华东师范大学数学分析2009真题
华东师范大学2008至2009学年第2学期高等数学期末考试试题

华东师范大学2008至2009学年第2学期高等数学期末考试试题
华东师范大学期末试卷(A)
2008 — 2009 学年第 2 学期
课程名称:__ 高等数学(一)__
学生姓名:___________________ 学号:___________________专业:___________________ 年级/班级:__________________ 课程性质:专业必修
一二三四总分阅卷人签名一、填空题(每小题4分,共24分)
1. 1/2n(…)括号内化成积
分 .
2.= L’Hospital .
3.= 分母配方 .
4.= 变成cos然后化成两部分 .
5.曲线的水平渐近线方程为 x趋于无穷大得
y=1/5 .
6.曲线的拐点有求导个.
二、选择题(每小题4分,共16分。
每小题给出的四个选项中,只有一项
符合题目要求把所选项前的字母填在题后的括号内)
7.与相比,有关系式( b ).
(A);(B);。
华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(12分)设f(x)是区间I 上的连续函数。
证明:若f(x)为一一映射,则f(x)在区间I 上严格单调。
二(12分)设1,()0x D x x ⎧=⎨⎩为有理数,为无理数证明:若f(x), D(x)f(x) 在点x=0处都可导,且f(0)=0,则'(0)0f =三(16分)考察函数f(x)=xlnx 的凸性,并由此证明不等式: 2()(0,0)a b a ba b ab a b +≥>>四(16分)设级数1n a∞=∑收敛,试就1n n d ∞=∑为正项级数和一般项级数两种情况分别证明1nn a∞=∑五(20分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)。
又设(,)Fx y 具有连续的二阶偏导数。
(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。
(3)对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(2)的结论判别极大或极小。
六(12分)改变累次积分4204842(4)x x xI dx y dy --=-⎰⎰的积分次序,并求其值。
七(12分)计算曲面积分222(cos cos cos )sI x y z ds αβγ=++⎰⎰其中s 为锥面z =上介于0z h ≤≤的一块,{}c o s,c o s ,c o s αβγ为s 的下侧法向的方向余弦。
华东师范大学1998年攻读硕士学位研究生入学试题一. 简答题(20分) (1) 用定义验证:22323lim 212n n n n →∞+=++;(2) '2cos ,0(),()ln(1),0x x f x f x x x <⎧=⎨+≥⎩求; (3)计算3.二(12分)设f(x)有连续的二阶导函数,且''0()2,[()()]sin 5,f f x f x xdx ππ=+=⎰求f(0).三(20分)(1)已知1n n a ∞=∑为发散的一般项级数,试证明11(1)n n a n∞=+∑也是发散级数。
华东师范大学数学分析 期末试卷

华东师范大学数分期末试卷(A 卷)2009-2010年第一学期一.(20分)判断下列结论是否成立(若成立,说明理由;若不成立,举出反例)1.设()f x 在(a,b )连续,()f x 在0(,)x a b ∈取极值,则0'()0f x =;2.设()f x 在点0x 可导,则存在0δ>,使得()f x 在00(,)x x δδ-+上连续;3.设数列{}n a ,{}n b 满足1(1,2,)n n a b n ≤≤=…,lim()0n n n b a →∞-=,则极限lim ,lim n n n n a b →∞→∞ 都存在;4.设()f x 是区间(-a,a )上的可导偶函数,则()f x 在x=0取极值。
二.(16分)计算下列极限;1.20arctan limtan x x x x x→-; 2.20ln(1)sin lim x x x x →+-; 三.(16分)计算下列函数的导函数dy dx: 1.1,0,()1,0;x x e x y x e x -⎧≥⎪=⎨⎪+<⎩ 2.()y y x =由极坐标方程2(1cos )(0)a a ρθ=+>所确定。
四.(14分)讨论2x y x e -=的单调性区间,凹凸性区间,极值与拐点。
五.(14分)证明不等式:1.2arctan (0,);12, x x x x π+<∈+∞+ 2.过研究ln ()x f x x =的单调性,证明:e e ππ>. 六.(8分)设()f x 在区间I 上连续但不一致连续,()g x 在(,)-∞+∞上可导且'()0g x k ≥>.证明:复合函数(())g f x 在I 上不一致连续。
七.(12分)设()f x ,()g x 在[,)a +∞上连续可微,且极限()lim ()x f f x →+∞+∞=,()lim ()x g g x →+∞+∞= 存在,证明:1. 若()()f a f =+∞,则:(,)a ξ∃∈+∞,使得'()0f ξ=;2. 若对[,),'()0,x a g x ∈+∞≠则:(,)a ξ∃∈+∞,使得'()()()'()()()f f f ag g g a ξξ+∞-=+∞- 八.(附加题10分)设()f x 在[,)a +∞上二阶可导且''()1f x ≤,又极限lim ()x f x A →+∞=存在。
华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)

