(高中数学4-5)一 不等式

合集下载

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

9
3 .
归纳升华
1.利用三个正数的算术—几何平均不等式常处理下
面两个类型的最值: (1)求函数 y=ax2+bx的最小值,其中 ax2>0,bx>0.

y

ax2

b x

ax2

b 2x

b 2x

3
3
ax2·2bx·2bx

3 2
3 2ab2.当且仅当 ax2=2bx,即 x= 3 2ba时,等号成立.
(1)如果 a,b,c∈R,那么a+3b+c≥3 abc.(
)
(2)如果 a,b,c∈R+,那么a+3b+c≥3 abc,当且仅
当 a=b 或 b=c 时,等号成立.( )
(3)如果 a,b,c∈R+,那么 abc≤a+3b+c3,当且 仅当 a=b=c 时,等号成立.( )
(4)如果 a1,a2,a3,…,an 都是实数.那么 a1+a2
n
+…+an≥n· a1a2…an.( )
解析:(1)根据定理 3,只有在 a,b,c 都是正数才成
立.其他情况不一定成立,如 a=1,b=-1,c=-3,
a+b+c
3
3
3 =-1, abc= 3,故(1)不正确.
(2)由定理 3,知等号成立的条件是 a=b=c.故(2)不正
确.
(3)由定理 3 知(3)正确. (4)必须 a1,a2,…,an 都是正数,命题才成立. 答案:(1)× (2)× (3)√ (4)×
第一讲 不等式和绝对值不等式
1.1 不等式 1.1.3 三个正数的算术—
几何平均不等式
[知识提炼·梳理] 1.三个正数的算术—几何平均不等式 (1)如果 a1,a2,a3∈R+,则a1+a32+a3叫做这 3 个正 数的算术平均数,3 a1a2a3叫做这三个正数的几何平均数.

(必考题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(包含答案解析)

(必考题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(包含答案解析)

