海盗分赃问题经典逻辑题
海盗分金币”问题的逻辑推理与延伸归纳(优秀奖)

“海盗分金币”问题的逻辑推理与延伸归纳(A类)北京化工大学理学院李晓琼摘要:“海盗分金币”问题是一个典型的博弈类问题。
本文通过对此问题的逻辑推理给出答案,并在此基础上做了延伸讨论,同时分析了在改变某一条件后的另一问题。
关键词:海盗分金币;博弈;逻辑;推理1.背景五个海盗抢到了100枚金币,他们决定这么分:1.抽签决定自己的号码:5 4 3 2 1;2.首先,由5号提出分配方案,然后5人共同进行表决,如果有半数或半数以上人同意时,就按照他的提案进行分配,否则5号将被扔入大海喂鲨鱼;3.在5号死后,由4号提出分配方案,然后4人进行表决,如果有半数或半数以上人同意时,就按照他的提案进行分配,否则4号将被扔入大海喂鲨鱼;4.以次类推。
海盗们基于三个因素来做决定:1. 要能存活下来;2. 自己得到的利益最大化;3. 在所有其他条件相同的情况下,优先选择把别人扔出船外。
问题:第一个提出分配方案的海盗怎样分配才能够使自己免于下海且获得最多金币?1.1.分析1)假设只有2号与1号两个人来分配,则2号为了自己利益最大化会提出占有全部金币,而1号无论赞同与反对都不会得到金币。
1号为使自己利益的最大化,会保全3号的生命以求得到金币。
2号的决策是:海盗名称: 2 1得金币数:100 02)假设由3,2,1号三人来分配,则1号只要能得到一枚金币就一定会支持3号的方案。
3号会做出这样的分配方案,自己得99枚金币,1号得1枚金币,而无论2号赞同与反对都不会得到金币,所以2号会保全4号的生命以求得到金币。
3号的决策是:海盗名称: 3 2 1得金币数:99 0 13)假设由4,3,2,1号四个人来分配,4号所提出的方案只要得到其他三人中的任意一人的支持就能保全自身,同时利益最大。
由上一步分析,除非4号分100枚金币给3号,否则就不能确定得到3号的支持。
4号为了利益最大化,他只要得到2,1号至少一人的支持就能保证自己不被处死,且他只需支付一个人金币。
趣味推理题,经典智力题(附解析过程及答案)逻辑推理网

趣味推理题,经典智力题(附解析过程及答案)逻辑推理网智力题1(海盗分金币)——海盗分金币5个海盗抢得100枚金币后,讨论如何进行公正分配。
他们商定的分配原则是:(1)抽签确定各人的分配顺序号码(1,2,3,4,5);(2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将1号扔进大海喂鲨鱼;(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人同意时,才会按照他的提案进行分配,否则也将被扔入大海;(4)依此类推。
这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。
同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?智力题2(猜牌问题)S 先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。
约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P 先生,把这张牌的花色告诉Q先生。
这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S 先生听到如下的对话:P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?智力题3(燃绳问题)烧一根不均匀的绳,从头烧到尾总共需要1个小时。
现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?智力题4(乒乓球问题)假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。
条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?智力题5(喝汽水问题)1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?智力题6(分割金条)你让工人为你工作7天,给工人的回报是一根金条。
海盗分金币

海盗分金币
故事:五个海盗抢到了100个金币,每一颗都一样的大小和价值连城。
他们决定这么分:
1.抽签决定自己的号码------ [1、2、3、4、5]
2.首先,由1号提出分配方案,然后大家5人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4.以次类推
条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己免于下海以及自己获得最多的金币呢?。
海盗分金问题总结

海盗分金题目:5名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。
这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。
如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。
否则提出方案的海盗将被扔到海里,然后下一名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。
他们当然也不愿意自己被扔到海里。
所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。
此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。
这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。
这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?一、经济学上的“海盗分金”模型经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
假定“每人海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
简单的博弈论—海盗分金

简单的博弈论—海盗分金经济学上有个“海盗分金”模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,投票要超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼。
假设前提假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
现实生活中也有类似的“海盗分金”的例子如在企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。
海盗分赃

