=x+6…③,联立②③并解得:x=﹣2或(舍去﹣2),故点P的坐标为:(,);(Ⅱ)当∠CMP(P′)=90°时,同理可得:点P(P′)(,),综上,点P的坐标为:(,)或(,).。

2021年九年级数学中考二次函数综合型压轴题经典题型训练试题及答案详解(37页)

2021年九年级数学中考二次函数综合型压轴题经典题型训练试题及答案详解(37页)

2021年九年级数学中考二次函数综合型压轴题经典题型训练试题1.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B 两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(4)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.2.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点,试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴正半轴交于点A(4,0),与y轴交于点B(0,2),点C在该抛物线上且在第一象限.(1)求该抛物线的表达式;(2)将该抛物线向下平移m个单位,使得点C落在线段AB上的点D处,当AD=3BD时,求m的值;(3)联结BC,当∠CBA=2∠BAO时,求点C的坐标.4.如图1,抛物线y=x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴的负半轴交于点C,OC=OB=10.(1)求抛物线的解析式;(2)点P、Q在第四象限内抛物线上,点P在点Q下方,连接CP,CQ,∠OCP+∠OCQ=180°,设点Q的横坐标为m,点P的横坐标为n,求m与n 的函数关系式;(3)如图2,在(2)条件下,连接AP交CO于点D,过点Q作QE⊥AB于E,连接BQ,DE,是否存在点P,使∠AED=2∠EQB,若存在,求出点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3),D(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设点P是直线AB下方抛物线上的一动点,当△P AB面积大时,试求出点P的坐标,并求出△P AB面积的最大值;(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由.6.如图,二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A,B两点,A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,四边形BCMN是平行四边形?并求出满足条件的N点的坐标.7.如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D 作DF⊥x轴于点F,交直线BC于点E,连接BD、CD.设点D的横坐标为m,△BCD的面积为S.求S关于m的函数解析式及自变量m的取值范围,并求出S的最大值;(3)已知M为抛物线对称轴上一动点,若△MBC是以BC为直角边的直角三角形,请直接写出点M的坐标.8.已知二次函数y=ax2+bx+c,其图象与x轴的一个交点为B(3,0),与y轴交于点C(0,﹣3),且对称轴为直线x=1,过点B,C作直线BC.(1)求二次函数和直线BC的表达式;(2)利用图象求不等式x2﹣3x≥0的解集;(3)点P是函数y=ax2+bx+c的图象上位于第四象限内的一动点,连接PB,PC,①若△PBC面积最大时,求点P的坐标及△PBC面积的最大值;②在x轴上是否存在一点Q,使得以P,C,Q,B为顶点的四边形是平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.9.如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC =4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD 长度的最大值.10.如图,已知抛物线y=﹣x2+mx+3与x轴交于点A,B两点,与y轴交于C 点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C,D两点,连接BD,AD.(1)求m的值;(2)抛物线上有一点P,满足S△ABP =4S△ABD,求点P的坐标;(3)点M是抛物线对称轴上的点,当MA+MC的值最小时,求点M的坐标.11.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)①如图1,当点P在直线BC上方时,过点P作PD⊥x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;②抛物线上是否存在一点P,使△PBC是以BC为底边的等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.12.已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O 为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求经过点O,C,A三点的抛物线的解析式.(2)若点M是抛物线上一点,且位于线段OC的上方,连接MO、MC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.(3)抛物线上是否存在一点P,使∠OAP=∠BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,直线y=﹣x+m(m为大于0的常数)与x 轴相交于点A,与y轴相交于点C,开口向下的抛物线y=ax2+bx+c经过A,C两点,与x轴相交于另一点B,以AB为直径的⊙M经过点C.(1)直接写出点A,C的坐标(用含m的式子表示);(2)求ac的值;(3)若直线l平行于AC,且与抛物线y=ax2+bx+c有且只有一个公共点P,连接P A,PC,当△P AC的面积等于4时,求⊙M与抛物线y=ax2+bx+c的交点坐标.14.如图1,已知抛物线y=ax2+bx+5的对称轴是直线x=2,且经过点(3,8),抛物线与x轴相交于A,B两点(B点在A点右侧).(1)求抛物线的解析式和A,B两点的坐标;(2)如图2,已知Q(1,0),E(0,m),F(0,m+1),点P是第一象限的抛物线y=ax2+bx+5上的一点,①当m=1时,求使四边形EFPQ的面积最大时的点P的坐标;②若PQ=PB,求m为何值时,四边形EFPQ的周长最小?15.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.求S与m之间的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请写出点P的坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+3ax﹣18a(a ≠0),交x轴于点A、C两点,与y轴交于点B,且AC=OB.(1)求a的值;(2)连接AB、BC,点D为BC上一点,直线AD交对称轴左侧的抛物线于点P,当2∠OBA+∠DAB=90°时,求P点坐标.(3)在(2)的条件下,在AB上取点E,在AC上取点Q,使BE:AQ=4:3,连接EQ,且AD平分线段EQ,在第二象限取点R,使射线QR⊥x轴于点Q,M为射线OB上的一点,在QR边上取点N,将∠OMN沿MN折叠,使MO的对应线段所在的直线与射线QR交于点K,得到△MNK的面积为4时,求∠MKN的度数.参考答案1.解:(1)∵B的坐标为(1,0),∴OB=1.∵OC=3OB=3,点C在x轴下方,∴C(0,﹣3).∵将B(1,0),C(0,﹣3)代入抛物线的解析式,得,解得:a=,c=﹣3,∴抛物线的解析式为y=x2+x﹣3.(2)如图1所示:连结AC与抛物线的对称轴交于点Q,此时△QBC的周长最小.∵x=﹣=﹣=﹣,B(1,0),∴A(﹣4,0).设直线AC的解析式为:y=mx+n,∵A(﹣4,0),C(0,﹣3),∴,解得:,∴直线AC的解析式为:y=﹣x﹣3.∵y=﹣x2﹣2x+3的对称轴是直线x=﹣,∴当x=﹣时,y=﹣×(﹣)﹣3=﹣,∴点Q的坐标是(﹣,﹣);(3)如图2所示:过点D作DE∥y,交AC于点E.∵A(﹣4,0),B(1,0),∴AB=5.=AB•OC=×5×3=7.5.∴S△ABC设AC的解析式为y=kx+b.∵将A(﹣4,0)、C(0,﹣3)代入得:,解得:k=﹣,b=﹣3,∴直线AC的解析式为y=﹣x﹣3.设D(a,a2+a﹣3),则E(a,﹣a﹣3).∵DE=﹣a﹣3﹣(a2+a﹣3)=﹣(a+2)2+3,∴当a=﹣2时,DE有最大值,最大值为3.∴△ADC的最大面积=DE•AO=×3×4=6.∴四边形ABCD的面积的最大值为.(4)存在.①如图3,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,﹣3),令x2+x﹣3=﹣3,∴x1=0,x2=﹣3.∴P1(﹣3,﹣3).②平移直线AC交x轴于点E2,E3,交x轴上方的抛物线于点P2,P3,当AC=P2E2时,四边形ACE2P2为平行四边形,当AC=P3E3时,四边形ACE3P3为平行四边形.∵C(0,﹣3),∴P2,P3的纵坐标均为3.令y=3得:x2+x﹣3=3,解得x1=,x2=.∴P2(,3),P3(,3).综上所述,存在3个点符合题意,坐标分别是:P1(﹣3,﹣3),P2(,3),P3(,3).2.解:(1)设抛物线的解析式为y=a(x+1)(x﹣4).∵将C(0,﹣2)代入得:4a=2,解得a=,∴抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣x﹣2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK∥DG,∴△AKE∽△DFE,∴=.设直线BC的解析式为y=kx+b1,∴,解得,∴直线BC的解析式为y=x﹣2,∵A(﹣1,0),∴y=﹣﹣2=﹣,∴AK=,设D(m,m2﹣m﹣2),则F(m,m﹣2),∴DF=m﹣2﹣m2+﹣m+2=﹣m2+2m.∴==﹣(m﹣2)2+.∴当m=2时,有最大值,最大值是.(3)符合条件的点P的坐标为(,)或(,).∵l∥BC,∴直线l的解析式为y=x,设P(a1,),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(﹣1,0),C(0,﹣2),B(4,0),∴AC=,AB=5,BC=2,∵AC2+BC2=AB2,∴∠ACB=90°,∵△PQB∽△CAB,∴==,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠BPN=90°,∴∠MQP=∠BPN,∴△QPM∽△PBN,∴===,∴QM=,PM=(a1﹣4)=a1﹣2,∴MN=a1﹣2,BN﹣QM=a1﹣4﹣=a1﹣4,∴Q(a1,a1﹣2),将点Q的坐标代入抛物线的解析式得×(a12)﹣×a1﹣2=a1﹣2,解得a1=0(舍去)或a1=.∴P(,).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(a1,2).此时点P的坐标为(,).综上所述,符合条件的点P的坐标是(,)或(,).3.解:(1)把点A(4,0)和点B(0,2)代入抛物线y=﹣x2+bx+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)如图1,过点D作DG⊥x轴于G,∴DG∥OB,∴△ADG∽△ABO,∴,∵AD=3BD,∴AG=3OG,∵A(4,0),B(0,2),∴OA=4,OB=2,∴OG=1,DG=,∵D(1,),由平移得:点C的横坐标为1,当x=1时,y=﹣×1+×1+2=3,∴m=3﹣=;(3)∵∠CBA=2∠BAO,点C在该抛物线上且在第一象限,∴点C在AB的上方,如图2,过A作AF⊥x轴于A,交BC的延长线于点F,过B作BE⊥AF于点E,∴BE∥OA,∴∠BAO=∠ABE,∵∠CBA=2∠BAO=∠ABE+∠EBF,∴∠FBE=∠ABE,∵∠BEF=∠AEB=90°,∴∠F=∠BAF,∴AB=BF,∴AE=EF=OB=2,∴F(4,4),设BF的解析式为:y=kx+n,则,解得:,∴BF的解析式为:y=x+2,∴,解得或,∴C(2,3).4.解:(1)∵OC=OB=10,∴C(0,﹣10),B(10,0),把C,B两点坐标代入y=x2+bx+c,得到,解得,∴抛物线的解析式为y=x2﹣x﹣10.(2)如图1中,过点Q作QN⊥OC于N,过点P作PM⊥OC于M.∵∠OCP+∠OCQ=180°,∠OCP+∠PCM=180°,∴∠QCN=∠PCM,∵∠QNC=∠PMC=90°,∴△QNC∽△PMC,∴=,∴=,整理得m=12﹣n.(3)如图2中,作ET平分∠OED,交OD于T,过点T作TR⊥DE于R.由题意A(﹣4,0),P(n,n2﹣n﹣10),∴直线P A的解析式为y=(n﹣10)x+n﹣10,∴D(0,n﹣10),∴m=12﹣n,∴D(0,2﹣m),∴OD=m﹣2,∵∠TEO=∠TER,∠EOT=∠ERT=90°,ET=ET,∴△EOT≌△ERT(AAS),∴OT=TR,EO=ER=m,设OT=TR=x,在Rt△DTR中,∵DT2=TR2+DR2,∴(m﹣2﹣x)2=x2+(﹣m)2,∴x=,∵∠OED=2∠EQB,∠OET=∠TED,∴∠OET=∠EQB,∵∠EOQ=∠QEB=90°,∴△OET∽△EQB,∴=,∴=,∴=,∴=,整理得,m3﹣4m2﹣64m=96=0,可得(m﹣2)(m﹣8)(m+6)=0,解得,m=8或﹣6(舍弃)或2(舍弃),∵m=12﹣n,∴n=4,∴P(4,﹣12),5.