工程力学3—力系的平衡条件和平衡方程

合集下载

3第三章平面任意力系

3第三章平面任意力系

固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO

x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)

工程力学重点总结

工程力学重点总结

P2 刚体:在力的作用下不会发生形变的物体。

力的三要素:大小、方向、作用点平衡:物体相对于惯性参考系处于静止或作匀速直线运动。

二、静力学公理1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。

2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。

3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。

(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。

(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。

5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。

三、约束和约束反力P7 约束:1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;3光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。

工程力学第4章 力系的平衡

工程力学第4章 力系的平衡

2
即空间一般力系平衡的解析条件是力系中所有各力 在任一轴上投影的代数和为零,同时力系中各力对任一 轴力矩的代数和为零。式(4.2)称为空间一般力系的平 衡方程(equationsofequilibrium ofthreedimensionalforcesystem inspace)。 应当指出,由空间一般力系平衡的解析条件可知, 在实际应用平衡方程时,所选各投影轴不必一定正交, 且所选各力矩轴也不必一定与投影轴重合。此外,还可 用力矩方程取代投影方程,但独立平衡方程总数仍然是 6个。
30
4.3.1 有主次之分物体系统的平衡 有主次之分的物体系统,其荷载传递规律是:作用 在主要部分上的荷载,不传递给相应的次要部分,也不 传递给与它无关的其他主要部分;而作用在次要部分上 的荷载,一定要传递给与它相关的主要部分。
31
32
据此,先分析次要部分BD,其受力图如图4.11(b) 所示。建立图示参考系Oxy,列平衡方程并求解。由于 本题只要求出D处的约束反力,而不必要求出B处的约 束反力,故
12
13
建立参考系 Bxy,列平衡方程,求未知力。
14
15
例4.ቤተ መጻሕፍቲ ባይዱ 图4.5所示为一管道支架,其上搁有管道,设 每一支架所承受的管重G1=12kN,G2=7kN,且架重不计。 求支座A和C处的约束反力,尺寸如图所示。
16
17
解 取刚架AB为研究对象,其上所受力有:已知的 集中力F、集度为q的均布荷载,集中力偶;未知的3个 约束反力FAx,FAy,MA。刚架AB的受力图如图4.6(b) 所示。各力组成一平面一般力系。建立图示Oxy坐标系, 列平衡方程求解
9
2.平面一般力系平衡方程的其他形式 (1)二矩式平衡方程

工程力学教学课件 第3章 平面任意力系

工程力学教学课件 第3章 平面任意力系

A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2

面 任
F1
A1
F2
O A n A2
M O FR'
O

Fn

系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )

此时还可进一步简化为一合力。


FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45

工程力学:第三章 空间问题的受力分析

工程力学:第三章 空间问题的受力分析

。CDB平面与水平
面间的夹角
,物重
。如起重杆的重量不计,试求
起重杆所受的压力和绳子的拉力。
解:取起重杆AB与 重物为研究对象。
取坐标轴如图所示。 由已知条件知:
列平衡方程 解得
§3-3 力对轴的矩 力F对z轴的矩就是分力Fxy 对点O的矩, 即
力对轴的矩是力使刚体绕该 轴转动效果的度量、是一个 代数量。
空间力偶系平衡的必要和充分条件是:该力偶系的合力偶矩等 于零,亦即所有力偶矩矢的矢量和等于零,即
由上式,有 欲使上式成立,必须同时满足
空间力偶系未知量)
空间力偶系平衡的必要和充分条件为:该力偶系中所有各力偶 矩矢在三个坐标轴上投影的代数和分别等于零。
§3-5 空间任意力系的平衡方程
可将上述条件写成空间任意力系的平衡方程
注:1.与平面力系相同,空间力系的平衡方程也有其它的形式。 2.六个独立的平衡方程,求解六个未知量。 3.可以从空间任意力系的普遍平衡规律中导出特殊情况的 平衡规律,例如空间平行力系、空间汇交力系和平面任意 力系等平衡方程。
例:设物体受一空间平行力系作用。 令z轴与这些力平行,则
绝对值: 该力在垂直于该轴的平面上的投影对于 这个平面与该轴的交点的矩的大小。
正负号: 从z轴正端来看,若力的这个投影使物体绕该轴 按逆时针转向转动,则取正号,反之取负号。
也可按右手螺旋规则来确定其正负号,如图所 示,姆指指向与z轴一致为正,反之为负。
当力与轴在同一平面时,力对该轴的矩等于零:
(1)当力与轴相交时 (此时h=0);
(三个方程,可 求解三个未知量)
空间汇交力系平衡的必要和充分条件为:该力系中所有各力 在三个坐标轴上的投影的代数和分别等于零。

