九、 平面一般力系平衡方程的其他形式
平面一般力系的平衡方程及其应用

MB 0
W1
l 2
W
l
x
FAyl
0
得
FAy 7k N
Y 0
F T
sin
FAy
W1
W
0
得
FT 34k N
X 0 FAx FT cos 0
得
FAx FT cos 29.44k N
目录
平面力系\平面一般力系的平衡方程及其应用
4) 讨论。 本题若列出对A、B两点的力矩方程 和在x轴上的投影方程,即
F,平衡锤重WQ,已知W、F、a、b、e、l,欲使起重机满载和空载
时均不致翻倒,求WQ的范围。
目录
力系的平衡\平面力系的平衡方程及其应用 【解】 1)考虑满载时的情况 受力如图所示。 列平衡方程并求解 MB=0 WQmin(a+b)WeFl=0
得 We F l
WQmin a b
目录
平面力系\平面一般力系的平衡方程及其应用
理论力学
平面力系\平面一般力系的平衡方程及其应用
平面一般力系的平衡方程及其应用
1.1 平面一般力系的平衡方程
1. 基本形式 如果平面力系的主矢和对平面内任一点的主矩均为零,则力系
平衡。反之,若平面力系平衡,则其主矢、主矩必同时为零(假如 主矢、主矩有一个不等于零,则平面力系就可以简化为合力或合力 偶,力系就不平衡)。因此,平面力系平衡的充要条件是力系的主 矢和对任一点的主矩都等于零,即
应用平面力系的平衡方程求解平衡问题的步骤如下: 1) 取研究对象。根据问题的已知条件和待求量,选择合适的研 究对象。 2) 画受力图。画出所有作用于研究对象上的外力。 3) 列平衡方程。适当选取投影轴和矩心,列出平衡方程。 4) 解方程。 在列平衡方程时,为使计算简单,通常尽可能选取与力系中多 数未知力的作用线平行或垂直的投影轴,矩心选在两个未知力的交 点上;尽可能多的用力矩方程,并使一个方程只含一个未知数。
平面一般力系的平衡和应用

由 mA (Fi ) 0
P2aNB 3a0,
N B
2P 3
X 0 XA 0
解除约束
Y 0 YB NB P0,
YA
P 3
衡第 三
静节 定 和物 超体 静系 定的
平
三铰拱ABC的支承及荷载情况如图所示.已知
P =20kN,均布荷载q = 4kN/m.求铰链支座A和
B的约束反力.
P
1m
q
C
2m
A
2m
为载荷集度(单位为牛顿/米),其左端的集度为零,右端集度为 q 。载荷的长度为 l,载荷的方向垂直向下。求支承处对梁的约束 力。
首先在 O 点建立坐标系
y
第二步作受力分析
q
Foy
q
• 主动力为分布载荷(忽略重
力),且为一平行力系
O Fox
• 约束反力:
x
dx
l
x
Aq
FA
O 为固定铰支座,A 为活动铰 支座。
和 物 RC = 7.07 kN
B XB
YB
2m
Q
C
RC
2m
超 体 整体分析
P
静系
Q
定的 平
A
XA
mA
YA 2m
B
C
RC
2m
2m 2m
衡第
P = 30kN, Q = 20kN, = 45o
三 静节 定
Xi = 0 Yi = 0
XA - 20 cos45o = 0 XA = 14.14 kN YA - 30 - 20 sin45o + RC = 0 YA = 37.07 kN
的坐标轴上的投影的代数和分别等于零,以及各力对于任意
《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
建筑力学平面一般力系的平衡方程及其应用

普通高等教育“十一五”国家级规划教材
满足平衡方程时,物体既不能移动,也不能 转动,物体就处于平衡状态。当物体在平面一般 力系的作用下平衡时,可用三个独立的平衡方程 求解三个未知量。 二、平衡方程的其它形式
1.二力矩形式的平衡方程 ∑FX= 0 ∑MA (F ) = 0 ∑MB (F ) = 0 式中x轴不可与A、B两点的连线垂直。
FAx
FNCD = 30kN (↗)
∑MD (F ) = 0
FNCD
- FAy×0.6 + 14 ×0.3 = 0
14kN 8kN
300
300 100
A 30° D B
FAy
C
FAy = 7kN (↑)
∑MC (F ) = 0
- FAx×0.6/ 3- 14 ×0.3
- 8 ×0.6 = 0 FAx = - 25.98kN (←)
5 + FAy= 0
普通高等教育“十一五”国家级规划教材
3kN·m 6kN
3m
6
A
B
5
5
3m
可取∑MB (F ) = 0这一未用过的方程进行校核: 3 + 5×3 - 6×3 = 0
说明计算无误。
普通高等教育“十一五”国家级规划教材
例4-4 梁AB一端是固定端支座,另一端无
约束,这样的梁称为悬臂梁。它承受荷载作用如
普通高等教育“十一五”国家级规划教材
在使用三力矩式计算出结果后,可用另外两 个投影方程之一进行校核。可知计算无误。
例4-6 外伸梁受荷载如图所示。已知均布荷载 集度q=20kN/m,力偶的力偶矩M=38kN·m,集中 力FP=10kN。试求支座A、B的反力。
10kN 20kN/m 38kN·m
建筑力学 平面一般力系的平衡