解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3),B(3,0)两点,∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3),B(3,0)两点,∴,解得,∴直线AB的解析式为y=x﹣3;(2)如图1,作PQ∥y轴交直线AB于点Q,设P(m,m2﹣2m﹣3),则Qm,m﹣3),∴PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S=×3×(﹣m2+3m)△P AB=﹣m2+m=﹣(m﹣)2+,∴当m=时,△P AB面积有最大值,最大值是,此时P点坐标为(,﹣).(3)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图2,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图3,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或(,),6.解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数的图象,根据题意得:,∴,则二次函数的解析式是:y=﹣x2﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0),则MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,所以,当x=﹣时,MN的最大值为;(3)连接MC,BN,若BC=MN,则四边形BCMN是平行四边形,∴﹣x2﹣x=,解得x1=﹣1,x2=﹣2,故当N(﹣1,4)或(﹣2,4.5)时,四边形BCMN是平行四边形.7.解:(1)抛物线解析式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的函数解析式为y=kx+b,∵直线BC过点B(3,0),C(0,3),∴,解得,∴y=﹣x+3,设D(m,﹣m2+2m+3),E(m,﹣m+3),∴DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,∴,∵,∴当时,S有最大值,最大值;(3)设点M(1,m),则MB2=m2+4,MC2=1+(m﹣3)2,BC2=18;①当MC是斜边时,1+(m﹣3)2=m2+4+18;解得:m=﹣2;②当MB是斜边时,同理可得:m=4,故点M的坐标为:(1,﹣2),(1,4).8.解:(1)∵抛物线的对称轴为x=1,B(3,0),∴A(﹣1,0).设抛物线的解析式为y=a(x+1)(x﹣3),将点C的坐标代入得:﹣3a=﹣3,解得a=1,∴抛物线的解析式为y=x2﹣2x﹣3.设直线BC的解析式为y=kx+b,将点B和点C的坐标代入得:,解得k=1,b=﹣3,∴直线BC的解析式为y=x﹣3.(2)由x2﹣3x≥0可得到x2﹣2x﹣3≥x﹣3,由函数图象可得到x≥3或x≤0.(3)①作PM⊥x轴,垂足为M,交BC与点N.设P(m,m2﹣2m﹣3),则N(m,m﹣3).∴PN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m.=PN•(OM+MB)=PN•OB=﹣m2+m=﹣(m﹣)2+.∴S△PBC∴当△PBC的面积最大时,点P的坐标为(,﹣),△PBC的面积的最大值为.②∵点B和点Q均在x轴,以P,C,Q,B为顶点的四边形是平行四边形,∴PC∥BQ,PC=BQ.∴点P与点C关于x=1对称,∴点P的坐标为(2,﹣3).∴CP=2.∵BQ=PC=2,B(3,0),∴点Q的坐标为(1,0)或(5,0).9.解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC =4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.10.解:(1)∵抛物线y=﹣x2+mx+3过点(3,0),∴﹣9+3m+3=0,∴m=2;(2)由,得或,∴C(0,3),D(,﹣),∵S△ABP =4S△ABD,∴AB×|P y|=4×AB×,∴|P y|=9,P y=±9,当y=9时,﹣x2+2x+3=9,∴x2﹣2x+6=0,∵△=4﹣4×6<0,∴此方程无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,解得:x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9);(3)由(1)知:抛物线的解析式:y=﹣x2+2x+3,∴抛物线的对称轴是:x=1,∵点A与点B关于直线x=1对称,连接BC交对称轴x=1于点M,点M即为所求,当y=0时,﹣x2+2x+3=0,解得:x=3或﹣1,∴B(3,0),设直线BC的解析式为:y=kx+b,把B(3,0)和C(0,3)代入得,解得:,∴直线BC的解析式为:y=﹣x+3,∵抛物线的对称轴是:x=1,∴当x=1时,y=﹣1+3=2,∴当MA+MC的值最小时,点M的坐标是(1,2).11.(1)∵抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),∴,解得.∴抛物线解析式为y=﹣x2+2x+3.(2)①在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3).设直线BC的解析式为y=kx+b,则,∴.∴直线BC的解析式为y=﹣x+3,若PE=2ED,则PD=3ED,设P(m,﹣m2+2m+3),则E(m,﹣m+3),∴﹣m2+2m+3=3(﹣m+3),即m2﹣5m+6=0,解得m1=2,m2=3(舍).当m=2时,P(2,3),E(2,1),则PE=1,∴;②存在,理由如下:设P(n,﹣n2+2n+3).∵△PBC是以BC为底边的等腰三角形,∴PB=PC.∵B(3,0),C(0,3),∴(n﹣3)2+(﹣n2+2n+3)2=n2+(﹣n2+2n+3﹣3)2.解得n1=,n2=.∴,.12.解:(1)∵Rt△OAB沿OB折叠后,点A落在第一象限内的点C处,∴OC=OA=2,∠BOC=∠BAO=30°,∴∠AOC=30°+30°=60°,如图,过点C作CD⊥OA于D,则OD=×2=,CD=2×=3,所以,顶点C的坐标为(,3),设过点O,C,A抛物线的解析式为为y=ax2+bx,则,解得.所以抛物线的解析式为y=﹣x2+2x;(2)∵线段OC的长度一定,∴当点M到OC的距离最大时,△MOC的面积最大.∵C(,3),∴直线OC的解析式为y=x,设点M到OC的最大距离d时,平行于OC的直线解析式为y=x+m,联立,消掉未知数y并整理得,x2﹣x+m=0,△=(﹣)2﹣4m=0,解得m=.∴点M到OC的最大距离d=×sin30°=×=.=OC•d=×=.∴S△MOC即三角形MOC的最大面积是.(3)∵∠OAP=∠BOA=30°,∴2×=2,∴直线AP与y轴的交点坐标为(0,2)或(0,﹣2),当直线AP经过点(2,0)、(0,2)时,解析式为y=﹣x+2,联立,解得,.所以点P的坐标为(,),当直线AP经过点(2,0)、(0,﹣2)时,解析式为y=x﹣2,联立,解得,.所以点P的坐标为(﹣,﹣).综上所述,存在一点P(,)或(﹣,﹣),使∠OAP=∠BOA.13.解:(1)对于直线y=﹣x+m,令x=0,得到y=m,令y=0,得到x=2m,∴A(2m,0),C(0,m).(2)如图,连接BC,∵以AB为直径的⊙M经过点C,∴∠ACB=90°,∵∠BCO+∠CBO=90°,∠BCO+∠ACO=90°,∴∠CBO=∠ACO,∵∠COB=∠AOC=90°,∴△COB∽△AOC,∴=,∵OC=m,OA=2m,∴OB=m,∴B(﹣m,0),设抛物线的解析式为y=a(x+m)(x﹣2m)=ax2﹣amx﹣am2,∵C(0,m),∴﹣am2=m,∴a=﹣,∴抛物线的解析式为y=﹣•x2+x+m.∴ac=﹣×m=﹣1.(3)设P(t,﹣•t2+t+m),作PN∥OC交AC于N,则N(t,﹣t+m),∴PN=﹣•t2+2t,∵直线l平行于AC,且与抛物线y=ax2+bx+c有且只有一个公共点P,∴△P AC的面积最大,此时PN的值最大,∴t=﹣=m,∴PN=m,∵S=•PN•(x A﹣x C)=4,△P AC∴•m•2m=4,∴m=2或﹣2(舍弃),∴抛物线的解析式为y=﹣x2+x+2,当y=2时,x=0或3,∴⊙M与抛物线y=ax2+bx+c的交点坐标为(3,2)或(0,2).14.解:(1)根据题意知,.解得.故抛物线的解析式为:y =﹣x 2+4x +5.由y =﹣x 2+4x +5=﹣(x +1)(x ﹣5)知,A (﹣1,0),B (5,0);(2)①如图1,过点P 作PC ⊥x 轴,垂足为C ,如图1,设P (m ,n ),则OC =m ,PC =n ,∵点P 在抛物线的解析式:y =﹣x 2+4x +5上,∴n =﹣m 2+4m +5,∴S 四边形EFPQ =S 梯形PFOC ﹣S △EOQ ﹣S △QCP =(2+n )×m ﹣×1×1﹣(m ﹣1)×n =m +n ﹣,∴S 四边形EFPQ =﹣m 2+3m +2,当m =﹣=3时,S 最大.当m =3时,n =﹣9+12+5=8,∴P (3,8)因此当四边形EFPQ 的面积最大时,点P 的坐标为(3,8).②如图2,过点P 作PD ⊥x 轴,垂足为D ,如图2,作Q 关于O 的对称点Q 1,连接EQ 1,则Q 1(﹣1,0),由(1)得B (5,0)A (﹣1,0)Q (1,0),∴QB =4,∵PQ =PB ,∴QD =DB =QB =2,∴OD =3,当x =3时,y =﹣9+13+5=8,此时点P (3,8),PQ 、EF 的长固定,要使四边形的周长最小,即EQ +PF 最小即可, 当EQ 1∥PF 时,EQ +PF 最小,即四边形的周长最小,设直线PF 的关系式为y =k 1x +b 1,直线EQ 1的关系式为y =k 2x +b 2,由题意得:,,∴k1=,k2=m,当k1=k2时,EQ1∥PF,即:=m,解得:m=.因此当m=时,四边形EFPQ的周长最小.15.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B 的左侧),∴0=﹣x2+2x+3,∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0),∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S=×PD×OD=m×(3﹣m)=﹣m2+m,△PCD∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4,∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4).(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6).若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2).若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去),综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.16.解:(1)对于抛物线y=ax2+3ax﹣18a,令y=0,可得ax2+3ax﹣18a=0,解得x=﹣6或3,∴C(﹣6,0),A(3,0),∴OC=6,OA=3,∴AC=9,∵AC=OB,∴OB=6,∴B (0,6),∴﹣18a =6,∴a =﹣.(2)如图1中,取AB 的中点T ,连接OT ,设P A 交OT 于N ,交OB 于M .∵OA =3,OB =6,∴AB ==3,∵∠AOB =90°,AT =BT ,∴TO =TB =TA =,∴∠OBA =∠TOB ,∴∠ATO =∠OBA +∠TOB =2∠OBA ,∵2∠OBA +∠DAB =90°,∴∠ATO +∠DAB =90°,∴∠ANT =90°,∵S △AOT =S △AOB =•OT •AN , ∴AN ==,∴ON ===,∵∠OAN =∠OAM ,∠ONA =∠AOM =90°,∴△ANO ∽△AOM ,∴=,∴=,∴OM=,∴M(0,),∵A(3,0),∴直线AP的解析式为y=﹣x+,由,解得或,∴P(﹣,).(3)如图2中,过点E作ES∥AC交AD于S,交y轴于L,设直线AD交QE于J.∵AD平分线段QE,∴JE=JQ,∵ES∥AQ,∴∠ESJ=∠QAJ,∵∠EJS=∠QJA,∴△ESJ≌△QAJ(AAS),∴ES=AQ,∵BE:AQ=4:3=4:15,∴可以假设BE=4m,AQ=ES=15m,则BL=8m,LE=4m,∴SL=11m,OL=6﹣8m,∴S(﹣11m,6﹣8m),∵点S在直线AD:y=﹣x+上,∴6﹣8m=m+,解得m=,∴AQ=5,OQ=AQ﹣AO=2,∴Q(﹣2,0),=4时,过点M作MW⊥QR于W.当S△MNK∵QR∥OM,∴∠MNK=∠NMB,∵∠NMK=∠NMB,∴∠NMK=∠MNK,∴MK=KN,∴•KN•2=4,∴KN=MK=4,∵∠MWK=90°,KM=4,WM=OQ=2,∴MK=2MW,∴∠MKE=30°,∴∠MKN=180°﹣30°=150°,当S=4时,同法可得∠M′K′N′=30°,△M′K′N′综上所述,满足条件的∠MKN的值为30°或150°。