工程力学1-4章

工程力学1-4章
为保持体系几何不变并不需要的约束叫多余约束。一个平面体系, 通常都是由若干个构件加入一定约束组成的。加入约束的目的是为
了减少体系的自由度。如果在体系中增加一个约束,
而体系的自由度并不因此而减少,则该约束被称为多余约束。 多余约束只说明为保持体系几何不变是多余的,在几何体系中增设多余约束, 可改善结构的受力状况,并非真是多余。
首先以地基及杆AB为二刚片,由铰A和链杆1联结, 链杆l延长线不通过铰A,
组成几何不变部分,见图12-17b。以此部分作为一刚片,杆CD作为另一刚片,
用链杆2、3及BC链杆(联结两刚片的链杆约束,必须是两端分别连接在所研究 的两刚片上)连接。三链杆不交于一点也不全平行,符合两刚片规则,
故整个体系是无多余约束的几何不变体系。
铰用小圆圈作为符号。
(2)刚结点 被连接的杆件在连接处既不能相对移动,又不能相对转动 。
4.用符号表示理想化的支座
结构与基础或其他支承物的连接区称为支座。按照杆件受力、位移的特点, 平面杆件结构实际的支座经常简化为四种理想化的支座,
1)链杆支座
2)铰支座
3)定向支座
4)固定支座
5、荷载的简化 结构构件的自重、楼面上人群或各种物品的重量、厂房中设备的重量、
(2)、单铰(即连接两个刚片的铰) 一个单铰为两个约束;
(3)、复铰约束(如图12—3,连接多于两个刚片的铰) 连接n个刚片的复铰相当于(n-1)个单铰(n为刚片数)约束;
(4).刚结点,刚结点为三个约束。
(5),、刚性复铰、连接n个刚片的复铰相当于(n-1)个单铰(n为刚片数)约束;
图12-3
2.必要约束、多余约束:为保持体系几何不变必须有的约束叫必要约束;
R
3.平面一般力系平衡方程的其它形式

工程力学-力系的平衡

工程力学-力系的平衡
注意:刚体系统中如果每个刚体的平衡方程 全部列出,则整体的平衡方程就成为恒等式, 不再提供独立的方程。
3.注意利用矩形式的平衡方程,可通过选择适当 的矩心使得方程中尽量少出现未知力。
31
所研究的对象受平面力偶系——1个独立方程
13
例题
例题1
§7 力系的平衡
求一端固支、一端自由的梁(悬臂
q
梁)固支端的约束力。
A
B
解:取AB为分离体,画出受力图。
l
均布载荷(同向平行力系)合力为 Q
n
由 Fix 0 i1
FAx 0
A FAy
MA
FAx
B
Q
n
由 Fiy 0
FAy Q 0 FAy Q ql (↑)
27
从此题的求解过程可见,对多个刚体组成的物体系
统,可以通过分别取每个刚体(或几个刚体一起)
为分离体、列平衡方程,从而解出全部未知约束力。
可由平衡方程求出全部未知力的物
P
B
体系统称为静定系统
q
若物体系统全部独立的平衡方
D
E 程个数仍少于未知力个数——
A
则该系统称为静不定(或超 C
静定)系统
——将在变形体静力学中研究
(2)平衡力系——即零力系,力系的主矢和主矩 均为零。
2
§7 .1 力系的平衡条件及平衡方程
平衡力系所要满足的条件称为力系的平衡条件;
力系平衡条件的数学表达式称为平衡方程;
1.空间力系的平衡方程
任意空间力系平衡的充要条 件是:力系的主矢 FR
和对任一确定点O的主矩
n
M
全为零。
O
即 FR Fi 0
FEy
l

3平面力系的平衡方程

3平面力系的平衡方程
第三章 力系的平衡条件与平衡方程
§3-1 平面任意力系的平衡条件 和平衡方程
平面任意力系平衡的充要条件是:FR 0 M o 0
因为
F R
(
F x
)2
(
F y
)2
M O
M
O
(
F i
)
所以有:
Fx Fy
0 0
M o 0
平面任意力系平衡方程的三种形式
一般式 二矩式
F x
0
F y
0
M A 0
2 fs
已知:物块重P, 鼓轮重心位于 O1 处,闸杆重量不计, fs , 各尺寸如图所示:
求: 制动鼓轮所需铅直力F。
O1
解:分别取闸杆与鼓轮为研究对象 设鼓轮被制动处于平衡状态
对鼓轮, M O1 0 rFT RFs 0
对闸杆,MO 0 且 Fs fs FN
Fa FN b Fsc 0
FR l2 R2
取轮,画受力图:
Fix 0
Fox FA sin 0
Fox
FR l2 R2
Fiy 0 Foy FA cos 0 Foy F
Mo 0 FA cos R M 0 M FR
§3-3 物体系的平衡·静定和超静定问题
已知: F=20kN, q=10kN/m, M 20kNm, L=1m; 求: A,B处的约束力.
Fy 0 FA FB FN 0
M A 0
F
(a
b 2
)
FB
d
FBN
b
0
FA fs FAN
FB fs FBN
解得: a b
2 fs
则:挺杆不被卡住时,a
b 2 fs
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fyi 0 M O ( Fi ) 0 Fxi 0
即:平面任意力系平衡的解析条件是:力系中所有各 力在其作用面内两个任选的坐标轴上投影的代数和分 别等于零,所有各力对任一点之矩的代数和等于零。 上式称为平面任意力系的平衡方程。
例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。