一、选择题1.已知函数()()1,f x ax b a b R x =++∈,当1,22x ⎡∈⎤⎢⎥⎣⎦时,设()f x 的最大值为(),M a b ,则(),M a b 的最小值为( )A .18B .14C .12D .12.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c<,则a b < D .若a b >,c d >,则ac bd >3.已知0.3log 6a =,2log 6b =,则( ) A .22b a b a ab ->+> B .22b a ab b a ->>+ C .22b a b a ab +>->D .22ab b a b a >->+4.设不等式3412x x a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a <<5.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( ) A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤6.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >7.若正实数x ,y 满足x y >,则有下列结论:①2xy y <;②22x y >;③1x y>;④11x x y<-.其中正确结论的个数为( ) A .1 B .2C .3D .48.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >09.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( )A .()0,πB .5,44ππ⎛⎫⎪⎝⎭C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ10.设实数0,0a b c >>>,则下列不等式一定正确....的是( ) A .01ab<< B .a b c c > C .0ac bc -<D .ln0ab> 11.已知实数,a b ,且a b >,则以下不等式恒成立的是( ) A .33a b >B .22a b >C .1133ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .11a b< 12.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭二、填空题13.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接)17.对任意实数x ,不等式|1|||1x x a a ++-≥-+恒成立,则实数a 的取值范围是___________. 18.若函数()()01af x ax a x =+>-在()1,+∞上的最小值为15,则函数()1g x x a x =++-的最小值为___.19.若关于x 的不等式||(,)x a b a b R +<∈的解集为{|35}x x <<,则a b -=________. 20.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________三、解答题21.解不等式:122x x -+-≤. 22.已知函数()|1|2|3|f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式23()0m m f x --<成立,求实数m 的取值范围.23.已知1a ≠且a R ∈,试比较11a-与1a +的大小. 24.求下列关于x 的不等式的解集 (1)|21|3x x +>-; (2)2|5|5x x -.25.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 26.(1)解不等式239x x -++≥; (2)若1a <,1b <,求证:1ab a b +>+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 考虑12x =,1,2的函数值的范围,运用绝对值不等式的性质,即可得到所求最小值. 【详解】 函数()()1,f x ax b a b R x=++∈,当1[2x ∈,2]时,()f x 的最大值为(,)M a b ,可得1(,)(2)|2|2M a b f a b ≥=++,11(,)()|2|22M a b f a b ≥=++,(,)(1)|1|M a b f a b ≥=++,可得1(3M a ,2)(3b M a +,)(b M a +,211124)1336333b a b a b a b ≥++++++++211124113363332a b a b a b ≥+++++---=, 即()12,2M a b ≥,即有()1,4M a b ≥,则(,)M a b 的最小值为14, 故选:B 【点睛】关键点睛:解答本题的关键是理解到最大值的含义,熟练掌握绝对值的三角不等式.2.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.3.A解析:A 【分析】容易判断出0a <,0b >,从而得出0ab <,并可得出 1221b a b aba++=<,从而得出2b a ab +>,并容易得出22b a b a ->+,从而得出结论. 【详解】因为0.3log 60a =<,2log 60b =>,所以0ab <,因为666612log 0.32log 2log 1.2log 61a b+=+⨯=<=,即21b aab +<, 又0ab <,所以2b a ab +>,又(2)(2)40b a b a a --+=->,所以22b a b a ->+,所以22b a b a ab ->+>, 故选:A. 【点睛】本题主要考查对数的换底公式,对数函数的单调性,增函数和减函数的定义,以及不等式的性质,属于中档题.4.A解析:A 【分析】根据不等式3412x x a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围. 【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立,即2431a ->,解得15a <-或47a >,当[1,2]x ∈时,令2[2,4]x t =∈, 则24[4,16]x t =∈,328[16,32]x t +=∈,所以3412x x a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立, 即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >; ②当15a <-时,281t a t ->-在[2,4]t ∈恒成立, 即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-; 综上:15a <-或47a >. 故选:A 【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题.5.A解析:A 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.6.D【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >, 对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】根据不等式的基本性质,逐项推理判断,即可求解,得到答案. 