Fcy F 2 sin 60 F ND 20 0.866 8.66 8.66kN
(2) 取梁AC为研究对象,受力图如图(c)
M
A
(F
)
0,
F1
2
F
' Cy
6
F
NB
4
0
F
NB
F1 2
F
' Cy
4
6
10 2
8.66 6 4
17.99kN()
F
x
0,
F
Ax
F
' Cx
0
F
Ax
F
' Cx
10kN()
(1) 取梁CD 为研究对象,受力图如图(b)
M C (F ) 0, F 2 sin 60 2 F ND 4 0
F
ND
sin
60
2
8.66 k N()
F x 0, Fcx F 2 cos60 0
Fcx F 2 cos60 20 0.5 10kN
F y 0, F cy F ND F 2 sin 60 0
F
y
0,
F
Ay
F
NB
F1
F
' Cy
0
F
Ay
F
NB
F1
F
' Cy
17.99
10
8.66
0.67k
N()
求解物体系统平衡问题的要领如下: (1) “拆”:将物体系统从相互联系的地方拆开,在拆开的地方用 相应的约束力代替约束对物体的作用。这样,就把物体系统分解为若 干个单个物体,单个物体受力简单,便于分析。 (2)“ 比”:比较系统的独立平衡方程个数和未知量个数,若彼此 相等,则可根据平衡方程求解出全部未知量。一般来说,由n 个物体 组成的系统,可以建立3n 个独立的平衡方程。 (3) “取”:根据已知条件和所求的未知量,选取研究对象。通常 可先由整体系统的平衡,求出某些待求的未知量,然后再根据需要适 当选取系统中的某些部分为研究对象,求出其余的未知量。 (4) 在各单个物体的受力图上,物体间相互作用的力一定要符合作 用与反作用关系。物体拆开处的作用与反作用关系,是顺次继续求解 未知力的“桥”。在一个物体上,可能某拆开处的相互作用力是未知 的,但求解之后,对与它在该处联系的另一物体就成为已知的了。可 见,作用与反作用关系在这里起“桥”的作用。 (5) 注意选择平衡方程的适当形式和选取适当的坐标轴及矩心,尽 可能做到在一个平衡方程中只含有一个未知量,并尽可能使计算简化。
平面一般力系的平衡方程的三种形式

平面一般力系的平衡方程的三种形式
平面一般力系的平衡方程有以下三种形式:
1. 矢量和式形式:若平面一般力系中作用力F1、F2、F3、...、Fn与参考点O的连线分别为r1、r2、r3、...、rn,且F1、F2、
F3、...、Fn的和为零,则平衡条件可以表示为F1 + F2 + F3 + ...
+ Fn = 0。
2. 分力和式形式:根据平面一般力系的平衡条件,可以将作用
在此力系上的力分解为水平分力和垂直分力。
平衡条件可以表示为水
平分力的和等于零,即∑Fx = 0;垂直分力的和等于零,即∑Fy = 0。
3. 正负向分式形式:根据平面一般力系的平衡条件,可以选择
合适的坐标系,将力的方向分为正向和负向。
若力Fi与坐标系确定的
正向相背离,则可表示为Fi > 0;若力Fi与坐标系确定的正向相同,则可表示为Fi < 0。
平衡条件可以表示为所有正向力的代数和等于所
有负向力的代数和,即ΣFi > 0 - ΣFi < 0 = 0。
以上是平面一般力系的平衡方程的三种形式。
力系的平衡方程