【精品专题训练】2021年中考数学二次函数压轴题抛物线与正方形综合专题训练 含答案与试题解析

【精品专题训练】2021年中考数学二次函数压轴题抛物线与正方形综合专题训练 含答案与试题解析

2021年中考数学二次函数压轴题抛物线与正方形综合专题训练一.解答题(共11小题)1.(2019•城区一模)综合与探究如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,与y轴交于点C,对称轴为x=1.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上求一点P,使点P到点A的距离与到点C的距离之和最小,并求出此时点P的坐标;(3)是否存在过A,B两点的抛物线,其顶点M关于x轴的对称点为N,使得四边形AMBN为正方形?若存在,请直接写出此抛物线的函数表达式;若不存在,请说明理由.2.(2019•九江模拟)已知二次函数y=ax2﹣2ax﹣2的图象(记为抛物线C1)顶点为M,直线l:y=2x﹣a与x轴,y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是;①对称轴是:直线x=1;②顶点坐标(1,﹣a﹣2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系;(3)将二次函数y=ax2﹣2ax﹣2的图象C1绕点P(t,﹣2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当﹣2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q',试探究四边形QMQ'N能否为正方形?若能,求出t的值,若不能,请说明理由.3.(2018•徐州模拟)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线表达式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)条件下,是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.4.(2017•金牛区模拟)如图,在正方形OABC中,OC=4,点D为边AB的中点,分别以OC、OA所在直线为x轴、y轴,建立平面直角坐标系,DE⊥CD,交y轴与点E,连接CE.(1)求经过O、C、D三点的抛物线的表达式;(2)若(1)中的抛物线对称轴与x轴于点F,过点F的直线l,将四边形COED的面积分为2:9的两个部分,求直线l的表达式;(3)平移(l)中的抛物线,使抛物线的顶点P始终在直线CD上,平移后的抛物线与直线CD的另一个交点为Q,点M在y轴,点N在平面直角坐标系中,当以P、Q、M、N四点为顶点的四边形是正方形时,求此时M点坐标.5.(2015•甘南州)如图,在平面直角坐标系中,抛物线y=−23x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.6.(2020•新抚区二模)如图,对称轴为x=1的抛物线经过A(﹣1,0),B(2,﹣3)两点.(1)求抛物线的解析式;(2)P是抛物线上的动点,连接PO交直线AB于点Q,当Q是OP中点时,求点P的坐标;(3)C在直线AB上,D在抛物线上,E在坐标平面内,以B,C,D,E为顶点的四边形为正方形,直接写出点E的坐标.7.(2019春•渝北区校级月考)如图1,抛物线y=−12x2−32x+2与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)如图1,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG−√1010EG的值最小,求出PG−√1010EG的最小值;(2)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以点A、M、N、K为顶点的四边形是正方形时,直接写出点N的坐标.8.(2019•泰州一模)如图1,直线y=kx+n分别与y轴、x轴交于A、B两点,OA=1,OB=2,以AB为边作正方形ABCD,抛物线y=56x2+bx+c经过点A、B.(1)分别求出直线与抛物线相应的函数表达式;(2)试判断正方形ABCD的顶点C是否在抛物线上,并说明理由;(3)若点P是直线AB下方的抛物线上一动点(P不与A、B重合).①连接AP、BP,求五边形APBCD面积的最大值;②是否存在以AP为边的正方形APEF,使其顶点E在正方形ABCD的边BC上?若存在,请求出此时P的坐标;若不存在,请说明理由.9.(2017秋•平阳县校级月考)如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE和Rt△OCD中的一个角相等?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,求t的值.10.(2017•鄂尔多斯)已知抛物线y=a(x﹣1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)有一个动点P从原点O出发,沿x轴正方向以每秒2个单位的速度运动,设运动时间为t秒,求t为何值时P A+PB最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C作DE∥x轴,分别交l1,l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.11.(2015•毕节市)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.2021年中考数学二次函数压轴题抛物线与正方形综合专题训练参考答案与试题解析一.解答题(共11小题)1.(2019•城区一模)综合与探究如图,抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣1,0),B 两点,与y 轴交于点C ,对称轴为x =1.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上求一点P ,使点P 到点A 的距离与到点C 的距离之和最小,并求出此时点P 的坐标;(3)是否存在过A ,B 两点的抛物线,其顶点M 关于x 轴的对称点为N ,使得四边形AMBN 为正方形?若存在,请直接写出此抛物线的函数表达式;若不存在,请说明理由.【专题】压轴题;分类讨论;函数的综合应用;运算能力;推理能力.【解答】解:(1)∵抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣1,0),B 两点,对称轴为x =1.∴B 点坐标为(3,0).把A (﹣1,0),B (3,0)代入y =﹣x 2+bx +c ,得{−1−b +c =0−9+3b +c =0, 解得{b =2c =3. ∴抛物线的函数表达式为:y =﹣x 2+2x +3;(2)如图1,连接BC ,与对称轴交于点P ,则点P 为所求.当x =0时,y =﹣x 2+2x +3=3,∴点C (0,3).设直线BC 的函数表达式为y =kx +m ,将B (3,0),C (0,3)代入得{3k +m =0m =3, 解得{k =−1m =3. ∴直线BC 的函数表达式为y =﹣x +3.当x =1时,y =﹣x +3=2∴点P (1,2);(3)存在过A ,B 两点的抛物线,其顶点M 关于x 轴的对称点为N ,使得四边形AMBN 为正方形,由AMBN 是正方形,A (﹣1,0),B (3,0),得M (1,﹣2),N (1,2)或M (1,2),N (1,﹣2),①当顶点M (1,﹣2)时,设抛物线的解析式为y =a (x ﹣1)2﹣2,将A 点坐标代入函数解析式,得a (﹣1﹣1)2﹣2=0,解得a =12,抛物线的解析式为y =12(x ﹣1)2﹣2,②当M (1,2)时,设抛物线的解析式为y =a (x ﹣1)2+2,将A 点坐标代入函数解析式,得a (﹣1﹣1)2+2=0,解得a=−1 2,抛物线的解析式为y=−12(x﹣1)2+2,综上所述:y=12(x﹣1)2﹣2或y=−12(x﹣1)2+2,使得四边形AMBN为正方形.2.(2019•九江模拟)已知二次函数y=ax2﹣2ax﹣2的图象(记为抛物线C1)顶点为M,直线l:y=2x﹣a与x轴,y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是①②③;①对称轴是:直线x=1;②顶点坐标(1,﹣a﹣2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系;(3)将二次函数y=ax2﹣2ax﹣2的图象C1绕点P(t,﹣2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当﹣2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q',试探究四边形QMQ'N能否为正方形?若能,求出t的值,若不能,请说明理由.【专题】压轴题;数形结合;构造法.【解答】解:(1)二次函数y=ax2﹣2ax﹣2的对称轴为x=−−2a2a=1,当x=1时,y=﹣a﹣2;y=ax2﹣2ax﹣2=a(x2﹣2x)﹣2,即当x=0或2时,抛物线过定点,即(0,﹣2)、(2,﹣2),故答案为:①②③;(2)过顶点M在MC⊥x轴,交AB于D,交x轴于C,由抛物线的顶点公式求得:顶点M(1,﹣a﹣2)当x=1时,y=2×1﹣a=2﹣a,求得:D(1,2﹣a)当y=0时,0=2x﹣a,x=12a,求得:A(a/2,0)∴DM=2﹣a﹣(﹣a﹣2)=4,S=S△BMD﹣S△AMD=12MD(OC﹣AC)=12×4×12a=a(a>0),(3)①当﹣2≤x≤1时,C1的y的值都会随x的增大而减小,而C1的对称轴为x=1,﹣2≤x≤1在对称轴的左侧,C1开口向上,所以a>0;同时C2的开口向下,而又要当﹣2≤x≤1时y的值都会随x的增大而减小,所以﹣2≤x≤1要在C2的对称轴右侧,令C2的对称轴为x=m,则m≤﹣2,而x=1和x=m关于P(t,﹣2)中心对称,所以P到这两条对称轴的距离相等,所以:1﹣t=t﹣m,m=2t﹣1,且:2t﹣1≤﹣2,即:t≤−1 2;②当a=1时,M(1,﹣3),作PE⊥CM于E,将Rt△PME绕P旋转90°,得到Rt△PQF,则△MPQ为等腰直角三角形,因为N、Q′是中心对称点,所以四边形MQNQ′为正方形.第一种情况,当t≤1时,PE=PF=1﹣t,ME=QF=1,CE=2,∴Q(t+1,﹣t﹣1),把Q(t+1,﹣t﹣1)代入y=x2﹣2x﹣2﹣t﹣1=(t+1)2﹣2(t+1)﹣2,t2+t﹣2=0,解得:t1=1,t2=﹣2;第二种情况,当t>1时,PF=PE=t﹣1,ME=QF=1,CE=2,∴Q(t﹣1,t﹣3)代入:y=x2﹣2x﹣2,t﹣3=(t﹣1)2﹣2(t﹣1)﹣2,t2﹣5t+4=0,解得:t1=1 (舍去),t2=4综上:t=﹣2或1或4.3.(2018•徐州模拟)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线表达式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)条件下,是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.【专题】压轴题;数形结合;待定系数法;二次函数图象及其性质;多边形与平行四边形;矩形 菱形 正方形.【解答】解:(1)∵抛物线对称轴为直线x =72,∴可设抛物线解析式为y =a (x −72)2+k ,把A (6,0),B (0,4)代入可得{a(6−72)2+k =0a(0−72)2+k =4,解得{a =23k =−256, ∴抛物线解析式为y =23(x −72)2−256, ∴顶点坐标为(72,−256); (2)∵点E (x ,y )在第四象限,∴y <0,∴﹣y 表示点E 到OA 的距离,∵OA 是平行四边形OEAF 的对角线,∴S =2S △OAE =2×12×OA •|y |=﹣6y =﹣4(x −72)2+25,其中1<x <6;(3)当OA ⊥EF 且OA =EF 时,四边形OEAF 是正方形,此时E 点坐标为(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E ,使平行四这形OEAF 为正方形.4.(2017•金牛区模拟)如图,在正方形OABC 中,OC =4,点D 为边AB 的中点,分别以OC、OA所在直线为x轴、y轴,建立平面直角坐标系,DE⊥CD,交y轴与点E,连接CE.(1)求经过O、C、D三点的抛物线的表达式;(2)若(1)中的抛物线对称轴与x轴于点F,过点F的直线l,将四边形COED的面积分为2:9的两个部分,求直线l的表达式;(3)平移(l)中的抛物线,使抛物线的顶点P始终在直线CD上,平移后的抛物线与直线CD的另一个交点为Q,点M在y轴,点N在平面直角坐标系中,当以P、Q、M、N四点为顶点的四边形是正方形时,求此时M点坐标.【专题】压轴题.【解答】解:(1)如图1中,由题意C(﹣4,0),D(﹣2,﹣4),设抛物线的解析式为y=a(x+2)2﹣4,把(0,0)代入得到a=1,∴经过O 、C 、D 三点的抛物线的表达式为y =(x +2)2﹣4,即y =x 2+4x .(2)如图1中,设直线l 交CD 于M .∵CD ⊥DE ,∴∠CBD =∠CDE =∠DAE =90°,∴∠CDB +∠BCD =90°,∠CDB +∠ADE =90°,∴∠ADE =∠BCD ,∴△CBD ∽△DAE ,∴BC AD=BD AE , ∴42=2AE ,∴AE =1.∴OE =3,∴S 四边形COED =16−12×4×2−12×2×1=11,∵直线l ,将四边形COED 的面积分为2:9的两个部分,∴S △CMF =2=12×CF ×|M y | ∴点M 是纵坐标为﹣2.当点M 在直线CD 上时,∵直线CD 的解析式为y =﹣2x ﹣8,∴M (﹣3,﹣2),∴直线l 的解析式为y =2x +4.当点M 在OE 上时,M (0,﹣2),此时直线l 的解析式为y =﹣x ﹣2.综上所述,直线l 的解析式为y =2x +4或y =﹣x ﹣2.(3)如图2中,当PQ 是正方形PMQN 的对角线时,M (0,﹣3);如图3中,当当P与C重合,PQ是正方形PMNQ的边时,M(0,2);如图4中,当PQ是正方形PQNM或正方形PQMN的边时,M(0,﹣18);如图5中,当PQ是正方形PMQN的对角线时,M(0,﹣13).综上所述,满足条件的点M的坐标为(0,﹣3)或(0,2)或(0,﹣18)或(0,﹣13).5.(2015•甘南州)如图,在平面直角坐标系中,抛物线y=−23x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.【专题】压轴题.【解答】解:(1)∵抛物线y=−23x2+bx+c,经过点A(0,﹣4),∴c=﹣4又∵由题意可知,x 1、x 2是方程−23x 2+bx ﹣4=0的两个根,∴x 1+x 2=32b ,x 1x 2=6由已知得(x 2﹣x 1)2=25又∵(x 2﹣x 1)2=(x 2+x 1)2﹣4x 1x 2=94b 2﹣24∴94b 2﹣24=25 解得b =±143,当b =143时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去. ∴b =−143.