【详解】由题意,正实数,x y 是正数,且x y >, ①中,可得2xy y >,所以2xy y <是错误的; ②中,由x y >,可得22x y >是正确的; ③中,根据实数的性质,可得1xy>是正确的; ④中,因为0x x y >->,所以11x x y<-是正确的, 故选C. 【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.8.A解析:A结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y xx y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.9.D解析:D 【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案. 【详解】因为sin sin x x x x +<+成立,所以sin 0x x <, 又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D . 【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.10.D解析:D 【分析】对4个选项分别进行判断,即可得出结论. 【详解】 解:由于a >b >0,1ab>,A 错; 当0<c <1时,c a <c b ;当c =1时,c a =c b ;当c >1时,c a >c b ,故c a >c b 不一定正确,B 错;a >b >0,c >0,故ac ﹣bc >0,C 错.lnln10ab>= ,D 对;【点睛】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.11.A解析:A 【解析】 【分析】根据幂函数的单调性判断A ;令1a =,1b =-判断,B D ,根据指数函数的单调性判断C .【详解】因为()3f x x =是增函数,所以由b a >可得33b a >,选项A 正确;当1a =,1b =-时,22a b >不成立,选项B 错误;因为1y ()3x =是减函数,由a b >可得11()()33a b<,选项C 错误,1a =,1b =-时,11a b<不成立,选项D 错误,故选A . 【点睛】本题主要考查不等关系与不等式的性质,属于中档题.利用条件判断不等式是否成立主要从以下几个方面着手:(1)利用不等式的性质直接判断;(2)利用函数式的单调性判断;(3)利用特殊值判断.12.D解析:D 【解析】分析:对每一个选项逐一判断得解. 详解:对于选项A,11110,b a a b ab a b--=<∴<,所以选项A 错误. 对于选项B,因为0a b >>,对数函数2log y x =是增函数,所以22log log a b >,所以选项B 错误.对于选项C,2222()()0,a b a b a b a b -=+->∴>,所以选项C 错误.对于选项D, 因为0a b >>,指数函数1()2x y =是减函数,所以 1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确. 故答案为D.点睛:(1)本题主要考查不等式的性质和函数的性质,意在考查学生对这些知识的掌握水平.(2)比较实数的大小,一般利用作差法和作商法,本题利用的是作差法,注意函数的图像和性质的灵活运用.二、填空题13.【分析】构造函数得出函数表示为分段函数的形式并求出函数的最小值可得出实数的取值范围【详解】构造函数由题意得当时当且仅当时等号成立;当时此时函数单调递增则所以函数的最小值为因此故答案为【点睛】本题考查 解析:3m ≤【分析】构造函数()224f x x x =+-,得出()min m f x ≤,函数()y f x =表示为分段函数的形式,并求出函数()y f x =的最小值,可得出实数m 的取值范围. 【详解】构造函数()224f x x x =+-,由题意得()min m f x ≤.当2x ≤时,()()2224133f x x x x =-+=-+≥,当且仅当1x =时,等号成立; 当2x >时,()()222415f x x x x =+-=+-,此时,函数()y f x =单调递增,则()()24f x f >=.所以,函数()y f x =的最小值为()min 3f x =,因此,3m ≤,故答案为3m ≤. 【点睛】本题考查不等式恒成立问题,考查参变量分离与分类讨论思想,对于这类问题,一般转化为最值来求解,考查化归与转化思想,考查运算求解能力,属于中等题.14.【解析】试题分析:由题设知对于任意正实数xy 恒成立所以1+a+≥16由此能求出正实数a 的最小值【解答】解:∵不等式对任意正实数xy 恒成立∴对于任意正实数xy 恒成立∵∴1+a+≥16即又a >0从而故答解析:【解析】试题分析:由题设知()min 116a x y x y ⎛⎫++≥⎪⎝⎭对于任意正实数x ,y 恒成立,所以,由此能求出正实数a 的最小值.【解答】解:∵不等式116a x y x y+≥+对任意正实数x ,y 恒成立, ∴()min116a x y x y ⎛⎫++≥⎪⎝⎭ 对于任意正实数x ,y 恒成立 ∵()111a y ax x y a a x y x y ⎛⎫++=+++≥++ ⎪⎝⎭∴即)530≥ ,又a >0,min 3,9.a ≥=故答案为9点睛::本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.15.【解析】试题分析:由已知得即所以故答案为考点:不等式选讲 解析:【解析】试题分析:由已知得,2(2)4(1)0a a ∆=--++≥,即11a a ++≤,所以2111,10a a a a +≤++≤-≤≤,故答案为[1,0]-.考点:不等式选讲.16.【解析】因为所以与1的大小关系是故答案为 解析:1S >【解析】因为,,a b c R +∈,所以1a b c a b c S b c a c a b a b c a b c a b c=++>++=+++++++++,S 与1的大小关系是1S > ,故答案为1S >.17.【分析】结合绝对值三角不等式得即求即可【详解】由绝对值三角不等式得即恒成立当时去绝对值得解得故;当时此时无解综上所述故答案为:【点睛】关键点睛:本题考查由绝对值不等式恒成立求参数取值范围绝对值三角不 解析:0a ≥【分析】结合绝对值三角不等式得|1|||1x x a a ++-≥+,即求11a a +≥-+即可 【详解】由绝对值三角不等式得()()|1|||11x x a x x a a ++-≥+--=+,即11a a +≥-+恒成立,当1a ≥-时,去绝对值得11a a +≥-+,解得0a ≥,故0a ≥;当1a <-时,11a a --≥-+,此时无解,综上所述,0a ≥ 故答案为:0a ≥ 【点睛】关键点睛:本题考查由绝对值不等式恒成立求参数取值范围,绝对值三角不等式的使用,应掌握以下公式:a b a b a b +≥±≥-,使用绝对值三角不等式的目的在于,消去无关变量,如本题中的x .18.6【分析】首先利用基本不等式求函数的最小值解得的值再根据含绝对值三角不等式求函数的最小值【详解】当且仅当时即时取等号此时满足所以函数的最小值是6故答案为:6【点睛】方法点睛:本题考查基本不等式求最值解析:6【分析】首先利用基本不等式求函数的最小值,解得a 的值,再根据含绝对值三角不等式求函数()g x 的最小值.【详解】()11131f x a x a a x ⎛⎛⎫=-++≥= ⎪ -⎝⎭⎝, 当且仅当111x x -=-时,即2x =时取等号, 此时满足3155a a =⇒=,()()()51516g x x x x x =++-≥+--=,所以函数()g x 的最小值是6.