} FR 0
MO 0
(1-17)
机械设计基础
Machine Design Foundation
平面一般力系的平衡方程
平面一般力系平衡的解析条件是:所有各力在两个任选的 坐标轴上投影的代数和分别等于零,以及各力对于任意一 点的矩的代数和也等于零。
Fx Fy
0 0
M O 0
平面一般力系平衡方程有三个,只能求解三个未知数。
平面一般力系的平衡方程应用
例1-12 图1-40a所示梁AB,其A端为固定铰链支座,B端为
活动铰链支座。梁的跨度为l=4a,梁的左半部分作用有集
度为q的均布荷载,在D截面处有矩为Me的力偶作用。梁的 自重及各处摩擦均不计。试求A和B处的支座约束力。
机械设计基础
Machine Design Foundation
考虑摩擦时物体的平衡
现再求F1的最小值。当力达到此值时,物体处于将要向下滑动的临界状态。在 此情形下,摩擦力沿斜面向上,并达到另一最大值,列平衡方程
Fx 0,F1 cos P sin Fm ax 0 Fy 0,FN F sin P cos 0
Fm ax f s FN
三式联立,可解得水平推力的最小值为
MO= M1+M2+M3=MO(F1)+MO(F2)+MO(F3)
即这个力偶的矩等于原来各力对点O的矩的代数和。
机械设计基础
Machine Design Foundation
平面一般力系的简化
对于力的数目为n的平面任意力系,可推广为
n
FR′= MO =
Fi
n i1
(Fi)i1 M O
(1-15) (1-16)
机械设计基础
3-2平面一般力系的平衡与应用