2 平面力偶系的平衡条件
所谓力偶系的平衡,就是合力偶的矩等于零。因此, 平面力偶系平衡的必要和充分条件是:所有各力偶矩 的代数和等于零,即 n
M
i 1
i
0
思考: 从力偶理论知道,一
M
O R
力不能与力偶平衡。图示轮 子上的力 P 为什么能与 M 平 衡呢?
P
[例3] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1 m2 m3 m4 15Nm ,求工件的 总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶矩为
M m1 m2 m3 m4 4( 15) 60Nm
由力偶只能与力偶平衡的性质, 力NA与力NB组成一力偶。
根据平面力偶系平衡方程有: N B 0.2 m1 m2 m3 m4 0
N B
60 300N 0.2
N A N B 300 N
解: ①选碾子为研究对象
②取分离体画受力图 ∵当碾子刚离地面时NA=0,拉力F最大,
这时拉力F和自重及支反力NB构成一平衡力系。
由平衡的几何条件,力多边形封闭,故
F Ptg
NB P cos
r 2 (r h) 2 0.577 又由几何关系: tg r h
所以
F=11.5kN , NB=23.1kN
第3章 力系的平衡条件与平衡方程
1 平面汇交力系的平衡条件与平衡方程 2 平面力偶系的平衡条件与平衡方程
3 平面任意力系的平衡条件与平衡方程
4 简单的刚体系统平衡问题 5 考虑摩擦时的平衡问题 6 结论与讨论
1 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:
第3章 力系的平衡条件与平衡方程
受力分析的最终的任务是确定作用在构件上的所有未知力, 作为对工程构件进行强度设计、刚度设计与稳定性设计的基础。 本章将在平面力系简化的基础上,建立平衡力系的平衡条件 和平衡方程。并应用平衡条件和平衡方程求解单个构件以及由 几个构件所组成的系统的平衡问题,确定作用在构件上的全部 未知力。此外本章的最后还将简单介绍考虑摩擦时的平衡问题。 “平衡”不仅是本章的重要概念,而且也工程力学课程的重要 概念。对于一个系统,如果整体是平衡的,则组成这一系统的 每一个构件也平衡的。对于单个构件,如果是平衡的,则构件 的每一个局部也是平衡的。这就是整体平衡与局部平衡的概念。
[例4] 图示结构,已知M=800N.m,求A、C两点的约束反力。
M AC RC d 0.255RC ( N.m)
M
i
0
M AC M 0
RC 3137N
3 平面任意力系的平衡条件和平衡方程
3.1 平衡条件
平面任意力系平衡的必要与充分条件是:力系 的主矢和对任一点的主矩都等于零。即
m Pb sin FAy a m P sin (a b) FB a
A
m
B C FB
FAy
例题3
悬臂式吊车结构中 AB为吊车大梁, BC为钢索, A 、处为固定铰链支座, B 处为铰链约束。已知起 重电动电动机E与重物的总重力为FP(因为两滑轮之 间的距离很小, F P 可视为集中力作用在大梁上 ) , 梁的重力为FQ。已知角度θ=30º 。
FR 0 M O 0
( Fx ) 2 ( Fy ) 2 FR M O M O ( Fi )
3.4 平面任意力系的平衡条件和平衡方程
3. 2 平衡方程
( Fx )2 ( Fy ) 2 , M O M O ( Fi ) 由于 FR
所以
A
例1
a
b
P
Fx 0 : FAx qb 0
q
Fy 0 : FAy P 0
M A (F ) 0 :
1 2 M A Pa qb 0 2
解之得: MA
P FAx
A FAy
q
FAx qb
FAy P
2 M A Pa 1 qb 2
例22 求图示梁的支座反力。 例
由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。 此题也可用力多边形方法用比例尺去量。
1 平面汇交力系的平衡方程
FR ( Fxi ) ( Fyi ) 0
2 2
Fxi 0
Fyi 0
平面汇交力系平衡的必要和充分条件是:各力在 作用面内两个任选的坐标轴上投影的代数和等于零。 上式称为平面汇交力系的平衡方程。
[例2] 已知 P=2kN
求SCD , RA
解:
1. 取AB杆为研究对象
RAcos SCD cos450 0
Y 0 P RA sin SCD sin450 0
4. 解方程 由EB=BC=0.4m, 解得:
EB 0.4 1 t g AB 1.2 3 0 P cos 45 SCD 4.24 kN ; R A SCD 3.16 kN 0 0 sin 45 cos45 tg cos
P A m a B
解:以梁为研究对象,受力如图。
Fx 0 : FAx P cos 0
C
b
Fy 0: FAy FB P sin 0
M A (F ) 0: FB a P sin (a b) m 0
解之得: P FAx
FAx P cos
Fi 0
在平衡的情形下,力多边形中最后一力的 终点与第一力的起点重合,此时的力多边形称 为封闭的力多边形。于是,平面汇交力系平衡 的必要与充分条件是:该力系的力多边形自行 封闭,这是平衡的几何条件。
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
相关文档
最新文档