故答案为:6【点睛】方法点睛:本题考查基本不等式求最值以及含绝对值不等式求最值,其中基本不等式求最值需注意一下几点:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19.【分析】利用绝对值的性质解不等式后与已知比较可求得【详解】由得即所以解得所以故答案为:【点睛】本题考查解绝对值不等式掌握绝对值的性质是解题关键 解析:5-【分析】利用绝对值的性质x a a x a <⇔-<<解不等式后与已知比较可求得,a b .【详解】由||x a b +<得b x a b -<+<,即a b x a b --<<-+,所以35a b a b --=⎧⎨-+=⎩,解得41a b =-⎧⎨=⎩,所以5a b -=-. 故答案为:5-.【点睛】本题考查解绝对值不等式,掌握绝对值的性质是解题关键.20.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-, 因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.三、解答题21.15,22⎛⎫ ⎪⎝⎭【分析】按1,2x x --的零点分区间,分类讨论转化为解一元一次不等式即可.【详解】当1x ≤时,122x x -+-<,解得1>2x ,所以112x <≤; 当12x <<时,122x x -+-<,即10-<,所以12x <<; 当2x ≥时,1+22x x --< ,解得52x <,所以522x ≤<; 综上,原不等式的解集是15,22⎛⎫⎪⎝⎭. 【点睛】本题考查绝对值不等式的求解,分类讨论去绝对值是解题的关键,考查计算求解能力,属于中档题.22.(1)(,6)(2,)-∞--+∞;(2)(1,4)-.【分析】(1)将函数()y f x =的解析式表示为分段函数,然后分3x ≤-、31x -<<、1≥x 三段求解不等式()1f x <,综合可得出不等式()1f x <的解集;(2)求出函数()y f x =的最大值max ()f x ,由题意得出2max 3()m m f x -<,解此不等式即可得出实数m 的取值范围.【详解】7,3()12335,317,1x x f x x x x x x x +≤-⎧⎪=--+=---<<⎨⎪--≥⎩. (1)当3x ≤-时,由()71f x x =+<,解得6x <-,此时6x <-;当31x -<<时,由()351f x x =--<,解得2x >-,此时21x -<<;当1≥x 时,由()71f x x =--<,解得8x >-,此时1≥x .综上所述,不等式()1f x <的解集(,6)(2,)-∞--+∞.(2)当3x ≤-时,函数()7f x x =+单调递增,则()(3)4f x f ≤-=;当31x -<<时,函数()35f x x =--单调递减,则(1)()(3)f f x f <<-,即8()4f x -<<;当1≥x 时,函数()7f x x =--单调递减,则()(1)8f x f ≤-=-.综上所述,函数()y f x =的最大值为max ()(3)4f x f =-=,由题知,2max 3()4m m f x -<=,解得14-<<m .因此,实数m 的取值范围是(1,4)-.【点睛】本题主要考查含有两个绝对值的不等式的求解,以及和绝对值不等式有关的存在性问题的求解,意在考查学生分类讨论思想的应用,转化能力和运算求解能力,属于中等题. 23.答案见解析【分析】利用“作差法”,通过对a 分类讨论即可得出. 【详解】 21(1)11a a a a-+=--. ①当0a =时,201a a=-,∴111a a =+-. ②当1a <且0a ≠时,201a a>-,∴111a a >+-. ③当1a >时,201a a<-,∴111a a <+-. 综上所述,当0a =时,111a a =+-; 当1a <且0a ≠时,111a a >+-; 当1a >时,111a a<+-. 【点睛】本题考查“作差法”比较两个数的大小、分类讨论等基础知识与基本技能方法,属于中档题.24.(1)()2,4,3⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)55,2⎡+⎢⎣⎦⎣⎦【分析】 (1)分30x -<和30x -,把绝对值的不等式转化为关于x 的不等式组求解; (2)把2|5|5x x -转化为关于x 的不等式组求解.【详解】解:(1)由|21|3x x +>-,得30x -<①,或30213x x x-⎧⎨+>-⎩②,或30213x x x -⎧⎨+<-+⎩③. 解①得3x >,解得②得233x <,解③得4x <-. |21|3x x ∴+>-的解集为()2,4,3⎛⎫-∞-⋃+∞⎪⎝⎭; (2)由2|5|5x x -,得225555x x x x ⎧--⎨-⎩①②, 解①5352x +②得552x -或552x +. 取交集,得2|5|5x x -的解集为,55,2⎡+⎢⎣⎦⎣⎦【点睛】 本题考查绝对值不等式的解法,考查分类讨论的数学思想方法与数学转化思想方法,属于中档题.25.(1)24;(2)4433a -≤≤. 【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此画出直线8y =与函数()y f x =的图象.根据等腰梯形面积公式求得所围图形的面积.(2)先求得()f x 的最小值,由此得到4211a a ≥++-,由零点分段法进行分类讨论,由此求得a 的取值范围.【详解】(1)因为()22,14,1322,3x x f x x x x -+≤-⎧⎪=-<≤⎨⎪->⎩,如图所示:直线8y =与函数()y f x =的图象所围图形是一个等腰梯形,令228x -+=,得3x =-;令228x -=,得5x =, 所以等腰梯形的面积()1484242S =⨯+⨯=. (2)要使()211f x a a ≥++-对一切实数x 成立,只须()min 211f x a a ≥++-,而()13134f x x x x x =++-≥+-+=,所以()min 4f x =,故4211a a ≥++-.①由122114a a a ⎧<-⎪⎨⎪---+≤⎩,得4132a -≤<-; ②由1122114a a a ⎧-≤≤⎪⎨⎪+-+≤⎩,得112a -≤≤; ③由12114a a a >⎧⎨++-≤⎩,得413a <≤, 故4433a -≤≤.【点睛】本小题主要考查含有绝对值的不等式的解法,考查不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于中档题.26.(1){5x x ≤-或}4x ≥;(2)见解析.【分析】(1)按照3x ≤-、32x -<<、2x ≥分类讨论,分别解不等式即可得解;(2)两边同时平方后作差可得()()22221110ab a b a b +-+=-->,即可得证.【详解】(1)当3x ≤-时,原不等式可转化为239x x ---≥解得5x ≤-;当32x -<<时,原不等式可转化为239x x -++≥,不等式不成立;当2x ≥时,原不等式可转化为239x x -++≥,解得4x ≥; 所以原不等式的解集为{5x x ≤-或}4x ≥;(2)证明:由题意()()2222111ab a b a b +-+=--, 因为1a <,1b <,所以210a -<,210b -<,所以()()22110a b -->,所以2210ab a b +-+>即221ab a b +>+, 所以1ab a b +>+.【点睛】本题考查了含绝对值不等式的求解与证明,考查了分类讨论思想和转化化归思想,属于中档题.。

