带电粒子在单边界磁场中的运动

合集下载

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

带电粒子在磁场中的运动 动量

带电粒子在磁场中的运动 动量

带电粒子在磁场中的运动与动量有关。

在匀强磁场中,如果粒子所受合外力为零,则粒子作匀速直线运动;合外力充当向心力时,粒子作匀速圆周运动;其余情况,粒子作的是一般的变速曲线运动。

同时,带电粒子在磁场中的运动也与速度有关,速度方向与磁场方向平行时不受洛伦兹力作用,速度方向与磁场方向垂直时洛伦兹力充当向心力。

此外,带电粒子在磁场中的运动还具有周期性,其周期T=2πm/qB或者T=2πr/v,其中m为动量,q为电量,B为磁感应强度。

在处理带电粒子在磁场中的运动问题时,可以采用力的观点(牛顿运动定律、运动学公式)、能量观点(动能定理、能量守恒定律)和动量观点(动量定理、动量守恒定律)等多种方法进行分析。

以上内容仅供参考,如需更全面准确的信息,可查阅物理专业书籍或咨询物理专业人士。

高中物理竞赛带电粒子在电磁场中的运动知识点讲解

高中物理竞赛带电粒子在电磁场中的运动知识点讲解

高中物理竞赛带电粒子在电磁场中的运动知识点讲解要点讲解学习这部分知识,首先要清楚重力场、电场和磁场对带电粒子的作用的性质,以及重力场、电场和磁场对带电粒子作用力的区别:只要带电粒子处于重力场中,就一定会受到重力,而且带电粒子所受重力一定是恒力;只要带电粒子处于电场中,就一定分受到电场力,而且,如果电场是匀强电场,那么带电粒子所受电场力一定是恒力;在磁场中,只有带电粒子运动才可能受到洛仑兹力作用,只有带电粒子的运动方向不与磁场方向平行,带电粒子才一定受到洛仑兹力作用。

同时,要注意,洛仑兹力的方向与带电粒子的运动方向垂直,这就意味着,作曲线运动的带电粒子所受的洛仑兹力是变力。

重力、电场力对带电粒子作功;而洛仑兹力对带电粒不作功。

因此,在很多情况下,需要从能量变化的角度考虑问题。

【例题分析】例1.用轻质绝缘细线把带负电的小球悬挂在O点,在没有磁场时,小球在竖直平面内AB之间来回摆动,当小球经过悬点正下方时悬线对小球的拉力为。

现在小球摆动的空间加上方向垂直纸面向外的磁场,如图11-4-1所示,此时小球仍AB之间来回摆动,用表示小球从A向B摆经过悬点正下方时悬线的拉力,用表示小球从B向A 摆经过悬点正下时悬线的拉力。

则(A)(B)(C)(D)分析:带电小球在最低点的受力情况,由于小球做圆周运动,根据牛顿运动定律便可求解。

解:在没有磁场时,小球在悬点正下方时受两个力:拉力和重力mg。

根据牛顿第二定律,有式中V为小球过悬点正下方时的速率,L为摆长,所以小球摆动区加了如图11-4-1示的磁场后,小球摆动的过程中还受洛仑兹力的作用,因洛仑兹力方向和小球运动方向垂直,不改变小球到达悬点正下方的速率V,但小球在悬点正下方时除受悬线拉力和重力外还受洛仑兹力f.当小球由A向B摆动时,f的方向左手定则判断是沿悬线向下,根据牛顿第二定律,小球在悬点正下方时有得当球从B向A摆动经悬点正下方时,洛仑兹力的方向是沿悬线向上,根据牛顿第二定律可得结果是因此(B)选项是正确的。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

图6 所示。

O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

θ O
B
R
比较学习: 这点与带电粒子在匀强电场中的偏转情况一 样吗?
◆带电粒子在矩形磁场区域中的运动
B v
d o
圆心在磁场原边界上 B
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。 量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
Bx
z
Vz
由于磁场的不均匀, 洛仑兹力的大小要变 化,所以不是匀速圆 周运动。且半径逐渐 变小。
极光
带电粒子(如宇宙射线的 带电粒子)被地磁场捕获, 绕地磁感应线作螺旋线运 动,当太阳黑子活动引起空间 磁场的变化,使粒子在两 极处的磁力线引导下,在 两极附近进入大气层,能 引起美妙的极光。
地轴
带电粒子在匀强磁场中的匀速圆周运动解决思路
带电粒子在磁场中的螺旋线运动
2m 螺距 h V//T V sin qB V和 V//分别是速度在平行于磁场方向
的分量和垂直于磁场的分量。 匀速圆周运动的半径仅与速度的垂直分量有关。
* 磁聚焦magnetic focusing
一束发散角不大的带电粒子 束,若这些粒子沿磁场方向 的分速度大小又一样,它们 有相同的螺距,经过一个周 期它们将重新会聚在另一点 这种发散粒子束会聚到一点 的现象叫磁聚焦。
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
量变积累到一定程度发生质变,出现临界状态.
(1)偏向角(回旋角)θ
v
B
d sin r
(2)侧移距离y
r

带电粒子在磁场中的运动轨迹

带电粒子在磁场中的运动轨迹

确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

下面举几种确定带电粒子运动轨迹的方法。

一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
v
高二物理带电粒子在匀强磁场中的运动(一)
班级:姓名:
一、带电粒子在单边界磁场中的运动
1.如图所示,一正离子沿与匀强磁场边界成30º角的方向,以速度v0射入磁场,已知其电量为q,质量为m,若磁场足够大,磁感应强度为B,则此正离子在磁场中的运动半径多大?在磁场中运动的时间是多少?离开磁场时速度方向偏转了多少?
2.一个负离子,质量为m,电量大小为q,以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中.磁感应强度B的方向与离子的运动方向垂直,并垂直于纸面向里.
(1)求离子进入磁场后到达屏S上时的位置与O点的距离.
(2)如果离子进入磁场后经过时间t到达位置P,证明:直线OP与离子入射方向之间的夹角θ跟t的关系是
3.如图直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN 成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多
少?
B

4.如图,在一水平放置的平板MN上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图是正确的?
5.水平线MN 的下方存在垂直纸面向里的磁感应强度为B 的匀强磁场,在MN 线上某点O 的正下方与O 点相距为L 的质子源S ,可在纸面内1800范围内发射质量为m 、电量为e 、速度为v=BeL/m 的质子,质子的重力不计,试说明在MN 线上多大范围内有质子穿出。

6.如图,电子源S 能在图示纸面360°范围内发射速率相同的电子(质量为m ,电量为e ),M 、N 是足够大的竖直挡板,与S 的水平距离OS =L ,挡板左侧是垂直纸面向里,磁感应强度为B 的匀强磁场。

(1)要使发射的电子能到达挡板,
电子速度至少为多大?
(2)若S 发射的电子速率为eBL/m
时,挡板被电子击中的范围有多大?
O
7.如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离L=16cm处,有一个点状的放射源S,它向各个方向发射α粒子,α粒子的速度都是v=4.8x106 m/s,已知α粒子的电荷与质量之比q/m=5.0x107C/kg现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.
8.如图所示,虚线MN是一垂直纸面的平面
与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。

O是MN上的一点,从O点可以向磁场区域发射电荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力和粒子间的相互作用。

(1)求所考察的粒子在磁场中的轨道半径;
(2)求这两个粒子从O点射入磁场的时间间隔。

相关文档
最新文档