(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,又∵y =−23x 2−143x ﹣4=−23(x +72)2+256,∴抛物线的顶点(−72,256)即为所求的点D .(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(﹣6,0),根据菱形的性质,点P 必是直线x =﹣3与抛物线y =−23x 2−143x ﹣4的交点,∴当x =﹣3时,y =−23×(﹣3)2−143×(﹣3)﹣4=4, ∴在抛物线上存在一点P (﹣3,4),使得四边形BPOH 为菱形.四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(﹣3,3),但这一点不在抛物线上6.(2020•新抚区二模)如图,对称轴为x =1的抛物线经过A (﹣1,0),B (2,﹣3)两点.(1)求抛物线的解析式;(2)P 是抛物线上的动点,连接PO 交直线AB 于点Q ,当Q 是OP 中点时,求点P 的坐标;(3)C 在直线AB 上,D 在抛物线上,E 在坐标平面内,以B ,C ,D ,E 为顶点的四边形为正方形,直接写出点E 的坐标.【专题】压轴题;数据分析观念.【解答】解:(1)对称轴为x =1的抛物线经过A (﹣1,0),则抛物线与x 轴的另外一个交点坐标为:(3,0),则抛物线的表达式为:y =a (x +1)(x ﹣3),将点B 的坐标代入上式并解得:a =1,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设点P (m ,m 2﹣2m ﹣3),将点A 、B 的坐标代入一次函数表达式并解得:直线AB 的表达式为:y =﹣x ﹣1,当Q 是OP 中点时,则点Q (12m ,m 2−2m−32),将点Q 的坐标代入直线AB 的表达式并解得:m =1±√52, 故点P (1+√52,−5−√52)或(1−√52,−5+√52); (3)①当BC 为正方形的对角线时,如图1所示,直线AB 的表达式为:y =﹣x ﹣1,则点C (0,﹣1),点D (0,﹣3),BD =CD =2,故点E 1(2,﹣1);②当BC是正方形的一条边时,(Ⅰ)当点D在BC下方时,如图2所示,抛物线顶点P的坐标为:(1,﹣4),点B(2,﹣3),故PD⊥BC,有图示两种情况,左图,点C、E的横坐标相同,在函数对称轴上,故点E2(1,﹣4);此时,点D、E的位置可以互换,故点E3(0,﹣3);右图,点B、E的横坐标相同,同理点E4(2,﹣5);(Ⅱ)当点D在CB上方时,此时,点B、D坐标相同,这是不可能的,故不存在;综上,点E的坐标为:(2,﹣1)或(1,﹣4)或(0,﹣3)或(2,﹣5).7.(2019春•渝北区校级月考)如图1,抛物线y=−12x2−32x+2与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)如图1,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG−√1010EG的值最小,求出PG−√1010EG的最小值;(2)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以点A、M、N、K为顶点的四边形是正方形时,直接写出点N的坐标.【专题】压轴题;分类讨论;运算能力;创新意识.【解答】解:(1)抛物线y=−12x2−32x+2…①,抛物线与x轴交于A,B两点,与y轴交于点C,则点A、B、C的坐标为:(﹣4,0)、(1,0)、(0,2),则点D(﹣2,1),函数的对称轴为x=−3 2,将点B、D的坐标代入一次函数表达式并解得:直线BD的表达式为:y=−13x+13,过点P作y轴的平行线交直线EF于点G,设点P(x,−12x2−32x+2),则点G(x,−13x+13),△PDF的面积S=12×PG×(x F﹣x D)=12×(−12x2−32x+2+13x−13)×2=−12x2−76x+53,当x=−76时,S最大,即点P(−76,22172);过点E作x轴的平行线交PG于点H,直线BD的表达式为:y=−13x+13⋯②,则tan∠EBA=13=tan∠HEG,GH=√1010GE,故PG−√1010EG=PG﹣HG=PH为最小值,即点G为所求,联立①②并解得:x=−103,故点E(−103,139),则PG−√1010EG的最小值PH:22172−139=138;(2)①当AM是正方形的边时,(Ⅰ)当点M在y轴左侧时(N在下方),如图2,当点M在第二象限时,过点A作y轴的平行线GH,过点M作MG⊥GH与点G,过点N作HN⊥GH于点H,∵∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠HAN=∠GMA,∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=4−32=52,AH=GM,即y=−12x2−32x+2=52,解得:x=−3±√52,当x=−3−√52时,则GM=x﹣(﹣4)=5−√52,点y N=﹣AH=﹣GM=√5−5 2,故点N(−32,√5−52);当x=−3+√52时,同理可得:点N(−32,−5+√52);当点M在第三象限时,同理可得:点N(−32,−3+2√212);(Ⅱ)当点M在y轴右侧时,如图3,M在第一象限时,过点M作MH⊥x轴于点H,设AH=b,MH=a,同理可得:△AHM≌△MGN(AAS),则点M(﹣4+b,b−52),即a=b−52,将点M的坐标代入①式并解得:b=3±√292,a=−2±√292(a、b均舍去负值),y N=a+b=1+2√292,故点N(−32,1+2√292),同理当点M在第四象限时,点N(−32,−1+2√292);②当AM是正方形的对角线时,当点M在y轴左侧时,过点M作MG垂直于函数对称轴于点G,设函数对称轴与x轴交于点H,同理可得:△AHN≌△NGM(AAS),设点N(−32,m),则点M(−32−m,52+m),将点M的坐标代入①式并解得:m=12或−52(舍去),故点N(−32,12);当点M在y轴右侧时,同理可得:点N(−32,−52).综上,点N的坐标为:(−32,√5−52)或(−32,−5+√52)或(−32,−3+2√212)或(−32,1+2√292)或(−32,−1+2√292)或(−32,12)或(−32,−52).8.(2019•泰州一模)如图1,直线y=kx+n分别与y轴、x轴交于A、B两点,OA=1,OB=2,以AB为边作正方形ABCD,抛物线y=56x2+bx+c经过点A、B.(1)分别求出直线与抛物线相应的函数表达式;(2)试判断正方形ABCD的顶点C是否在抛物线上,并说明理由;(3)若点P是直线AB下方的抛物线上一动点(P不与A、B重合).①连接AP、BP,求五边形APBCD面积的最大值;②是否存在以AP为边的正方形APEF,使其顶点E在正方形ABCD的边BC上?若存在,请求出此时P的坐标;若不存在,请说明理由.【专题】压轴题;数形结合;待定系数法.【解答】解:(1)∵OA =1,OB =2,∴A (0,1),B (2,0)又∵A 、B 在直线y =kx +n 的图象上,∴{1=n 0=2k +n ,解得,{k =12n =1, ∴直线AB 的函数表达式为,y =−12+1.又∵y =56x 2+bx +c 经过点A 、B .∴{1=c 0=56×22+2b +c ,解得,{b =−136c =1∴抛物线的函数表达式为,y =56x 2−136x +1.(2)点C 在抛物线上.如图,过点C 作CH ⊥x 轴.∵四边形ABCD 为正方形,∴AB =BC ,∠ABC =90°,∴∠ABO +∠CBH =90°,又∵∠ABO +∠BAO =90°,∴∠BAO =∠CBH∴△ABO ≌△BCH (AAS )∴BH =AO =1,CH =BO =2,∴C (3,2).又∵当x =3时,y =56×32−136×3+1=2. ∴点C 在抛物线上.(3)①如图,过点P 作x 轴的垂线,交OB 、AB 于点N 、Q ,过点A 作AM ⊥PN . 设点P (m ,56m 2−136m +1),则Q (m ,−12m +1). ∴PQ =−12m +1﹣(−56m 2−136m +1)=−56m 2+53m .∴S △APB =S △APQ +S △BPQ =12•PQ •AM +12•PQ •BN =12•PQ •OB =−56m 2+53m =−56(m ﹣1)2+56.∴当m =1时,S △APB 最大值 =56.又∵S 正方形ABCD =5∴五边形APBCD 面积的最大值为,56+5=356. ②存在.如图,过点P 作x 轴的平行线,交y 轴于点G ,过点E 作EI ⊥PG ,设点P (m ,56m 2−136m +1),由(2)易证△APG ≌△PEI , ∴AG =PI ,PG =EI ,∴E (−56m 2+196m ,56m 2−76m +1). 又∵点B (2,0)、C (3,2)在直线BC 上,∴易求y BC =2x ﹣4.假设点E 在边BC 上,则56m 2−76m +1=2(−56m 2+196m )+1. 解得,m 1=1,m 2=2.又∵点P 在直线AB 下方的抛物线上,∴0<m<2,∴m=1,∴存在以AP为边的正方形APEF,使其顶点E在正方形ABCD的边BC上,此时P(1,−13).9.(2017秋•平阳县校级月考)如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE和Rt△OCD 中的一个角相等?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,求t的值.【专题】压轴题.【解答】解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得{100a+10b+4=44a−2b+4=0,解得{a=−16b=53,∴抛物线解析式为y=−16x2+53x+4;(2)由题意可设P(t,4),则E(t,−16t2+53t+4),∴PB=10﹣t,PE=−16t2+53t+4﹣4=−16t2+53t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则tan∠PBE=tan∠OCD∴PEPB =ODOC,即BP•OD=CO•PE,∴2(10﹣t)=4(−16t2+53t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则tan∠PBE=∠CDO∴PEPB =OCOD,即BP•OC=DO•PE∴4(10﹣t)=2(−16t2+53t),解得t=12或t=10(均不合题意,舍去),综上所述∴当t=3时,∠PBE=∠OCD(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴COAQ =OQAB,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ=√OC2+OQ2=2√5,BQ=√AQ2+AB2=4√5,∴sin∠BCQ=BQBC=2√55,sin∠CBQ=CQCB=√55,∴PM=PC•sin∠PCQ=2√55t,PN=PB•sin∠CBQ=√55(10﹣t),∴2√55t =√55(10﹣t ),解得t =103, ②当m =8时,同理可求得t =203, ∴当四边形PMQN 为正方形时,t 的值为103或203.10.(2017•鄂尔多斯)已知抛物线y =a (x ﹣1)2+3(a ≠0)与y 轴交于点A (0,2),顶点为B ,且对称轴l 1与x 轴交于点M(1)求a 的值,并写出点B 的坐标;(2)有一个动点P 从原点O 出发,沿x 轴正方向以每秒2个单位的速度运动,设运动时间为t 秒,求t 为何值时P A +PB 最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C ,且新抛物线的对称轴l 2与x 轴交于点N ,过点C 作DE ∥x 轴,分别交l 1,l 2于点D 、E ,若四边形MDEN 是正方形,求平移后抛物线的解析式.【专题】压轴题. 【解答】解:(1)把A (0,2)代入抛物线的解析式可得,2=a +3,∴a =﹣1,∴抛物线的解析式为y =﹣(x ﹣1)2+3,∴抛物线的顶点B 坐标为(1,3).(2)如图1中,作点A 关于x 轴的对称点A ′,连接BA ′交x 轴于P ,点P 即为所求.∵A ′(0,﹣2),B (1,3),∴直线A ′B 的解析式为y =5x ﹣2,∴P (25,0), ∴t =252=15时,P A +PB 最短(3)如图2中,设抛物线向右平移后的解析式为y =﹣(x ﹣m )2+3.由{y =−(x −1)2+3y =−(x −m)2+3,解得x =m+12, ∴点C 的横坐标m+12,∵MN =m ﹣1,四边形MDEN 是正方形,∴C (m+12,m ﹣1),把点C 的坐标代入y =﹣(x ﹣1)2+3,得到m ﹣1=−(m−1)24+3, 解得m =3或﹣5(舍弃),∴移后抛物线的解析式为y =﹣(x ﹣3)2+3.当点C 在x 轴下方时,C (m+12,1﹣m ),把点C 的坐标代入y =﹣(x ﹣1)2+3,得到1﹣m =−(m−1)24+3, 解得m =7或﹣1(舍弃),∴移后抛物线的解析式为y =﹣(x ﹣7)2+3.11.(2015•毕节市)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,顶点M 关于x 轴的对称点是M ′.(1)求抛物线的解析式;(2)若直线AM ′与此抛物线的另一个交点为C ,求△CAB 的面积;(3)是否存在过A ,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.【专题】压轴题.【解答】解:(1)将A 、B 点坐标代入函数解析式,得{1−b +c =09+3b +c =0, 解得{b =−2c =−3, 抛物线的解析式y =x 2﹣2x ﹣3;(2)将抛物线的解析式化为顶点式,得y =(x ﹣1)2﹣4,M 点的坐标为(1,﹣4),M ′点的坐标为(1,4),设AM ′的解析式为y =kx +b ,将A 、M ′点的坐标代入,得{−k +b =0①k +b =4②, 解得{k =2b =2, AM ′的解析式为y =2x +2,联立AM ′与抛物线,得{y =2x +2y =x 2−2x −3, 解得{x 1=−1y 1=0,{x 2=5y 2=12C 点坐标为(5,12).S △ABC =12×4×12=24;(3)存在过A ,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形,由ABPQ 是正方形,A (﹣1,0)B (3,0),得P (1,﹣2),Q (1,2),或P (1,2),Q (1,﹣2),①当顶点P (1,﹣2)时,设抛物线的解析式为y =a (x ﹣1)2﹣2,将A 点坐标代入函数解析式,得a (﹣1﹣1)2﹣2=0,解得a =12,抛物线的解析式为y =12(x ﹣1)2﹣2,②当P (1,2)时,设抛物线的解析式为y =a (x ﹣1)2+2,将A 点坐标代入函数解析式,得a (﹣1﹣1)2+2=0,解得a =−12,抛物线的解析式为y =−12(x ﹣1)2+2,综上所述:y=12(x﹣1)2﹣2或y=−12(x﹣1)2+2,使得四边形APBQ为正方形.。