2019年高中数学选修4-5《不等式选讲》附题目详解

2019年高中数学选修4-5《不等式选讲》附题目详解

2019年高中数学选修4-5《不等式选讲》最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b|≤|a|+|b|(a ,b ∈R).(2)|a -b|≤|a -c|+|c -b|(a ,b ∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b|≤c ,|ax +b|≥c ,|x -c|+|x -b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.知识点总结1.含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |.问题探究:不等式|a |-|b |≤|a ±b |≤|a |+|b |中,“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.知识点拓展柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //==扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()1231231122332222212322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na b b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫⎝⎛≥∑∑∑===n k k k nk k n k k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。

2新人教A版高中数学(选修4-5)《基本不等式》ppt课件

2新人教A版高中数学(选修4-5)《基本不等式》ppt课件
2
基本不等式
我们已 经 学 过 重 要 不等式 a b 2ab2 Nhomakorabea2
a, b R , 为了方便同学们学习下面将它 ,
以定理的形式给出并给出证明 , .
定理1
如果 a, b R, 那么a b 2ab, 当
2
2
且仅当a b时, 等号成立 .
证明 因为 a b 2 ab a b 0 , 当且仅
2 2 2
a b 时等号成立 成立 .
, 所以 , 当且仅当 a b 时 , 等号
探究 你能从几何的角度解释 定理1 吗?
A
如果把实数 , b作为线段 a 长度那么可以这样来解 释定理1 :
借助几何画板 解释定理1 .
B H
I
K
b
D
G
F
a
b
J
a
C
b
E
图 1 .1 2
以 a b 为例 , 如图 1 . 1 2 , 在正方形 a ; 在正方形 S 正方形
1设总造价为S元, AD长为x米, 试建立S关于x的函数
关系式;
2 当x为何值时S最小, 并求出这个最小值 .

2
1 设 DQ
y米 , 则
D
2
H
Q
G
x 4 xy 200 ,
从而 y 200 x 4x
2
P
N F
C B
A
M E
.
于是
2
S 4200 x 210 4 xy 80 2 y
C B
M E
2 4000 x
400000 x
2
80000 ,

高中数学 : 选修4-5 不等式选讲

高中数学  : 选修4-5  不等式选讲

解析 原不等式等价于
x 1,
1
(x 1) (2x 2) 17

1 x 1, (x 1) (2x 2) 1

x 1, (x 1) (x 2) 1,
解得x≥2或x≤-1.
5
故原不等式的解集为{x|x≤-1或x≥2}.
考法2 与绝对值有关的恒成立、存在性等求参数范 围的问题
4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________.
4-5 不等式选讲
1
聚焦核心素养
理科数学选修4-5:不 等式选讲
1.命题分析预测 从近五年的考查情况来看,选修4-5是
高考题中的选做部分,主要考查绝对值不等式的求解、
恒成立问题、存在性问题以及不等式的证明,多以解答
题的形式呈现,难度中等,分值10分.
2.学科核心素养 本章通过绝对值不等式的解法和不等 式的证明考查考生的数学运算素养,以及对分类讨论思 想和数形结合思想的应用.
上述定理还可以推广到以下两个不等式:
(1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
(2)||a|-|b||≤|a±b|≤|a|+|b|.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解法:
不等式
a>0
a=0
a<0
|x|<a
__{x_|_-__a_<__x_<_a__} _
解析
原不等式等价于
x 1, (x 1)
(x
2)
5
x 1, (x 1) (2x 2) 7

高中数学 第一讲 不等式和绝对值不等式 一 不等式 1 不等式的基本性质课件 新人教A版选修4-5

高中数学 第一讲 不等式和绝对值不等式 一 不等式 1 不等式的基本性质课件 新人教A版选修4-5

探究二 不等式性质的简单应用
[例 2] 若 a,b,c∈R,a>b,则下列不等式恒成立的是( )
A.1a<1b,
B.a2>b2
C.c2+a 1>c2+b 1
D.a|c|>b|c|
[解析] 选项 A,还需有 ab>0 这个前提条件;选项 B,当 a,b 都为负数或一正
一负时都有可能不成立,如 2>-3,但 22>(-3)2 不正确;选项 C,c2+1 1>0,因而
)
A.2 x
B.x+1
1 C.1-x
D.无法确定
解析:∵0<x<1,x+1-2 x=( x-1)2>0, ∴x+1>2 x. 又1-1 x-(x+1)=1-x2x>0,
∴1-1 x>x+1. 答案:C
∴2 x,x+1,1-1 x三个数中最大的是1-1 x.
4.已知 a+b>0,则ba2+ab2与1a+1b的大小关系是________. 解析:ba2+ab2-1a+1b=a-b2 b+b-a2 a =(a-b)b12-a12=a+ba2ba2-b2. ∵a+b>0,(a-b)2≥0.
探究一 作差法比较大小 [例 1] 若 x∈R,试比较(x+1)x2+x2+1 与x+12(x2+x+1)的大小.
[解析] ∵(x+1)x2+x2+1=(x+1)x2+x+1-x2 =(x+1)(x2+x+1)-x2(x+1). x+12(x2+x+1)=x+1-12(x2+x+1) =(x+1)(x2+x+1)-12(x2+x+1). ∴(x+1)x2+x2+1-x+12(x2+x+1)
=(x+1)(x2+x+1)-x2(x+1)-(x+1)(x2+x+1)+12(x2+x+1) =12(x2+x+1)-12(x2+x) =12>0. ∴(x+1)x2+x2+1>x+12(x2+x+1).