续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0
华东师范大学期末试卷09-10(A)参考答案

华东师范大学期末试卷(A )参考答案2009——2010学年第一学期1.填空题(20分)1) 从理论上讲,在地理学中,数学方法的运用主要有两个目的:(1)运用数学语言对地理问题进行描述,建立地理数学模型,从更高、更深层次上揭示地理问题的机理;(2)运用有关数学方法,通过定量化的计算和分析,对地理数据进行处理,从而揭示有关地理现象的内在规律。
(每空1分,共2分)2) 集中化指数的计算公式I=(A-R)/(M-R),其中集中化指数在区间[0,1]上取值,各参数的意义分别为A —实际数据的累计百分比总和;R —均匀分布时的累计百分比总和;M —集中分布时的累计百分比总和。
(每空0.4分,共2分)3) 线性模型''a b y x =+是由双曲线模型1/y=a+b/x 转化而成的,其中'y =1/y ,'x =1/x 。
(每空0.5分,共1.5分)4) 主成分分析的主要计算步骤①计算相关系数矩阵 , ②计算特征值与特征向量 , ③计算主成分贡献率及累计贡献率 , ④计算主成分载荷 。
(每空0.5分,共2分) 5) 变异函数的四个重要参数分别是:基台值(Sill )、变程(Range )或称空间依赖范围(Range of Spatial Dependence )、块金值(Nugget )或称区域不连续性值(Localized Discontinuity )和分维数(Fractal Dimension )。
变量函数的理论模型可分为三大类:有基台值模型、无基台值模型、孔穴效应模型。
(每空0.5分,共3.5分) 6) 请写出线形规划问题: Min Z=2X 1+3X 2+X 3 满足 X 1+2X 2+X 3≥33X 1-X 2+2X 3≥4X 1,X 2,X 3≥0 的标准形式(1.5分) 7) 在基于投入产出分析的资源利用优化模型中,对于不同的目标函数,其约束条件均为(1.5分) 8) AHP 决策分析方法的计算步骤为①明确问题;②建立层次结构模型;③构造判断矩阵;④层次单排序;⑤层次总排序。
华师2009GL试卷卷(A)

华东师范大学期末试卷(A ) 2008 —2009 学年第 2 学期课程名称:概率论与数理统计学生姓名:___________________ 学 号:___________________ 专 业:___________________ 年级/班级:__________________一、单项选择题(20分,每题2分)1. 设随机变量12100~(1,4), ,,X N X X X X 是来自的样本 X 为样本均值,已知 随机变量~(0,1)Y aX b N =+,则有( )A. a =-5,b=5B. a =5,b=5C. a =-0.2,b=0.2D. a =0.2,b=-0.22. 设,,A B C 三个事件两两独立,则,,A B C 互相独立的充分必要条件是( )A. A 与BC 独立B. AB 与A C 独立C. AB 与AC 独立D. A B 与A C 独立3. 设10件产品中有2件次品,8件正品。
现每次从中任取一件产品,且取后不放回,则前两次均取得正品的概率为 ( )A.2845B.15 C. 19D.594. 离散型随机变量X 的分布列为()k P X k b λ== (1,2,3,k =⋅⋅⋅则下列选项不正确的是( )A. 0b >B. 0λ>C. 11b λ-=-D.1(1)b λ-=-5. 如果随机变量X 的可能值充满区间______,而在此区间外等于0,那么sin x 可以成为一个随机变量的概率密度 ( ) A. [0,0.5]πB. [0.5,1.5]ππC. [0,]πD. [,1.5]ππ6. 设随机变量~(0,1), ~(1,7), ()6X N Y U D X Y +=已知:,则, X Y 一定( ) A .相互独立 B.相互独立但相关 C.不相关 D.相关7. ,X Y 相互独立,且都服从区间[0,1]上的均匀分布,则服从区间或区域上的均匀分布的随机变量是( )A (,)X YB X Y +C 2X D X Y -8.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 与Y 的相关系数等于 ( ) A 1- B 0 C12D 1 9.X 与Y 独立,其方差分别为6和3,则(2)D X Y -= ( ) A 9 B 15 C 21 D 2710.设~(0,1)X N , 11n i i X X n ==∑,22221111(), 1n n i n i i i S X X S X n n ===-=-∑∑。
考研数学2009真题及分析