【精品专题训练】2021年中考数学抛物线压轴题二次函数最值问题专题训练 含答案与试题解析

【精品专题训练】2021年中考数学抛物线压轴题二次函数最值问题专题训练 含答案与试题解析

2021年中考数学抛物线压轴题二次函数最值问题专题训练一.解答题(共10小题)1.(2020•青白江区模拟)如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+√22CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.2.(2020•日照三模)如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.(1)求经过A、O、B三点的抛物线的函数解析式;(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+12OM的最小值.3.(2019秋•开福区校级期中)如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB 交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+√22QB的最小值.4.(2019秋•金安区校级月考)已知抛物线y=ax2+bx﹣4经过点M(﹣4,6)和点N(2,﹣6).(1)试确定该抛物线的函数表达式;(2)若该抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C①试判断△ABC的形状,并说明理由;②在该抛物线的对称轴上是否存在点P,使PM+PC的值最小?若存在,求出它的最小值;若不存在,请说明理由.5.(2019•中原区校级四模)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP 为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+12MB的最小值以及此时点M、N的坐标.6.(2020•武侯区模拟)如图,在平面直角坐标系xOy中,抛物线y=ax2+2√33x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=−√33x+√3.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.7.(2019秋•河北区期末)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一动点,过点P 作y 轴的平行线,交抛物线于点D ,是否存在这样的P 点,使线段PD 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E ,EF ⊥x 轴于点F ,N 是直线EF 上一动点,M (m ,0)是x 轴一个动点,请直接写出CN +MN +12MB 的最小值以及此时点M 、N 的坐标,直接写出结果不必说明理由.8.(2020•莫旗一模)如图,二次函数y =−12x 2+32x +2的图象与x 轴交于点A ,B ,与y 轴交于点C .点P 是该函数图象上的动点,且位于第一象限,设点P 的横坐标为x . (1)写出线段AC ,BC 的长度:AC = ,BC = ; (2)记△BCP 的面积为S ,求S 关于x 的函数表达式;(3)过点P 作PH ⊥BC ,垂足为H ,连结AH ,AP ,设AP 与BC 交于点K ,探究:是否存在四边形ACPH 为平行四边形?若存在,请求出PK AK的值;若不存在,请说明理由,并求出PKAK的最大值.9.(2019秋•泰安期中)如图,对称轴x =﹣1的抛物线y =ax 2+bx +c 与x 轴交于A (2,0),B 两点,与y 轴交于点C (0,﹣2), (1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=14OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.10.(2020•余干县模拟)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,−83),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和AEAB的值.2021年中考数学抛物线压轴题二次函数最值问题专题训练参考答案与试题解析一.解答题(共10小题)1.(2020•青白江区模拟)如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+√22CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=12PH×OA=12×3×(x2﹣2x+3+x﹣3)=32(﹣x2+3x),当x=32时,△ACP的面积的最大,最大值为:278,此时点P(32,154);(3)过点M作MN⊥AC,则MN=√22CM,故当B、M、N三点共线时,BM+√22CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=√22AB=2√2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).2.(2020•日照三模)如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.(1)求经过A、O、B三点的抛物线的函数解析式;(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+12OM的最小值.【解答】解:(1)如图1,过点B 作BD ⊥x 轴于点D ,∴∠BDO =90°,∵OA 绕点O 逆时针旋转120°至OB ,∴OB =OA =4,∠AOB =120°,B 在第二象限, ∴∠BOD =60°, ∴sin ∠BOD =BD OB =√32,cos ∠BOD =OD OB =12, ∴BD =√32OB =2√3,OD =12OB =2, ∴B (﹣2,2√3),设过点A (4,0),B (﹣2,2√3),O (0,0)的抛物线解析式为y =ax 2+bx +c , ∴{16a +4b +c =04a −2b +c =2√3c =0,解得:{a =√36b =−2√33c =0,∴抛物线的函数解析式为y =√36x 2−2√33x ; (2)存在△POB 为等腰三角形,∵抛物线与x 轴交点为A (4,0),O (0,0), ∴对称轴为直线x =2, 设点P 坐标为(2,p ),则OP 2=22+p 2=4+p 2,BP 2=(2+2)2+(p ﹣2√3)2=p 2﹣4√3p +28,①若OP =OB =4,则4+p 2=42 解得:p 1=2√3,p 2=﹣2√3,当p =﹣2√3时,∠POA =60°,即点P 、O 、B 在同一直线上, ∴p ≠﹣2√3, ∴P (2,2√3),②若BP =OB =4,则p 2﹣4√3p +28=42 解得:p 1=p 2=2√3, ∴P (2,2√3);③若OP =BP ,则4+p 2=p 2﹣4√3p +28, 解得:p =2√3, ∴P (2,2√3);综上所述,符合条件的点P 只有一个,坐标为(2,2√3);(3)在OA 上取点K ,使AK =1,连接CK 交圆与点M ,连接OM 、CM ,此时,MC +12OM =MC +KM =CK 为最小值, 理由:∵AK =1,MA =2,OA =4, ∴AM 2=AK •OA ,而∠MAO =∠OAM , ∴△AKM ∽△AMO ,∴KM OM=12,即:MC +12OM =MC +KM =CK , CK =√42+33=5,即:MC +12OM 的最小值为CK =5.3.(2019秋•开福区校级期中)如图,直线y =x +2与抛物线y =x 2﹣2mx +m 2+m 交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,抛物线的对称轴与直线AB 交于点M .(1)当四边形CODM 是菱形时,求点D 的坐标; (2)若点P 为直线OD 上一动点,求△APB 的面积;′(3)作点B 关于直线MD 的对称点B ',以点M 为圆心,MD 为半径作⊙M ,点Q 是⊙M 上一动点,求QB '+√22QB 的最小值.【解答】解:(1)∵D (m ,m ),OD =√2m ,四边形CODM 为菱形, ∴OD =OC =2=√2m , ∴m =√2, ∴D (√2,√2);(2)∵y =x +2与抛物线y =x 2﹣2mx +m 2+m 交于A 、B 两点, ∴联立{y =x 2−2mx +m 2+m y =x +2,解得{x 1=m −1y 1=m +1,{x 2=m +2y 2=m +4,∵点A 在点B 的左侧,∴A (m ﹣1,m +1),B (m +2,m +4),∴AB =√(m −1−m −2)2+(m +1−m −4)2=3√2, ∵直线OD 的解析式为y =x ,直线AB 的解析式为y =x +2, ∴AB ∥OD ,两直线AB 、OC 之间距离h =2×√22=√2, ∴S △APB =12AB •h =12×3√2×√2=3;(3)∵A (m ﹣1,m +1),B (m +2,m +4), ∴AM =1×√2=√2,BM =2×√2=2√2,由M 点坐标(m ,m +2),D 点坐标(m ,m )可知以MC 为半径的圆的半径为 (m +2)﹣m =2,取MB 的中点N ,连接QB 、QN 、QB ′,∴MN =12BM =12×2√2=√2, ∵MN QM=QM BM=√22,∠QMN =∠BMQ , ∴△MNQ ∽△MQB , ∴QN QB=MN QM=√22, ∴QN =√22QB ,由三角形三边关系,当Q 、N 、B ′三点共线时QB ′+√22QB 最小, ∵直线AB 的解析式为y =x +2, ∴直线AB 与对称轴夹角为45°, ∵点B 、B ′关于对称轴对称, ∴∠BMB ′=90°,由勾股定理得,QB ′+√22QB 最小值为B 'N =√B′M 2+MN 2=√(2√2)2+(√2)2=√10. 即QB '+√22QB 的最小值是√10.4.(2019秋•金安区校级月考)已知抛物线y =ax 2+bx ﹣4经过点M (﹣4,6)和点N (2,﹣6).(1)试确定该抛物线的函数表达式;(2)若该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ①试判断△ABC 的形状,并说明理由;②在该抛物线的对称轴上是否存在点P ,使PM +PC 的值最小?若存在,求出它的最小值;若不存在,请说明理由.【解答】解:(1)将点M 、N 的坐标代入抛物线表达式得:{16a −4b −4=64a +2b −4=−6,解得:{a =14b =−32, 故抛物线的表达式为:y =14x 2−32x ﹣4;(2)①y =14x 2−32x ﹣4,令y =0,则x =﹣2或8,x =0,则y =﹣4, 故点A 、B 、C 的坐标分别为:(﹣2,0)、(8,0)、(0,﹣4), 则函数的对称轴为:x =3, 则AB =10,BC =√80,AC =√20,则AB 2=BC 2+AC 2,故△ABC 为直角三角形;②作点M 关于函数对称轴的对称点D (10,6), 连接CD 交函数对称轴于点P ,则点P 为所求,将点CD 的坐标代入一次函数表达式:y =kx +b 并解得: 直线CD 的表达式为:y =x ﹣4, 当x =3时,y =﹣1,故点P (3,﹣1), 此时PM +PC 的值最小为CD =10√2.5.(2019•中原区校级四模)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△CDP 为等腰三角形时,求点P 的坐标;(3)如图2,抛物线的顶点为E ,EF ⊥x 轴于点F ,N 是直线EF 上一动点,M (m ,0)是x 轴一个动点,请直接写出CN +MN +12MB 的最小值以及此时点M 、N 的坐标.【解答】解:(1)∵抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,把A (﹣1,0),C (0,3)代入解析式得, ∴{−1−b +c =0c =3, 解得b =2,c =3.故该抛物线解析式为:y =﹣x 2+2x +3.(2)令﹣x 2+2x +3=0, 解得x 1=﹣1,x 2=3, 即B (3,0),设直线BC 的解析式为y =kx +b ′, 则{b′=33k +b′=0,解得:{k =−1b′=3,故直线BC 的解析式为y =﹣x +3; ∴设P (t ,3﹣t ), ∴D (t ,﹣t 2+2t +3),∴PD =(﹣t 2+2t +3)﹣(3﹣t )=﹣t 2+3t , ∵OB =OC =3,∴△BOC 是等腰直角三角形, ∴∠OCB =45°,当CD =PC 时,则∠CPD =∠CDP , ∵PD ∥y 轴,∴∠CPD =∠OCB =45°, ∴∠CDP =45°, ∴∠PCD =90°,∴直线CD 的解析式为y =x +3,解{y =x +3y =−x 2+2x +3 得{x =0y =3 或{x =1y =4,∴D (1,4), 此时P (1,2);当CD =PD 时,则∠DCP =∠CPD =45°, ∴∠CDP =90°, ∴CD ∥x 轴, ∴D 点的纵坐标为3,代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3, 解得x =0或x =2, 此时P (2,1);当PC =PD 时,∵PC =√2t , ∴√2t =﹣t 2+3t , 解得t =0或t =3−√2, 此时P (3−√2,√2);综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3−√2,√2).(3)CN+MN+12MB的最小值为3√3+32,N坐标为(1,3−√3),M坐标为(√3,0).理由如下:如图,取G点坐标为(0,−√3),连接BG,∵B(3,0),∴直线BG解析式为:y=√33x−√3,∴tan∠GBO=√33,∴∠GBO=30°,过M点作MB′⊥BG,∴B′M=12 BM,∴CN+MN+12MB=CN+MN+B′M,∴CN+MN+12MB取最小值时,C、M、N、B′在同一条直线上,即CB′⊥BG,设直线CB′解析式为y=−√3x+b,∵C(0,3)故直线CB′解析式为为y=−√3x+3,∵抛物线的顶点为E坐标为(1,4),EF⊥x轴,N在EF、CB′上,∴N坐标为(1,3−√3),M(m,0)是x轴一个动点,也是CB′与x轴交点,∴M(√3,0).∵CG=3+√3,∠CGB=60°,∴CB′=CG sin∠CGB=(3+√3)×√32=3√3+32,综上所述:CN+MN+12MB的最小值为3√3+32,N坐标为(1,3−√3),M坐标为(√3,0).6.(2020•武侯区模拟)如图,在平面直角坐标系xOy中,抛物线y=ax2+2√33x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=−√33x+√3.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【解答】解:(1)y=−√33x+√3,过点B,C,则点B、C的坐标分别为:(3,0)、(0,√3),则c=√3,将点B的坐标代入抛物线表达式并解得:a=−√3 3,故抛物线的表达式为:y=−√33x2+2√33x+√3;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,√3),故点P的坐标为(﹣1,0)或(2,√3);(3)存在,理由:点P(2,√3),设图象沿BC方向向左平移3m个单位,则向上平移√3m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,√3m)、(2﹣3m,√3m+√3),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线BC等距离,则点B″在直线n 上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=√3x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=√3x+(4√3m﹣3√3)…①,设过点A的直线n的表达式为:y=−√33x+b′,将点A的坐标代入上式并解得:直线n的表达式为:y=−√33(x+1)…②,联立①②并解得:x=2﹣3m,故点B″(2﹣3m,√3m−√3),而P′(2﹣3m,√3m+√3),故EB'+EP'的最小值B″P′=2√3.7.(2019秋•河北区期末)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+12MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.【解答】解:(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,抛物线的表达式为:y=﹣x2+2x+3;(2)存在,理由:令y=0,则x=﹣1或3,故点B(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,当x=32时,PD最大值为:94;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,直线BH 表达式中的k 值为√33,则直线CH 的表达式为:y =−√3x +3, 当x =1时,y =3−√3,当y =0时,x =√3, 故点N 、M 的坐标分别为:(1,3−√3)、(√3,0), CN +MN +12MB 的最小值=CH =CM +FH =3+3√32. 8.(2020•莫旗一模)如图,二次函数y =−12x 2+32x +2的图象与x 轴交于点A ,B ,与y 轴交于点C .点P 是该函数图象上的动点,且位于第一象限,设点P 的横坐标为x . (1)写出线段AC ,BC 的长度:AC = √5 ,BC = 2√5 ; (2)记△BCP 的面积为S ,求S 关于x 的函数表达式;(3)过点P 作PH ⊥BC ,垂足为H ,连结AH ,AP ,设AP 与BC 交于点K ,探究:是否存在四边形ACPH 为平行四边形?若存在,请求出PK AK的值;若不存在,请说明理由,并求出PKAK的最大值.【解答】解:(1)二次函数y =−12x 2+32x +2, 当x =0时,y =2, ∴C (0,2), ∴OC =2,当y =0时,−12x 2+32x +2=0, 解得:x 1=4,x 2=﹣1, ∴A (﹣1,0),B (4,0), ∴OA =1,OB =4,由勾股定理得:AC =2+12=√5,BC =√22+42=2√5; 故答案为:√5,2√5; (4分) (2)∵B (4,0),C (0,2),∴直线BC的解析式为:y=−12x+2,如图1,过P作PD∥y轴,交直线BC于D,设P(x,−12x2+32x+2),则D(x,−12x+2),∴PD=(−12x2+32x+2)﹣(−12x+2)=−12x2+2x,有S=12PD•OB=12×4(−12x2+2x)=﹣x2+4x(0<x<4);(6分)(3)不存在,如图2,∵AC2+BC2=(√5)2+(2√5)2=25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=√5,(10分)∴S=12BC•PH=12×2√5×√5=5,∵而S=﹣x2﹣4x=﹣(x﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AKC∽△PHK,∴PKAK =PHAC=√5=S√5√5=15S≤45;∴PKAK 的最大值是45.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)9.(2019秋•泰安期中)如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=14OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.【解答】解:(1)∵对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,∴B(﹣4,0).设抛物线解析式是:y=a(x+4)(x﹣2)(a≠0).把C(0,﹣2)代入,得a(0+4)(0﹣2)=﹣2.解得a=1 4.故该抛物线解析式是:y=14(x+4)(x﹣2)或y=14x2+12x﹣2;(2)设直线BC的解析式为y=mx+n,把B(﹣4,0),C(0,﹣2)代入得{−4m−2=0n=−2,解得{m=−12 n=−2,∴直线BC 的解析式为y =−12x ﹣2;作PQ ∥y 轴交BC 于Q ,如图,设P (t ,14t 2+12t ﹣2),则Q (t ,−12t ﹣2),则PQ =−12t ﹣2﹣(14t 2+12t ﹣2)=−14t 2﹣t , S △PBC =S △PBQ +S △PCQ =12•PQ •4=−12t 2﹣2t =−12(t +2)2+2,当t =﹣2时,△PBC 面积有最大值,最大值为2,此时P 点坐标为(﹣2,﹣2);(3)设D (m ,0),∵DP ∥y 轴,∴E (m ,−12m ﹣2),P (m ,14m 2+12m ﹣2), ∵PE =14OD ,∴|﹣m |=4|−12m ﹣2−14m 2−12m +2|,∴m 2+3m =0或m 2+5m =0,∴m =﹣3,m =0(舍去)或m =﹣5,m =0(舍去)∴P (﹣3,−54)或P (﹣5,74);(4)∵点A 、B 关于对称轴对称,∴点M 为BC 与对称轴的交点时,MA +MC 的值最小,此时△AMC 的周长最小.∵直线BC的解析式为y=−12x﹣2.抛物线的对称轴为直线x=﹣1.∴当x=﹣1时,y=−3 2.∴抛物线对称轴上存在点M(﹣1,−32)符合题意,此时△AMC周长的最小值为AC+BC=2√2+2√5.10.(2020•余干县模拟)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,−83),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和AEAB的值.【解答】解:(1)由题意可列方程组:{c=−2a−2a+c=−83,解得:{a=23c=−2.故抛物线解析式为:y=23x2−43x﹣2;(2)连结BE,由(1)知,抛物线解析式为:y=23x2−43x﹣2,令y =0,则0=23x 2−43x ﹣2∴x =﹣1或x =3,∴A (﹣1,0),B (3,0),∴AB =4,∵∠AOC =90°,∴AC =√5,设直线AC 的解析式为:y =kx +b ,则{−k +b =0b =−2, 解得:{k =−2b =−2. ∴直线AC 的解析式为:y =﹣2x ﹣2;当△AOC ∽△AEB 时S △AOCS △AEB =(AC AB )2=(√54)2=516, ∵S △AOC =1,∴S △AEB =165,∴12AB ×|y E |=165,AB =4,则y E =−85, 则点E (−15,−85);由△AOC ∽△AEB 得:AO AC =AE AB =√5,∴AE AB =√55.。