人教版高中数学选修4-5课件:1.1不等式.1

人教版高中数学选修4-5课件:1.1不等式.1

【解析】(1)因为a>b>0,所以a>b两边同乘以1
ab
得 a
1
>b得1
> ,
,1故正1 确.
(2)因ab为c-aab>0,c-bb>0a ,且c-a<c-b
所以
>0,
又a>bc 1>a0>,所c 1以b
,正确.
a>b ca cb
(3)由 a >,所b 以 >a0,b
cd
cd
即即aaddcd>bcb>c0且,c所d以>0ac或dd>a0bd,c><0b,或c且accddd<<0b.c0<, 0,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
3.不等式的单向性和双向性 性质(1)和(3)是双向的,其余的在一般情况下是不可逆 的.
4.注意不等式成立的前提条件 不可强化或弱化成立的条件.要克服“想当然”“显然 成立”的思维定式.如传递性是有条件的;可乘性中c的 正负,乘方、开方性质中的“正数”及“n∈N,且n≥2” 都需要注意.
类型一 作差法比较大小 【典例】设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小. 【解题探究】比较两个多项式的大小常用的方法是什 么? 提示:常用作差比较法.

新北师大版高中数学高中数学选修4-5第一章《不等关系与基本不等式》检测(答案解析)

新北师大版高中数学高中数学选修4-5第一章《不等关系与基本不等式》检测(答案解析)

一、选择题1.若a 、b 、R c ∈,且a b >,则下列不等式中一定成立的是( )A .11a b<B .ac bc ≥C .20c a b>-D .()20a b c -≥2.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <3.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则ac >bd4.已知01a <<,01c b <<<,下列不等式成立的是( ) A .b c b a c a>++ B .c c a b b a+>+ C .log log b c a a < D .b c a a >5.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >6.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a 1b> 7.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c >b -cB .(a -b )c 2>0C .a 3>b 3D .a 2>b 28.若0a b <<,则下列各式一定..成立的是( ) A .a c b c +>+B .22a b <C .ac bc >D .11a b> 9.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >10.给出以下四个命题:( ) ①若a>b ,则 11a b<; ②若ac 2>bc 2,则a>b ; ③若a>|b|,则a>b ;④若a>b ,则a 2>b 2.其中正确的是( ) A .②④B .②③C .①②D .①③11.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭12.如果a b >,那么下列不等式一定成立的是( ) A .a b >B .33a b >C .11a b< D .22a b <二、填空题13.设()23f x x x =-+-,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______.14.关于x 的不等式22a x x ->-在[]0,2上恒成立,则a 的取值范围是__________. 15.若关于x 的不等式215x a x x -+-≥-在R 上恒成立,则实数a 的取值范围为________.16.若存在实数x ,使得12-++<x x a 成立,则实数a 的取值范围为______. 17.已知不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立,则实数a 的取值范围是__________.18.若1a 2-<<,21b -<<,则-a b 的取值范围是 .19.某学习小组,调查鲜花市场价格得知,购买2支玫瑰与1支康乃馨所需费用之和大于8元,而购买4支玫瑰与5支康乃馨所需费用之和小于22元.设购买2支玫瑰花所需费用为A 元,购买3支康乃馨所需费用为B 元,则A 、B 的大小关系是______________ 20.若存在实数a 使得44max cos 3,cos 710cos 3cos 3c c a a a a ⎧⎫++++≥⎨⎬++⎩⎭成立,则实数c 的取值范围是_____.三、解答题21.已知()211f x x x =-++.(1)画出函数()f x 的图象; (2)求不等式()()1f x f x <-的解集. 22.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 23.选修4-5:不等式选讲已知函数()121f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c ∈R , 2222a cb k ++=,求()b ac +的最大值.24.当,p q 都为正数且1p q +=时,试比较代数式2()px qy +与22+px qy 的大小. 25.已知函数()12f x x a x a=-++. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()222f x m m ≥-+对任意实数x 及a 恒成立,求实数m 的取值范围.26.已知函数()|21|||2g x x x =-+++. (1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用不等式的性质证明,或者构造反例说明,即得解. 【详解】由题意可知,a 、b 、R c ∈,且a b > A .若1,2a b ==-,满足a b >,则11a b>,故本选项不正确; B .若1,2a b =-=-,满足,1a b c >=-,则ac bc <,故本选项不正确; C . 若0c,则20c a b=-,故本选项不成立;D .22,0,()0a b c a b c >≥∴-≥ 故选:D 【点睛】本题考查了利用不等式的性质,判断代数式的大小,考查了学生综合分析,转化与划归的能力,属于基础题.2.B解析:B 【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可. 【详解】 对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确; 对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>,所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确; 对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确;对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B 【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题.3.B解析:B 【分析】对于A ,C ,D 举反例即可判断,对于B ,根据不等式的性质即可判断. 【详解】解:对于A ,例如1a =,0b =,2c =,则不满足,故A 错误, 对于B ,若a b >-,则a b -<,则c a c b -<+,成立,故B 正确, 对于C ,若0c ,则不成立,故C 错误,对于D ,例如1a =,0b =,2c =-,3D =-,则不满足,故D 错误,故选:B . 【点睛】本题主要考查了不等式的性质的简单应用,要注意不等式应用条件的判断,属于基础题.4.A解析:A 【分析】由作差法可判断出A 、B 选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C 选项中不等式的正误;利用指数函数的单调性可判断出D 选项中不等式的正误. 【详解】对于A 选项中的不等式,()()()a b c b cb ac a a b a c --=++++,01a <<,01c b <<<, ()0a b c ∴->,0a b +>,0a c +>,b cb ac a∴>++,A 选项正确; 对于B 选项中的不等式,()()a cbc c a b b a b b a -+-=++,01a <<,01c b <<<, ()0a c b ∴-<,0a b +>,c c abb a+∴<+,B 选项错误; 对于C 选项中的不等式,01c b <<<,ln ln 0c b ∴<<,110ln ln b c∴<<, 01a <<,ln 0a ∴<,ln ln ln ln a ab c∴>,即log log b c a a >,C 选项错误; 对于D 选项中的不等式,01a <<,∴函数x y a =是递减函数,又c b <,所以c b a a >,D 选项错误.故选A. 【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.5.D解析:D 【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >,对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】主要利用排除法求出结果. 【详解】 对于选项A :当0a b >>时,不成立;对于选项B :当10a b >>>时,()lg 0a b -<,所以不成立; 对于选项D :当0a b >>时,不成立; 故选C . 【点睛】本题考查的知识要点:不等式的基本性质的应用,排除法的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.C解析:C 【解析】 【分析】由不等式性质及举反例逐个分析各个选项可判断正误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑥、 a>b>0 那么 n a n b(条件n N,n 2)
运用不等式性质的关键是不等号方向,条件与不等 号方向是紧密相连的。
课堂练习: 1.判断下列命题是否正确: (1) a b,c b a c(× )
(2) a b c a c b (√)
(3) a b ac2 bc2 (×) (4) a b,c d ac bd (×)
4
例4: 某居民小区要建一做八边形的休闲场所,它的主体
造型平面图是由两个相同的矩形ABCD和EFGH构成的面积
为200平方米的十字型地域.计划在正方形MNPQ上建一座
花坛,造价为每平方米4300元,在四个相同的矩形上(图
中阴影部分)铺花岗岩地坪,造价没平方米210元,再在四
个空角(图中四个三角形)上铺草坪,每平方米造价80元.
例2、 已知a>b>0,c>d>0,求证:a b
dc
练习1: 如果a>b,c>d,是否一定能得出ac>bd? . 并说明理由.
例3、若a、b、x、y∈R,则 成立的( C )
x y a (x a)( y