一、导入由上节课的简化结果可知:若平面一般力系平衡,则作用于简化中心的平面汇交力系和附加力偶也必须同时满足平衡条件。
由此可知,物体在平面一般力系的作用下,既不发生移动,也不发生转动的静力平衡条件为:力系中的所有各力在两个不同方向的X\Y轴上投影的代数和均为零,且力系中各力对平面内任意一点的力矩大代数和也等于零。
二、新授3-2平面一般力系的平衡与应用一、平面一般力系的平衡条件、平衡方程及其应用平面一般力系平衡的充要条件是力系主矢F R/ 和力系对某一点的主矩m o都等于零。
即:F R/ =0,m o =0要使F R/ =0,必须满足:∑F x =0 ∑F y =0要使m o =0,必须满足:∑m o(F)=0于是,平面一般力系的平衡条件可表达为:∑F x =0基本形式∑F y =0∑m o(F)=0 力矩方程平面一般力系有三个独立方程。
例1:钢筋混凝土钢架的受力及支座情况如图。
已知F=10KN,m=15KN.m,钢架自重不计,求支座反力。
平面一般力系平衡必须同时满足三个平衡方程式,这三个方程彼此独立,可求解三个未知量。
因此,平面一般力系平衡的充要条件又可叙述为:力系中所有各力在两个坐标轴上的投影的代数和都等于零,而且力系中所有各力对任一点力矩的代数和也等于零。
解:1、刚架为研究对象,画刚架的受力图, 建立坐标轴2、列平衡方程求解未知力 ∑F x =0 F -F BX =0 F BX =F =10KN∑m A (F )=0 -F ×3-m +F BY ×3=0 F BY =15KN () ∑F y =0 F A +F BY =0 F A =-F BY =-15KN () 二、平面一般力系平衡方程的其他形式 1、二力矩式平衡方程的基本形式并不是唯一的形式,还可以写成其他的形式,它与基本形式的平衡方程是等效的,但往往应用起来会方便一些。
形式:三个平衡方程中有两个力矩方程和一个投影方程00===∑∑∑xBA Fm m如果力系满足0=∑A m 的方程,简化结果就不可能是个合力偶,而只能是合力或平衡;若是合力则合力应通过A 点,同理,力系又满足0=∑B m ,则此合力还应通过B 点,也就是说,力系如果有合力则合力作用为AB 连线,又因为力系还满足=∑xF的方程,则进一步表明力系即使有合力,这合力也只是能与X 轴相垂直,但附加条件是AB 连线不与OX 轴垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4-8)
若采用二力矩式(4-6),可得
(4-9)
式中A、B两点的连线不与各力作用线平行。
平面平行力系只有两个独立的平衡方程,只能求解两个未知量。
【例4-9】 图4-18所示为塔式起重机。已知轨距 ,机身重 ,其作用线到右轨的距离 ,起重机平衡重 ,其作用线到左轨的距离 ,荷载P的作用线到右轨的距离 ,(1)试证明空载时( 时)起重机时否会向左倾倒?(2)求出起重机不向右倾倒的最大荷载P。
综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。
【例4-7】 某屋架如图4-15(a)所示,设左屋架及盖瓦共重 ,右屋架受到风力及荷载作用,其合力 , 与BC夹角为 ,试求A、B支座的反力。
(4-6)
式中X轴不与A、B两点的连线垂直。
证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶。若 成立,则力系只能简化为通过A点的合力R或成平衡状态。如果 又成立,说明R必通过B。可见合力R的作用线必为AB连线。又因 成立,则 ,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由 可推得 。可见满足方程(4-6)的平面一般力系,若将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系。
2.三力矩形式的平衡方程
在力系作用面内任意取三个不在一直线上的点A、B、C,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即
(4-7)
式中,A、B、C三点不在同一直线上。
同上面讨论一样,若 和 成立,则力系合成结果只能是通过A、B两点的一个力(图4-14)或者平衡。如果 也成立,则合力必然通过C点,而一个力不可能同时通过不在一直线上的三点,除非合力为零, 才能成立。因此,力系必然是平衡力系。
应当注意,外力和内力是相对的概念,是对一定的考察对象而言的,例如图4-19组合梁在铰C处两段梁的相互作用力,对组合梁的整体来说,就是内力,而对左段梁或右段梁来说,就成为外力了。
当物体系统平衡时,组成该系统的每个物体都处于平衡状态,因而,对于每一个物体一般可写出三个独立的平衡方程。如果该物体系统有 个物体,而每个物体又都在平面一般力系作用下,则就有 个独立的平衡方程,可以求出 个未知量。但是,如果系统中的物体受平面汇交力系或平面平行力系的作用,则独立的平衡方程将相应减少,而所能求的未知量数目也相应减少。当整个系统中未知量的数目不超过独立的平衡方程数目,则未知量可由平衡方程全部求出,这样的问题称为静定问题。当未知量的数目超过了独立平衡方程数目,则未知量由平衡方程就不能全部求出,这样的问题,则称为超静定问题,在静力学中,我们不考虑超静定问题。
在研究物体系统的平衡问题时,不仅要知道外界物体对这个系统的作用力,同时还应分析系统内部物体之间的相互作用力。通常将系统以外的物体对这个系统的作用力称为外力,系统内各物体之间的相互作用力称为内力。例如图4-19(b)的组合梁的受力图,荷载及A、B、D支座的反力就是外力,而在铰C处左右两段梁之间的互相作用的力就是内力。
取 与 的交点O2为矩心列平衡方程
取
校核
说明计算无误。
3.平面力系的特殊情况
平面一般力系是平面力系的一般情况。除前面讲的平面汇交力系,平面力偶系外,还有平面平行力系都可以看为平面一般力系的特殊情况,它们的平衡方程都可以从平面一般力系的平衡方程得到,现讨论如下。
(1)平面汇交力系
对于平面汇交力系,可取力系的汇交点作为坐标的原点,图4-17(a)所示,因各力的作用线均通过坐标原点O,各力对O点的矩必为零,即恒有 。因此,只剩下两个投影方程
第九讲内容
一、平面一般力系平衡方程的其他形式
前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。
1.二力矩形式的平衡方程
在力系作用面内任取两点A、B及X轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即
【解】 以起重机为研究对象,作用于起重机上的力有主动力G、P、Q及约束力
和 ,它们组成一个平行力系(图4-18)。
(1)使起重机不向左倒的条件是 ,当空载时,取 ,列平衡方程
所以起重机不会向左倾倒
(2)使起重机不向右倾倒的条件是 ,列平衡方程
欲使 ,则需
当荷载 时,起重机是稳定的。
二、物体系统的平衡
即为平面汇交力系的平衡方程。
(2)平面力偶系
平面力偶系如图4-17(b)所示,因构成力偶的两个力在任何轴上的投影必为零,则恒有 和 ,只剩下第三个力矩方程,但因为力偶对某点的矩等于力偶矩,则力矩方程可改写为
即平面力偶系的平衡方程。
(3)平面平行力系
平面平行力系是指其各力作用线在同一平面上并相互平行的力系,如图4-17(C)所示,选OY轴与力系中的各力平行,则各力在X轴上的投影恒为零,则平衡方程只剩下两个独立的方程
【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X轴和Y轴,如图4-15(b)所示,列出三个平衡方程
校核
说明计算无误。
【例4-8】 梁AC用三根支座链杆连接,受一力 作用,如图4-16(a)所示。不计梁及链杆的自重,试求每根支座链杆的反力。
【解】 取AC梁为研究对象,画其受力图,如图4-16(b)所示。列平衡方程时,为避免解联立方程组,最好所列的方程中只有一个未知力,因此,取 和 的交点O1为矩心列平衡方程
前面研究了平面力系单个物体的平衡问题。但是在工程结构中往往是由若干个物体通过一定的约束来组成一个系统。这就是由梁AC和梁CD通过铰C连接,并支承在A、B、D支座而组成的一个物体系统。
在一个物体系统中,一个物体的受力与其他物体是紧密相关的;整体受力又与局部紧密相关的。物体系统的平衡是指组成系统的每一个物体及系统的整体都处于平衡状态。