2021届中考数学专题复习训练——二次函数 专题10.3二次函数综合之矩形

2021届中考数学专题复习训练——二次函数 专题10.3二次函数综合之矩形

矩形的存在性根据平移、三角形全等,中点坐标公式等方法求解点坐标 类型一:已知一边垂直,对边相等即可【经典例题1】如图,已知抛物线y=−x 2+bx +c 与y 轴相交于点A(0,3),与x 正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的解析式以及点B 的坐标。

(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动。

过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒。

①当t 为何值时,四边形OMPN 为矩形。

①当t>0时,①BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由。

【解析】∵抛物线y=−x 2+bx +c 对称轴是直线x =1,1)1(2=-⨯-b ,解得b =2, ∵抛物线过A(0,3),∴c =3,∴抛物线解析式为y=−x 2+2x +3,令y=0可得−x 2+2x +3=0,解得x =−1或x =3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P(2t,−4t 2+4t+3),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=−4t 2+4t+3,解得t=1或t=43-(舍去), ∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB 解析式为y=−x +3,∴当t>0时,OQ ≠OB ,∴当△BOQ 为等腰三角形时,有OB=QB 或OQ=BQ 两种情况,由题意可知OM=2t ,∴Q(2t,−2t+3),∴OQ=22)32()2(+-+t t =91282+-t t , BQ=22)32()32(+-+-t t =322-t ,又由题意可知0<t<1,当OB=QB 时,则有322-t =3,解得t=4236+(舍去)或t=4236-;当OQ=BQ 时,则有91282+-t t =322-t ,解得t=43; 综上可知当t 的值为4236-或43时,△BOQ 为等腰三角形。

2021年中考数学《二次函数综合压轴题》模拟训练题集(三)

2021年中考数学《二次函数综合压轴题》模拟训练题集(三)

2021年中考数学《二次函数综合压轴题》模拟训练题集(三)1.如图,在平面直角坐标系中,抛物线y=﹣x2+x+4与x轴交于A,C两点(点A在点C左侧),与y轴交于点B,P是抛物线上一动点,设点P的横坐标为m,连结PO,PB,PC.(1)当m=2时,求证:△OPB≌△OPC.(2)直线BC交直线OP于点Q,当P为OQ中点时,求点Q坐标.(3)当S△OPB=S△OPC,求所有满足条件的点P坐标.2.如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.3.如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+c与x轴交于B、C两点,与y轴交于点A,直线AB的解析式为:y=x+4;(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过P作PD∥y轴交直线AB于D,若点P的横坐标为t,PD的长度为d,求d与t的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,延长DP交x轴于E,点F在BE上,EF=PD,连接PF,过F作FQ⊥PF交AB于Q,直线PQ交x轴于点M,求t为何值时PM=2PQ.4.如图所示,抛物线y=x2+bx+c经过点A(2,﹣3)与C(0,﹣3),与x轴负半轴的交点为B.(1)求抛物线的解析式与点B坐标;(2)若点D在x轴上,使△ABD是等腰三角形,求所有满足条件的点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,若以A、B、M、N为顶点的四边形是平行四边形,其中AB ∥MN,请直接写出所有满足条件的点M的坐标.5.如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,A(﹣1,0)与y轴交于点C,点E(1,﹣4)为抛物线的顶点,且OD=OA.(1)求抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α﹣β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C三点为顶点的三角形与△BCE相似,若存在,请指出点P 的位置,并直接写出点P的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出△EMN并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.7.如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.8.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),与y轴交于点B(0,2),直线y=x﹣1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.9.如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)直线x=m(在A、B之间)交抛物线于M点,交直线AB于N,用m表示线段MN的长.(3)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△P AB的面积的最大值,并求出此时点P的坐标.10.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;(2)求该二次函数的解析式;(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.11.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.12.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c与x轴交于A、B两点且点B(3,0),与y 轴的负半轴交于点C,OB=OC.(1)求此抛物线的解析式;(2)在(1)的条件下,连接AC,点P为直线BC下方的抛物线上的一点,过点P作PQ∥AC交AB于点Q,交直线BC于点D,若PD=DQ,求点P的坐标.(3)在(1)的条件下,点D为该抛物线的顶点,过点C作x轴的平行线交抛物线与另一点R,过点R作RH⊥AB于点H,该抛物线对称轴右侧的抛物线上有一点M,连接DM交RH于点Q,当MQ=2RQ时,求∠MQH的度数.13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.(1)求直线AC解析式;(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y 轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.14.如图1,抛物线y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,连接BC.(1)求直线BC的解析式;(2)如图2,点P是抛物线在第一象限内的一点,作PQ∥y轴交BC于Q,当线段PQ的长度最大时,在x轴上找一点M,使PM+CM的值最小,求PM+CM的最小值;(3)抛物线的顶点为点E,连接AE,在抛物线上是否存在一点N,使得直线AN与直线AE的夹角为45度,若存在请直接写出满足条件的点N的坐标,若不存在,请说明理由.15.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点在直线x=1上.(1)求抛物线的解析式;(2)点P为第一象限内抛物线上的一个动点,过点P做PQ∥y轴交BC与点Q,当点P在何位置时,线段PQ 的长度有最大值?(3)点M在x轴上,点N在抛物线对称轴上,是否存在点M,点N,使以点M,N,C,B为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.16.如图,二次函数y=﹣+bx+c的图象经过A(﹣2,0),B(0,4)两点.(1)求这个二次函数的解析式,并直接写出顶点D的坐标;(2)若该抛物线与x轴的另一个交点为C,点P为第一象限内抛物线上一点,求P点坐标为多少时,△BCP的面积最大,并求出这个最大面积.(3)在直线CD上有点E,作EF⊥x轴于点F,当以O、B、E、F为顶点的四边形是矩形时,直接写出E点坐标.17.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(8,0)两点,与y轴交于点C,且OC=2OA,抛物线的对称轴x轴交于点D.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上位于对称轴右侧的一个动点,设点P点的横坐标为m,且S△CDP=S△ABC,求m的值;(3)K是抛物线上一个动点,在平面直角坐标系中是否存在点H,使B、C、K、H为顶点的四边形成为矩形?若存在,直接写出点H的坐标;若不存在,说明理由.18.如图,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在直线AB上,当P,Q关于原点O成中心对称时,求点Q的坐标;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.19.如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.20.如图,已知直线y=﹣x+2与两坐标轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P 的坐标,若不存在,请说明理由.21.如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)连结AC、BC,是否存在一点P,使△ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)若△P AC与△PDE相似,求点P的坐标.22.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点D(0,3).(1)求抛物线的表达式以及点B的坐标;(2)在抛物线的对称轴上是否存在一点P,使得DP+CP最小,如果存在,求出点P的坐标;如果不存在,请说明理由.(3)点Q是线段BD上方抛物线上的一个动点.过点Q作x轴的垂线,交线段BD于点E,再过点Q作QF∥x 轴交抛物线于点F,连结EF,请问是否存在点Q使△QEF为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.23.如图,抛物线y=(x+2)2+m与x轴交于A,B两点,与y轴交于点C.点D在抛物线上,且与点C关于抛物线的对称轴对称,抛物线的顶点为M,点B的坐标为(﹣1,0).(1)求抛物线的解析式及A,C,D的坐标;(2)判断△ABM的形状,并证明你的结论;(3)若点P是直线BD上一个动点,是否存在以P,C,D为顶点的三角形与△ABD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由24.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.25.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.26.已知:如图,抛物线y=x2﹣2x﹣c与x轴交于A、B两点,与y轴交于点C(0,﹣3),该抛物线的顶点为M.(1)求点A、B的坐标以及c的值.(2)求直线BM的函数解析式.(3)试说明:点C在以BM为直径的圆上.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.27.如图,直线l:y=﹣3x+8与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+9(a<0)经过点B.(1)求a的值,并写出抛物线的表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,①当点M(2,n)时,求n,并求△ABM的面积.②当点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值和此时点M的坐标.28.如图1,已知抛物线y=﹣x2+2x+c与x轴交于A、B两点,其中点A(﹣1,0),抛物线与y轴交于点C,顶点为D.(1)如图2,直线l是抛物线的对称轴,点P是直线l上一动点,是否存在点P,使△PBC是直角三角形?若存在,求点P的坐标;若不存在,说明理由.(2)如图3,连接BC,点M是直线BC上方的抛物线上的一个动点,当△MBC的面积最大时,求△MBC的面积的最大值;点N是线段BC上的一点,求MN+BN的最小值.29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0)、B(8,0)、C(0,4)三点,点D是抛物线上的动点,连结AD与y轴相交于点E,连结AC,CD.(1)求抛物线所对应的函数表达式;(2)当AD平分∠CAB时,①求直线AD所对应的函数表达式;②设P是x轴上的一个动点,若△P AD与△CAD相似,求点P的坐标.30.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点.(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当△ABP的面积为3时,求出点P的坐标;(3)过B作BC⊥OA于C,连接OB,点G是抛物线上一点,当∠BAG+∠OBC=∠BAO时,请直接写出此时点G的坐标.31.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:(3)在抛物线上存在点P,使得△APB的面积与△ACB的面积相等,求点P的坐标.32.如图1,已知抛物线;C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C(点B在点C的左侧),与y 轴交于点E.(1)求点B、点C的坐标;(2)当△BCE的面积为6时,若点G的坐标为(0,b),在抛物线C1的对称轴上是否存在点H,使得△BGH 的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.33.如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C直线y=﹣x+2经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求△PBC面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.34.如图,平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A、B两点,A左B右(AO<BO),交y轴于C,AB=10,∠ACB=90°.(1)求抛物线解析式;(2)点P在第一象限中的抛物线上,PQ⊥AB于Q,交CB于T,设P点横坐标为t,PT的长为d,求出d与t 的函数解析式;(3)在(2)条件下,过C作x轴的平行线交抛物线于D,交PQ于F,连DQ,延长CP、QD交于R点,若CR=QR,求R点坐标.35.如图,抛物线C1的图象与x轴交A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3)点D为抛物线的顶点.(1)求抛物线C1的解析式;(2)将抛物线C1关于直线x=1对称后的抛物线记为C2,将抛物线C1关于点B对称后的抛物线记为C3,点E 为抛物线C3的顶点,在抛物线C2的对称轴上是否存在点F,使得△BEF为等腰三角形?若存在请求出点F的坐标,若不存在请说明理由.36.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.37.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,求出点Q的坐标;若不存在,请说明理由.38.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)、(0,﹣3),抛物线的对称轴为x=1,D为抛物线的顶点.(1)求抛物线的解析式.(2)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.(3)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P点的坐标;若不存在,说明理由.39.已知抛物线C1:y=ax2﹣2ax﹣3a﹣2(a>0),直线l:y=﹣x+b.(1)如图1,若抛物线C1的顶点为D(1,﹣6),直线l与C1交于两点H、Q,∠HDQ=45°.①求抛物线C1的解析式;②求b的值;(2)如图2,将抛物线C1向上平移2个单位得抛物线C2,直线l与C2交于两点M、N(M在N左侧),E为MN中点,点P为y轴左侧抛物线上一动点,过E点作x轴的垂线分别交直线MP、NP、抛物线C2于G、F、H,求线段FH与GH的数量关系.40.如图,抛物线的顶点P(m,1)(m>0),与y轴的交点C(0,m2+1).(1)求抛物线的解析式(用含m的式子表示)(2)点N(x,y)在该抛物线上,NH⊥直线y=于点H,点M(m,)且∠NMH=60°.①求证:△MNH是等边三角形;②当点O、P、N在同一直线上时,求m的值.41.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE的最大值;②当DE=AD时,求m的值.42.如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.(1)求b和c的值;(2)点P是直线AC下方的抛物线上的一动点,连结P A,PB.求△P AB的最大面积及点P到直线AC的最大距离;(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.43.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点在直线x=1上.(1)求抛物线的解析式;(2)点P为第一象限内抛物线上的一个动点,过点P做PQ∥y轴交BC于点Q,求线段PQ长度的最大值,及此时点P的坐标;(3)点M在x轴上,点N在抛物线的对称轴上,若以点M,N,C,B为顶点的四边形是平行四边形,请直接写出点M的坐标.44.如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,顶点为D.(1)写出A、B、D三点的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.45.如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P 在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.46.如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.47.如图,直线y=x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠P AB与△AOB的一个内角相等时,直接写出点P的坐标.48.如图,抛物线y=﹣+bx+c交x轴于点A、B(A在B左侧),交y轴于点C,直线y=﹣x+6经过点B、C.(1)求抛物线解析式;(2)点P为第一象限抛物线上一点,连接P A交BC于点D,设点P的横坐标为t,的值为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E为线段OB上一点,连接CE,过点O作CE的垂线交BC于点G,连接PG并延长交OB于点F,若∠OGC=∠BGF,F为BE中点,求t的值.49.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)点A的坐标为,点B的坐标为.(2)①求抛物线的解析式;②直线AB与抛物线的对称轴交于点E,在x轴上是否存在点M,使得ME+MB最小,求出点M的坐标.(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是等腰三角形?直接写出所有符合条件的t值.50.定义:在平面直角坐标系中,如果点M(m,n)和N(n,m)都在某函数的图象l上,则称点M、N是图象l 的一对“相关点”.例如,点M(1,2)和点N(2,1)是直线y=﹣x+3的一对相关点.(1)请写出反比例函数y=的图象上的一对相关点的坐标;(2)如图,抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).①求抛物线的解析式;②若点M、N是抛物线y=x2+bx+c上的一对相关点,直线MN与x轴交于点A(1,0),点P为抛物线上M、N 之间的一点,求△PMN面积的最大值.。