b b)

0

x

y

a b
A. 充分不必要条件
B. 必要不充分条件
EF
课堂练习: ⑴已知 0 x 3 ,求函数 y x(3 2x) 的最大值.
2
解∵ 0 x 3 ,∴ x 0且3 2x 0, 2
∴ x(3 2x) = 1 2x(3 2x) ≤ 1 2x 4
当且仅当 x 3 时取等号. 4
C. 充要条件
D. 既不充分也不必要条件
例4、对于实数a、b、c,判断下列命题的真假:
((12))若若ca>>ab>, b1>0,1 则,c则aaa>0,cbb<b0。((真真命命题题))
ab
例5、已知f(x)=ax2+c,且-4≤f(1)≤-1,-1≤f(2)≤5, 求f(3)的取值范围。 f(3)的取值范围是[-1, 20]

2
x

1)
=
(
x

1)2
2(
x

1 2
)2

1 2


0
∴A>B
练习.设 n 1,且 n 1, 求证: n3 1 > n2 n .
例1、求证:如果a>b>0,c>d>0,那么ac>bd。 证明:因为a>b>0, c>d>0, 由不等式的基本性质(3)可得ac>bc, bc>bd, 再由不等式的传递性可得ac>bc>bd
则 3b 2a 的最大值是_2___.5
2.已知 x 0 , y 0,且 x 2y 1,
则 u 1 1 的最小值是____3____2____2__。 xy
3.函数 y x2 8 (x 1) 的最小值为____8__.
x 1 4. 现有两个定值电阻,串联后等效电阻值为 R,并 联后等效电阻值为 r,若 R k r ,则实数 k 的取值范
(5) a c2
b c2
ab
√( )
(7) a b a2 b2 (×)
(6) a2 b2 a b (×)
(8) a b a2 b2 (√)
(9) a b 0,c d 0 a b (× ) cd
2.设A 1 2x4, B 2x3 x2(x 1),比较A.B的大小.
2
3
27
当且仅当2sin2 cos2 1 sin2 ,即sin 3
3
时取等号,此时ymax

23 9
.
求证:在表面积一定的长方体中,以正方体的体积最大.
解:设长方体的三边长 度分别为x、y、z,则长 方体的体积为
v xyz
x
而S 2xy 2xz 2yz