2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)当0x 时,()sin fxxax 与2()ln(1)gxxbx 等价无穷小,则()(A )11,6ab (B )11,6ab (C )11,6ab (D )11,6ab 【解析与点评】考点:无穷小量比阶的概念与极限运算法则。
参见水木艾迪考研数学春季基础班教材《考研数学通用辅导讲义》(秦华大学出版社)例 4.67,强化班教材《大学数学强化 299》16、17 等例题。
【答案】A22220000sinsin1cossin limlimlimlim ln(1)()36xxxx xaxxaxaxaax xbxxbxbxbx230sin lim166.x aaxa b b axa 36ab 意味选项B ,C 错误。
再由201cos lim 3x aax bx存在,故有1cos0(0)aaxx ,故a=1,D 错误,所以选A 。
(2)如图,正方形{(,)|||1,||1}xyxy 被其对角线划分为四个区域,(1,2,3,4),cos KKKD DkIyxdxdy,则14max{}KK I =()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。
对称性与轮换对称性在几分钟的应用是水木艾迪考研数学重点打造的技巧之一。
参见水木艾迪考研数学春季班教材《考研数学通用辅导讲义----微积分》例 12.3、12.14、12.16、12.17,强化班教材《大学数学同步强化 299》117 题,以及《考研数学三十六技》例 18-4。
24,DD 关于x 轴对称,而cos yx 即被积函数是关于y 的奇函数,所以2413;,IIDD 两区域关于y 轴对称,cos()cos yxyx即被积函数是关于x 的偶函数,由积分的保号性,13{(,)|,01}{(,)|,01}2cos0,2cos0xyyxxxyyxx IyxdxdyIyxdxdy,所以正确答案为A 。
华东师范大学2000至2009年数学分析,高等代数试题

华东师范大学2000年攻读硕士学位研究生入学试题考试科目:数学分析一.(24分)计算题: (1)011lim();ln(1)x x x→-+(2)32cos sin ;1cos x xdx x⨯+⎰ (3)设(,)z z x y =是由方程222(,)0F xyz x y z ++=,所确定的可微隐函数,试求grad Z.二.(14分)二、设 n n ne )11(+=,*N n ∈;1)11(++=n n nE ,*N n ∈;证明: (1)}{n e 是严格递增的;(2)}{n E 是严格递减的; (3)用对数函数x ln 的严格递增性质证明:111ln 11n n n⎛⎫<+< ⎪+⎝⎭,对一切n ∈N *成立. 三.(12分)设f 在[],a b 中任意两点之间都具有介值性,而且f在(),a b 内可导,'|()|f x K ≤(正常数), (,).x a b ∈证明f 在点a 右连续(同理在点b 左连续). 四.(14分)设12(1).nn I x dx =-⎰证明:(1)1221n n nI I n -=+,n=2,3…;(2)2,3n I n≥n=1,2,3….五(12分)设S 为一旋转曲面,由平面光滑曲线{(),[,](()0)z y f x x a b f x ==∈≥饶x 轴旋转而成。
试用二重积分计算曲面面积的方法,导出S 的面积公式为'22()1()baA f x fx dx π=+⎰(提示:据空间解几知道S 的方程为222()y z f x +=)六(24分)级数问题:(1)设sin ,0()1,0xx f x x x ⎧≠⎪=⎨⎪=⎩,求()(0)k f。
(2)设1nn n a =∑收敛,lim 0n n na →∞=证明:111()nnn n n n n n a a a +==-=∑∑。
(3)设{()}n f x 为[],a b 上的连续函数序列,且()(),[,]n f x f x x a b ⇒∈证明:若()f x 在[],a b 上无零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.证明:10 6
1
x2 y 2 z 2 S: 1, P S , P 在外,则为 S max |S pp 的法线 || p p 2 2 2 a b c
1 0 PS 0 1
0
|,
p1 p0
2
an lim 0, an 0,则无界 an . a n a n2 n4
1
2. 圆盘:求它的质量 ( x a)2 ( y b)2 R2,
Ò cos dydz cos dzdx cos dxdy, cos , cos , cos ,
S
是指外法线的方向余弦,为负,其余个为正的,且都是常数, cos 2 S为封闭曲面.
华东师范大学 2009 研究生入学考试试题 考试科目:数学分析
一. 判断,错的举出反例,正确的证明。 9 6 lim g ( x) x) A, lim f ( y ) B, lim F B. 1. F ( x) f ( g ( x)),则有(
xa y A xa
f ( x)在[ a, b] 上连续并且不恒为常数,f ( x) D ( x) 则在[ a, b] 不可积, 2. D ( x) 为D i r i chet 函数.
1 3. 存在a , a , b 使得 a2 a cos nx b sin nx 0
0 n n 0 n 1 n n
x [1, 2] x [4,5]
( x) 1, f ( x)在x=2处连续, 则f ( x) 在x=2可导. 4. lim xf 2
x2
5. f ( x)在x 处可导, 则f ( x) 在x=2处附近的邻域连续. 6. 多项式序列P( x) 满足P( x) 一致收敛于P( x) , 则P( x) 也为多项式. 二.计算 123
0 n n
1. 3
x x a 1 lim , a 0, a 1 x (a 1) x
3.
f ( x)在上单调,并且值域为,则在上一致连续 (a, b) (c, d ) f ( x) .(a, b)
4 5
an lim 0, an 0,则无界 an . a n a n2 n4
f ( x)在( a, +) 内连续,有界,试证:T , xn , st, lim[ f ( xn T ) f ( xn )] 0