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。

人教版2021年中考数学考前冲刺必刷高频考题精准提升练习(二次函数专题)

人教版2021年中考数学考前冲刺必刷高频考题精准提升练习(二次函数专题)

人教版2021年中考数学考前冲刺必刷高频考题精准提升练习(二次函数专题)建议用时:100分钟一.选择题.1.若一次函数y=kx+b(k,b是常数,且k≠0)的图象经过第一、二、四象限,则k,b应满足的条件是()A.k>0,b>0B.k<0,b>0C.k>0,b<0D.k<0,b<02. 用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为( )A.y=(x-4)2+7B.y=(x-4)2-25C.y=(x+4)2+7D.y=(x+4)2-253. 若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( )A.m>1B.m>0C.m>-1D.-1<m<04.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是( )A.m<2B.m>2C.0<m≤2D.m<-25.当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.6.如图,在等腰三角形ABC中,AB=AC=4 cm,∠B=30°,点P从点B出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1 cm/s的速度沿BAAC方向运动到点C停止.若△BPQ的面积为y(cm2),运动时间x(s),则下列最能反映y与x之间函数关系的图象是()7. 如图,已知二次函数2y x bx c =++的图象与y 轴交于点A, 与x 轴正半轴交于B,C 两点,且BC =2,ABC S ∆ =3,则b 的值为( )A.-5B.4或-4C. 4D.-48. 如图,抛物线y =x 2﹣x ﹣与直线y =x ﹣2交于A 、B 两点(点A 在点B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴 上的某点F ,最后运动到点B .若使点P 运动的总路径最短,则点P 运动的总 路径的长为( )A .B .C .D .9. 抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示, 下列判断:①abc <0;②a +b +c >0;③5a -c =0; ④当x <12 或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .410. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学压轴题二次函数与矩形问题一.解答题(共11小题)1.(2020•犍为县二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=PMDM,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.2.(2019•海州区二模)如图,一次函数y=x+3与坐标轴交于A、C两点,过A、C两点的抛物线y=ax2﹣2x+c与x轴交于另一点B,抛物线顶点为E,连接AE.(1)求该抛物线的函数表达式及顶点E坐标;(2)点P是线段AE上的一动点,过点P作PF平行于y轴交AC于点F,连接EF,求△PEF面积的最大值及此时点P的坐标;(3)若点M为坐标轴上一点,点N为平面内任意一点,是否存在这样的点,使A、E、M、N为顶点的四边形是以AE为对角线的矩形?如果存在,请直接写出N点坐标;若不存在,请说明理由.3.(2018•曲靖)如图:在平面直角坐标系中,直线l:y=13x−43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=3 2.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PF=3PE.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE ⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.4.(2018•正阳县二模)如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(﹣1,0),与y轴相交于点C,与抛物线y=﹣x2+bx+3的一交点为点D,抛物线过x轴上的AB两点,且CD=4AC.(1)求直线l和抛物线的解析式;(2)点E是直线l上方抛物线上的一动点,求当△ADE面积最大时,点E的坐标;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.5.(2016•工业园区一模)如图,已知二次函数y=m2x2﹣2mx﹣3(m是常数,m>0)的图象与x轴分别相交于点A、B(点A位于点B的左侧),与y轴交于点C,对称轴为直线l.点C关于l的对称点为D,连接AD.点E为该函数图象上一点,AB平分∠DAE.(1)①线段AB的长为.②求点E的坐标;(①、②中的结论均用含m的代数式表示)(2)设M是该函数图象上一点,点N在l上.探索:是否存在点M.使得以A、E、M、N为顶点的四边形是矩形?如果存在,求出点M坐标;如果不存在,说明理由.6.(2018秋•南浔区期末)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a (x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=13,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m 的取值范围.(3)经过点B 的直线l :y =kx +b 与y 轴正半轴交于点C .与抛物线的另一个交点为点D ,且CD =4BC .若点P 在抛物线对称轴上,点Q 在抛物线上,以点B ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.7.(2018•太原一模)综合与探究:如图1,抛物线y =−√33x 2+23√3x +√3与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点.经过点A 的直线l 与y 轴交于点D (0,−√3).(1)求A 、B 两点的坐标及直线l 的表达式;(2)如图2,直线l 从图中的位置出发,以每秒1个单位的速度沿x 轴的正方向运动,运动中直线l 与x 轴交于点E ,与y 轴交于点F ,点A 关于直线l 的对称点为A ′,连接F A ′、BA ′,设直线l 的运动时间为t (t >0)秒.探究下列问题:①请直接写出A ′的坐标(用含字母t 的式子表示);②当点A ′落在抛物线上时,求直线l 的运动时间t 的值,判断此时四边形A ′BEF 的形状,并说明理由;(3)在(2)的条件下,探究:在直线l 的运动过程中,坐标平面内是否存在点P ,使得以P ,A ′,B ,E 为顶点的四边形为矩形?若存在,请直接写出点P 的坐标; 若不存在,请说明理由.8.(2018•琼中县二模)如图,已知抛物线y =12x 2+bx +c 与直线AB :y =−12x +12相交于点A(1,0)和B (t ,52),直线AB 交y 轴于点C . (1)求抛物线的解析式及其对称轴;(2)点D 是x 轴上的一个动点,连接BD 、CD ,请问△BCD 的周长是否存在最小值?若存在,请求出点D 的坐标,并求出周长最小值;若不存在,请说明理由.(3)设点M 是抛物线对称轴上一点,点N 在抛物线上,以点A 、B 、M 、N 为顶点的四边形是否可能为矩形?若能,请求出点M 的坐标,若不能,请说明理由.9.(2020秋•姑苏区期中)如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若△BCQ 是以BC 为直角边的直角三角形,求点Q 的坐标;(3)若P 为BD 的中点,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.10.(2020•宝山区二模)如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.2021年中考数学压轴题二次函数与矩形问题参考答案与试题解析一.解答题(共11小题)1.(2020•犍为县二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=PMDM,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【专题】压轴题.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=−1 2,∴y=−12(x+2)(x﹣4)或y=−12x2+x+4或y=−12(x﹣1)2+92.(2)如图1中,由题意,点P在y轴的右侧,作PE⊥x轴于E,交BC于F.∵CD ∥PE ,∴△CMD ∽△FMP ,∴m =PM DM =PF DC, ∵直线y =kx +1(k >0)与y 轴交于点D ,则D (0,1),∵BC 的解析式为y =﹣x +4,设P (n ,−12n 2+n +4),则F (n ,﹣n +4),∴PF =−12n 2+n +4﹣(﹣n +4)=−12(n ﹣2)2+2,∴m =PF CD =−16(n ﹣2)2+23,∵−16<0,∴当n =2时,m 有最大值,最大值为23,此时P (2,4).(3)存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形.①当DP 是矩形的边时,有两种情形,a 、如图2﹣1中,四边形DQNP 是矩形时,有(2)可知P (2,4),代入y =kx +1中,得到k =32,∴直线DP 的解析式为y =32x +1,可得D (0,1),E (−23,0),由△DOE ∽△QOD 可得OD OQ =OE OD ,∴OD 2=OE •OQ ,∴1=23•OQ ,∴OQ =32,∴Q (32,0). 根据矩形的性质,将点P 向右平移32个单位,向下平移1个单位得到点N , ∴N (2+32,4﹣1),即N (72,3) b 、如图2﹣2中,四边形PDNQ 是矩形时,∵直线PD 的解析式为y =32x +1,PQ ⊥PD ,∴直线PQ 的解析式为y =−23x +163, ∴Q (8,0), 根据矩形的性质可知,将点D 向右平移6个单位,向下平移4个单位得到点N , ∴N (0+6,1﹣4),即N (6,﹣3).②当DP 是对角线时,设Q (x ,0),则QD 2=x 2+1,QP 2=(x ﹣2)2+42,PD 2=13, ∵Q 是直角顶点,∴QD 2+QP 2=PD 2,∴x 2+1+(x ﹣2)2+16=13,整理得x 2﹣2x +4=0,方程无解,此种情形不存在,综上所述,满足条件的点N 坐标为(72,3)或(6,﹣3). 2.(2019•海州区二模)如图,一次函数y =x +3与坐标轴交于A 、C 两点,过A 、C 两点的抛物线y =ax 2﹣2x +c 与x 轴交于另一点B ,抛物线顶点为E ,连接AE .(1)求该抛物线的函数表达式及顶点E 坐标;(2)点P 是线段AE 上的一动点,过点P 作PF 平行于y 轴交AC 于点F ,连接EF ,求△PEF 面积的最大值及此时点P 的坐标;(3)若点M 为坐标轴上一点,点N 为平面内任意一点,是否存在这样的点,使A 、E 、M 、N 为顶点的四边形是以AE 为对角线的矩形?如果存在,请直接写出N 点坐标;若不存在,请说明理由.【专题】压轴题;数形结合;分类讨论;几何直观.【解答】解:(1)一次函数y =x +3与坐标轴交于A 、C 两点,则点A 、C 的坐标为(﹣3,0)、(0,3),将点A 、C 的坐标代入二次函数表达式得:{0=9a +6+c c =3,解得:{a =−1c =3, 故抛物线的表达式为:y =﹣x 2﹣2x +3,顶点E (﹣1,4);(2)将点A 、E 的坐标代入一次函数表达式并解得:直线AE 的表达式为:y =2x +6,设点P (x ,2x +6),则点F (x ,x +3),S △PEF =12PF ×(x E ﹣x )=12×(2x +6﹣x ﹣3)(﹣1﹣x )=−12(x +3)(x +1), 当x =﹣2时,S △PEF 有最大值为12,此时点P (﹣2,2);(3)点A 、E 的坐标分别为(﹣3,0)、(﹣1,4),AE 2=20,①当点M (m ,0)在x 轴上时,设点N (s ,t ),则AE =MN ,且AE 中点坐标为MN 中点坐标,即:{m +s =−4t =4(m −s)2+t 2=20,解得:{t =4s =−1或−3m =−3或−1,故点N (﹣3,4);②当点M 在y 轴上时,同理可得:点N (﹣4,3)或(﹣4,1);综上,点N 坐标为:N (﹣3,4)或(﹣4,3)或(﹣4,1).3.(2018•曲靖)如图:在平面直角坐标系中,直线l :y =13x −43与x 轴交于点A ,经过点A的抛物线y =ax 2﹣3x +c 的对称轴是x =32.(1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PF =3PE .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【专题】压轴题.【解答】解:(1)当y =0时,13x −43=0,解得x =4,即A (4,0),抛物线过点A ,对称轴是x =32,得{16a −12+c =0−−32a =32, 解得{a =1c =−4,抛物线的解析式为y =x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y =13x .∵点P 是直线m 上任意一点,∴设P (3a ,a ),则PC =|3a |,PB =|a |.又∵PF =3PE ,设PB =n ,PC =3n ,PE =m ,PF =3m ,则CF =√9m 2−9n 2=3√m 2−n 2,BE =√m 2−n 2,∴PC PB =PF PE =FC EB =3,∵∠PCF =∠PBE =90°,∴△PCF ∽△PBE ,∴∠FPC =∠EPB .∵∠CPE +∠EPB =90°,∴∠FPC +∠CPE =90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE =6﹣a .∵CF =3BE =18﹣3a ,∴OF =20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴Q x +P x 2=F X +E x 2,Q y +P y 2=F y +E y 2,∴Q x +6=0+a ,Q y +2=20﹣3a +0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a =(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a =4或a =8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE =a ﹣6.∵CF =3BE =3a ﹣18,∴OF =3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形,∴Q x +P x 2=F X +E x 2,Q y +P y 2=F y +E y 2,∴Q x +6=0+a ,Q y +2=20﹣3a +0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a =(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a =8或a =4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).4.(2018•正阳县二模)如图,在平面直角坐标系中,直线l :y =kx +h 与x 轴相交于点A (﹣1,0),与y 轴相交于点C ,与抛物线y =﹣x 2+bx +3的一交点为点D ,抛物线过x 轴上的AB 两点,且CD =4AC .(1)求直线l 和抛物线的解析式;(2)点E 是直线l 上方抛物线上的一动点,求当△ADE 面积最大时,点E 的坐标;(3)设P 是抛物线对称轴上的一点,点Q 在抛物线上,四边形APDQ 能否为矩形?