当且仅当 a b c 时,等号成立.
推广:对于 n 个正数 a1, a2 , a3, an,它们的算术平均值 不小于它们的几何平均值,
即 a1 a2 a3 n
an ≥ n a1 a2 a3
an
(当且仅当 a1 a2 a3 an 时取等号.)
定理:设 x, y, z 都是正数,则有 ⑴若 xyz S (定值), 则当 x y z 时, x y z 有最小值33 s. ⑵若 x y z p (定值), 则当 x y z 时, xyz 有最大值 p3 .
∴函数 y x2 3 的最小值为 2. x2 2
1 ≥2 x2 2
上面解法错在哪?
基本不等式可以用来求最值(积定和小,和定积大), 但特别要注意条件的满足:一正、二定、三相等.
⑶求函数 y x2 3 的最小值. x2 2
解:∵ y x2 3 x2 2 1 x2 2 x2 2 x2 2
当且仅当 2(x 3) 18 即 x 6 时取等号.
x3
∴函数 y 2x2 (x 3) 的最小值为 24,且当 x 6 时取得.
x3
⑶求函数 y x2 3 的最小值. x2 2
解:∵ y x2 3 x2 2 1 x2 2 x2 2 x2 2
分析: 比较大小,是作差→变形→定符号. 变形方法有二种: 1. 分解因式; 2. 配方.
解:∵A-B=1+2x4-(2x3+x2)=(2x4 2x3) (1 x2)
= 2x3(x 1) (1 x)(1 x) = (x 1)(2x3 x 1)
=
(
x

1)(
x

1)(2x2
可以用来求最值(积定和小,和定积大)
例3 求证:1.在所有周长相同的矩形中,正方形的面积最大; 2 .在所有面积相同的矩形中,正方形的周长最短。
设矩形周长为L,面积为S,一边长为x,一边长为y,
周长L=2x+2y
x
S
结论:已知x, y都是正数.
y
1. 如果积xy是定值S那么当x=y时, 和x+y有最小值2 S; 2. 如果和x+y是定值P, 那么当x=y时, 积xy有最大值1 P2
①、对称性:a b b a传递性:a__b_,_b___c__ a c
②、a b,c R,a+c>b+c ③、a>b, c 0, 那么ac>bc;
a>b,c 0,那么ac<bc
④、a>b>0,c d 0 那么,ac>bd
⑤、a>b>0,那么an>bn.(条件 n N , n )2
z
y
例2. 如图,把一块边长是a 的正方形铁片的各 角切去大小相同的小正方形,再把它的边沿着虚 线折转作成一个无盖方底的盒子,问切去的正方 形边长是多小时?才能使盒子的容积最大?
解:依 题 意有 v (a 2x)2 x (0 x a ) 2
x a
练习: 1.已知 a 0,b 0 , 2a 3b 10 ,
1.不等式的基本性质 2.基本不等式 3.三个正数的算数-几何平均不等式
1. 不等式的基本性质
两个实数大小比较:
⑴a b a b 0 ; ⑵a b a b 0 ; ⑶a b a b 0
这一结论虽很简单,却是我们推导或证 明不等式的基础.
1、不等式的基本性质:
围是_k_≥__4_.
∴函数 y x(3 2x) 的最大值为 3 2 ,当且仅当 x 3 取得.
4
4
⑵求函数 y 2x2 (x 3) 的最小值. x3
解:∵ x 3,∴ x 3 0
∴ y 2x2 2(x2 9) 18 2x 6 18
x3
x3
x3
= 2(x 3) 18 12 ≥24 x3
27
注:一正、二定、三等。
例1 求函数 y x2 (1 3x)在 [0, 1 ]上的最大值. 3
练习1:θ是锐角,求y=sinθcos2θ的最大值
解:y2 sin2 cos4 1 2sin2 cos2 cos2
2
1 ( 2sin2 cos2 cos2 )3 4 ,
(1)设总造价为S元,AD长x为米,试建立S关于x的函数关
系式; (2)当为何值时S最小,
HG
并求出这个最小值.
解:设AM=y米
Q
P
因而 4xy x2 200 y 200 - x2 D
C
4x A
B
于是S 4200x2 210 4xy 80 2 y2
M
N
0 x 10 2
1 x2 2
又∵ x2 2 ≥2 ,又∵函数 y t 1 在 t 1, 时是增函数.
t
∴当 x 0 时,函数 y x2 2 1 取得最小值 3 2 .
x2 2
2
3:三个正数的算术—几何平均不等式
类比基本不等式得
定理 3:如果 a、b、c R ,那么 a b c ≥ 3 abc , 3
2. 基本不等式
定理1:如果a,b∈R,那么a2 + b2 ≥ 2ab, 当且仅当a = b时等号成立。
几何解释
b
a b
a
b
两个正数的算术平均不小于它们的几何平均
定理2:(基本不等式)
如果a,b

0,那么a
+ 2
b
相关文档
最新文档