若能,请直接写出点P 的坐标;若不能,请说明理由.【专题】压轴题.【解答】解:(1)将A(﹣1,0)代入y=﹣x2+bx+3,得b=2,所以抛物线的解析式为y=﹣x2+2x+3,过点D作DF⊥x轴于点F,如图1易证△AOC∽△AFD,∴ACAD =AOAF,∵CD=4AC,∴ACAD =AOAF=15,∴点D横坐标为4,把x=4代入y=﹣x2+2x+3,得y=﹣5,∴D(4,﹣5),把x=4,y=﹣5;x=﹣1,y=0代入y=kx+h,解得k=﹣1,h=﹣1,∴直线l的解析式为y=﹣x﹣1.(2)过点E 作EM ⊥x 轴,交AD 于点M ,如图2设点E (m ,﹣m 2+2m +3),则M (m ,﹣m ﹣1),∴EM =﹣m 2+2m +3﹣(﹣m ﹣1)═﹣m 2+3m +4,∴S △ADE =12•EM •(x D ﹣x A )=12×5(﹣m 2+3m +4)=−52m 2+152m +10,当m =32时,△ADE 的面积最大,此时,E (32,154).(3)不存在理由如下:如图3中,设P (1,m ),不妨设四边形APDQ是矩形,AD交PQ于M,则M(1.5,−5 2),由题意AM=DM=PM=5√2 2,∴(1﹣1.5)2+(m+52)2=(5√22)2,解得m=1或﹣6,∴P(1,1)或(1,﹣6),∵PM=MQ,∴Q(2,﹣6)或(2,1),∵x=2时,y=3,∴点Q不在抛物线上,∴四边形APDQ不能为矩形.5.(2016•工业园区一模)如图,已知二次函数y=m2x2﹣2mx﹣3(m是常数,m>0)的图象与x轴分别相交于点A、B(点A位于点B的左侧),与y轴交于点C,对称轴为直线l.点C关于l的对称点为D,连接AD.点E为该函数图象上一点,AB平分∠DAE.(1)①线段AB的长为4m.②求点E的坐标;(①、②中的结论均用含m的代数式表示)(2)设M是该函数图象上一点,点N在l上.探索:是否存在点M.使得以A、E、M、N为顶点的四边形是矩形?如果存在,求出点M坐标;如果不存在,说明理由.【专题】压轴题.【解答】解:(1)①令y=0,则(mx﹣3)(mx+1)=0,∴x=−1m或x=3m,∴A(−1m,0),B(3m,0),故答案为4m;②∵二次函数y=m2x2﹣2mx﹣3,∴C(0,﹣3),对称轴l:x=1 m,∴D(2m,﹣3)∵AB平分∠DAE,∴点D关于x轴的对称点Q(2m,3)在直线AE上,∴直线AE的解析式为y=mx+1,∵点E是抛物线和直线AE的交点,∴E(4m,5).(2)设M(x,m2x2﹣2mx﹣3),N(1m,a)∵A(−1m,0),E(4m,5).以A、E、M、N为顶点的四边形是矩形,①以AE,MN为对角线时,AE,MN的中点重合,∴−1m+4m=x+1m,∴x=2 m,∴M(2m,﹣3),∵MA2+ME2=AE2,∴9m2+9+4m2+64=25m2+25,∴m=−12(舍),或m=12,∴M(4,﹣3),②以AN,ME为对角线时,AN,ME的中点重合,∴−1m+1m=x+4m,∴M(−4m,21),∵AE2+AM2=ME2,∴25m2+25+92+441=642+256,∴m=17(舍)或m=17∴M(−4√7,21),③以AM,NE为对角线时,∴AM,NE的中点重合,∴x+(−1m)=1m+4m,∴x=6 m,∴M(6m,21),∵AE2+EM2=AM2,∴25m +25+4m2+256=49m2+441,此方程无解,即:存在,M(4,﹣3)或M(−4√7,21).6.(2018秋•南浔区期末)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a (x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=13,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.【专题】压轴题;创新意识.【解答】解:(1)y =a (x +3)(x ﹣1),令y =0,则x =1或﹣3,故点A 、B 的坐标分别为:(﹣3,0)、(1,0);(2)抛物线的表达式为:y =13(x +3)(x ﹣1)…①,当∠MAO =45°时,如图所示,则直线AM 的表达式为:y =x …②,联立①②并解得:m =x =4或﹣3(舍去﹣3),故点M (4,7);②∠M ′AO =45°时同理可得:点M (﹣2,﹣1);故:﹣2≤m ≤4;(3)①当BD 是矩形的对角线时,如图2所示,过点Q 作x 轴的平行线EF ,过点B 作BE ⊥EF ,过点D 作DF ⊥EF ,抛物线的表达式为:y =ax 2+2ax ﹣3a ,函数的对称轴为:x =﹣1,抛物线点A 、B 的坐标分别为:(﹣3,0)、(1,0),则点P 的横坐标为:﹣1,OB =1, 而CD =4BC ,则点D 的横坐标为:﹣4,故点D (﹣4,5a ),即HD =5a ,线段BD 的中点K 的横坐标为:−4+12=−32,则点Q 的横坐标为:﹣2,则点Q (﹣2,﹣3a ),则HF =BE =3a ,∵∠DQF +∠BQE =90°,∠BQE +∠QBE =90°,∴∠QBE =∠DQF ,∴△DFQ ∽△QEB ,则DF QE=FQ BE,8a 3=23a,解得:a =±12(舍去负值),同理△PGB ≌△DFQ (AAS ),∴PG =DF =8a =4,故点P (﹣1,4); ②如图3,当BD 是矩形的边时,作DI ⊥x 轴,QN ⊥x 轴,过点P 作PL ⊥DI 于点L , 同理△PLD ≌△BNQ (AAS ),∴BN =PL =3, ∴点Q 的横坐标为4,则点Q (4,21a ), 则QN =DL =21a ,同理△PLD ∽△DIB , ∴PL DI=LD BI,即35a=21a 5,解得:a =±√77(舍去负值),LI =26a =26√77,故点P (﹣1,26√77),; 综上,点P 的坐标为:P (﹣1,4)或(﹣1,26√77).7.(2018•太原一模)综合与探究: 如图1,抛物线y =−√33x 2+23√3x +√3与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点.经过点A 的直线l 与y 轴交于点D (0,−√3). (1)求A 、B 两点的坐标及直线l 的表达式;(2)如图2,直线l 从图中的位置出发,以每秒1个单位的速度沿x 轴的正方向运动,运动中直线l 与x 轴交于点E ,与y 轴交于点F ,点A 关于直线l 的对称点为A ′,连接F A ′、BA ′,设直线l 的运动时间为t (t >0)秒.探究下列问题: ①请直接写出A ′的坐标(用含字母t 的式子表示);②当点A ′落在抛物线上时,求直线l 的运动时间t 的值,判断此时四边形A ′BEF 的形状,并说明理由;(3)在(2)的条件下,探究:在直线l 的运动过程中,坐标平面内是否存在点P ,使得以P ,A ′,B ,E 为顶点的四边形为矩形?若存在,请直接写出点P 的坐标; 若不存在,请说明理由.【专题】综合题.【解答】解:(1)当y =0时,−√33x 2+23√3x +√3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0),设直线l 的解析式为y =kx +b ,把A (﹣1,0),D (0,−√3)代入得{−k +b =0b =−√3,解得{k =−√3b =−√3,∴直线l 的解析式为y =−√3x −√3; (2)①作A ′H ⊥x 轴于H ,如图2, ∵OA =1,OD =√3, ∴∠OAD =60°, ∵EF ∥AD , ∴∠AEF =60°,∵点A 关于直线l 的对称点为A ′, ∴EA =EA ′=t ,∠A ′EF =∠AEF =60°,在Rt △A ′EH 中,EH =12EA ′=12t ,A ′H =√3EH =√32t , ∴OH =OE +EH =t ﹣1+12t =32t ﹣1, ∴A ′(32t ﹣1,√32t ); ②把A ′(32t ﹣1,√32t )代入y =−√33x 2+23√3x +√3得−√33(32t ﹣1)2+2√33(32t ﹣1)+√3=√32t ,解得t 1=0(舍去),t 2=2,∴当点A ′落在抛物线上时,直线l 的运动时间t 的值为2; 此时四边形A ′BEF 为菱形,理由如下:当t =2时,A ′点的坐标为(2,√3),E (1,0), ∵∠OEF =60°∴OF =√3OE =√3,EF =2OE =2, ∴F (0,√3), ∴A ′F ∥x 轴,∵A ′F =BE =2,A ′F ∥BE , ∴四边形A ′BEF 为平行四边形, 而EF =BE =2,∴四边形A ′BEF 为菱形; (3)存在.当A ′B ⊥BE 时,四边形A ′BEP 为矩形,则32t ﹣1=3,解得t =83,则A ′(3,4√33), ∵OE =t ﹣1=53, ∴此时P 点坐标为(53,4√33); 当A ′B ⊥EA ′,如图4,四边形A ′BPE 为矩形, 作A ′Q ⊥x 轴于Q , ∵∠AEA ′=120°, ∴∠A ′EB =60°, ∴∠EBA ′=30° ∴BQ =√3A ′Q =√3•√32t =32t , ∴32t ﹣1+32t =3,解得t =43, 此时A ′(1,2√33),E (13,0),点A ′向左平移23个单位,向下平移2√33个单位得到点E ,则点B (3,0)向左平移23个单位,向下平移2√33个单位得到点P ,则P (73,−2√33), 综上所述,满足条件的P 点坐标为(53,4√33)或(73,−2√33).8.(2018•琼中县二模)如图,已知抛物线y =12x 2+bx +c 与直线AB :y =−12x +12相交于点A (1,0)和B (t ,52),直线AB 交y 轴于点C .(1)求抛物线的解析式及其对称轴;(2)点D 是x 轴上的一个动点,连接BD 、CD ,请问△BCD 的周长是否存在最小值?若存在,请求出点D 的坐标,并求出周长最小值;若不存在,请说明理由.(3)设点M 是抛物线对称轴上一点,点N 在抛物线上,以点A 、B 、M 、N 为顶点的四边形是否可能为矩形?若能,请求出点M 的坐标,若不能,请说明理由.【专题】压轴题.【解答】解:(1)对于y =−12x +12, 令y =52得x =﹣4,∴B (﹣4,52).分别把A (1,0)和B (﹣4,52)代入y =12x 2+bx +c ,得 {12+b +c =08−4b +c =52解得{b =1c =−32,则该抛物线解析式为:y =12x 2+x −32, ∵−b2a=−1, ∴对称轴为直线x =﹣1;(2)直线AB :y =−12x +12相交于点C (0,12),作点C 关于x 轴的对称点C ′,则C ′(0,−12),连接BC ′交x 轴于点D ,根据“两点之间线段最短”可得BD +CD 的和最小, 从而△BCD 的周长也最小, ∵B (﹣4,52),C ′(0,−12),∴直线BC ′的解析式为y =−34x −12. 令y =0,可得x =−23, ∴D (−23,0),∴当△BCD 的周长最小时,点D 的坐标为(−23,0),最小周长=BC +BC ′=√(−4−0)2+(52+12)2+√(−4−0)2+(52−12)2=5+2√5; (3)①若AB为四边形的边长,作AE⊥AB,交y轴于点E,又OA⊥CE,∴△AOC∽△EOA,∴OE=2OA=2,∴E(0,﹣2)∴直线AE为y=2x﹣2,令2x﹣2=12x2+x−32,解得x1=x2=1,∴直线AE与抛物线只有一个交点为A,∴不存在满足题意的矩形;②若AB为四边形的对角线,当四边形是平行四边形时,对角线互相平分,有x A+x B=x M+x N,即:1+(﹣4)=﹣1+x N,解得x N=﹣2.把x N=﹣2代入y=12x2+x−32,得y N =−32,由y A +y B =y M +y N 得:y M =4, ∴M (﹣1,4),N (﹣2,−32), 此时MN =√1+(112)2=5√52,AB =√52+(52)2=5√52, ∴MN =AB ,∴平行四边形AMBN 为矩形, 综上,能为矩形,M (﹣1,4).9.(2020秋•姑苏区期中)如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD . (1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若△BCQ 是以BC 为直角边的直角三角形,求点Q 的坐标;(3)若P 为BD 的中点,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.【专题】代数几何综合题;推理能力.【解答】解:(1)∵抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点, ∴{−1−b +c =0−9+3b +c =0, 解得,{b =2c =3,∴经过A ,B ,C 三点的抛物线的函数表达式为y =﹣x 2+2x +3. (2)如图1,连接BC ,CD .由题意,C(0,3),B(3,0),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°∵y=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),∵△BCQ是以BC为直角边的直角三角形,当∠Q′BC=90′时,∠ABQ′=45°,∴EB=EQ′=2,∴Q′(1,﹣2),当∠QCB=90°时,此时点Q与点D重合,Q(1,4),综上所述,满足条件的点Q的坐标为(1,4)或(1,﹣2).(3)如图2中,设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F 、M 、N 、G 为顶点的四边形是正方形, ∴FM =MG ,即|2﹣a |=|﹣a 2+2a +3|, 当2﹣a =﹣a 2+2a +3时, 整理得,a 2﹣3a ﹣1=0, 解得,a =3±√132, 当2﹣a =﹣(﹣a 2+2a +3)时, 整理得,a 2﹣a ﹣5=0, 解得,a =1±√212, ∴当以F 、M 、N 、G 为顶点的四边形是正方形时,点M 的坐标为(3+√132,0),(3−√132,0),(1+√212,0),(1−√212,0). 10.(2020•宝山区二模)如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值;(3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.【专题】分类讨论;方程思想;函数的综合应用;运算能力;推理能力.【解答】解:(1)当y=ax2﹣2ax﹣3a=a(x+1)(x﹣3),得A(﹣1,0),B(3,0),∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3−ka=−1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(2)如图1,过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=12(ax2﹣3ax﹣4a)(x+1)−12(ax2﹣3ax﹣4a)x=12(ax2﹣3ax﹣4a)=12a(x−32)2−258a,∴△ACE的面积的最大值═258a,∵△ACE的面积的最大值为5 4,∴−258a=54,解得a=−2 5;(3)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=﹣1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①如图2,若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),∴m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,即a2=1 7,∵a<0,∴a=−√7 7∴P(1,−26√7 7);②如图3,若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),∴m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,即a2=1 4,∵a<0,∴a=−1 2,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,−26√77)或(1,﹣4).。

相关文档
最新文档