海盗分赃问题有5个海盗抢到100颗宝石,在如何分赃的问题上争吵不休。
于是他们决定:(1)抽签决定个人的号码[1,2,3,4,5]。
(2)由1号提出分配方案。
然后5人表决,如果方案超过半数同意就被通过,否则就把1号丢入大海。
(3)1号死后,由2号提出分配方案。
然后4人表决,当且仅当超过半数同意时方案通过,否则就把2号丢入大海。
(4)以此类推,直到找到一个大多数人能接受的方案。
如果只剩下5号,他一人获得全部宝石。
现在假定每个强盗都是足够理智能判断得失的“理性人”。
为了避免不必要的争执,我们还假定每个方案都能顺利表决并按照约定规则执行。
那么,如果你是第一个海盗,你该如何提出分配方案使自己的收益最大化?这道题十分复杂,很多人的答案都是错误的。
为了叙述方便,我先公布正确答案,然后再作分析。
严酷的分配规则给人的第一印象是:如果我抽到了1号,那将是一件十分不幸的事。
因为作为第一个提出分配方案的人,能活下去的机会微乎其微。
即使1颗宝石都不要,全部都给其余4人,分配方案也有可能被大家反对,只有死路一条。
如果你也这样想,那么答案会大大出乎你的意料:1号海盗留给3号1颗宝石,留给5号2颗宝石,自己独得97颗。
分配方案可以写成[97,0,1,0,2]。
只要你没有被吓倒,不妨站在剩下4人的角度分析:显然,5号是最不合作的,因为他没有死亡的威胁,从直觉上说,每扔下一个对手他就离获得全部宝石更近一步。
4号正好相反,他的生存机会完全取决于前面有人活着,因此4号值得争取。
3号对前面2位的命运完全不在乎,因为轮到他提出方案时,他只需要得到4号的支持再加上自己一票即可通过。
那么2号呢?他需要得到3票才能活命......现在,你有思路了吧!下面我将通过严格的逻辑思维去推想他们的决定。
5号的策略最简单:巴不得把所有人扔下海(这并不是说他将对每个分配方案投反对票,他也会考虑别人的方案通过的情况,因为他是足够理智能判断得失的“理性人”。
)再看4号。
强盗分金

强盗分金问题:题目:五个强盗抢得100枚金币,他们决定: 1、抽签决定各人的号码(1,2,3,4,5);2、由1号提出分配方案,然后5人表决,当且仅当超过半数同意方案被通过,否则他将被扔入大海喂鲨鱼;3、1号死后,由2号提方案,4人表决,当且仅当超过半数同意时方案通过,否则2号同样被扔入大海;4、依次类推......假定“每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”分析:强盗一强盗二强盗三强盗四强盗五第一步 0 100第二步 100 0 0第三步 98 0 1 1第四步 97 0 1 0 297 0 1 2 0在搞理论的人看来,“强盗分金”其实是一个高度简化和抽象的模型(非数理模型),但无疑以现实为基础。
在“强盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
想一想历朝历代的农民起义,想一想绵延起不断的宫廷斗争,想一想我们这个时代比比皆是的结盟与背叛,想一想企业内部的明争暗斗,想一想办公室脚下使绊的政治,哪一个得胜者不是采用的类似“强盗分金”的办法?为什么革命者总是找穷苦人,因为他们是最失意的人。
为什么恐怖分子拉登在沙特阿拉伯没有市场,在阿富汗却大受欢迎,因为阿富汗是全球化的弃儿。
为什么企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,难道不是因为公司里的小人物好收买,而二号人物却总是野心勃勃地想着取而代之......(主要看对方是否有收益)还可以举出许许多多的例证来。
比如,国际交易中的先发优势和后发劣势。
1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。
这不正是全球化过程中先进国家先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利。
分金币的逻辑推理

博弈论经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。
在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
答案:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。
1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目为:五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。
他们决定这么分:抽签决定自己的号码(1、2、3、4、5),首先,由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼。
如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼依此类推条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?为什么?答案:
2号和3号有积极性让1号死,以便自己得到更多。
所以,1号无奈之下,可能只有自己得0,而给2和3各50颗。
但事实证明,这种做法依然不可行。
为什么呢?
因为我们要先看4号和5号的反应才行。
很显然,如果最后只剩下4和5,这无论4提出怎样的方案,5号都会坚决反对。
即使4号提出自己要0,而把100颗钻石都给5,5也不会答应――因为5号愿意看到4号死掉。
这样,5号最后顺利得到100颗钻石——因此,4的方案绝对无法获得半数以上通过,如果轮到4号分配,4号只有死,只有死!
由此可见,4号绝对不会允许自己来分。
他注定是一个弱者中的弱者,他必须同意3号的任何方案!或者1号2号的合理方案。
可见,如果1号2号死掉了,轮到3号分,3号可以说:我自己100颗,4号5号0颗,同意的请举手!这时候,4号为了不死,只好举手,而5号暴跳如雷地反对,但是没有用。
因为3个人里面有2个人同意啊,通过率%,大于50%!
由此可见,当轮到3号分配的时候,他自己100颗,4和5都是0。
因此,4和5不会允许轮到3来分。
如果2号能够给4和5一些利益,他们是会同意的。
比如2的分配方案是:98,0,1,1,那么,3的反对无效。
4和5都能得到1,比3号来分配的时候只能得到0要好得多,所以他们不得不同意。
由此看来,2号的最大利益是98。
1号要收买2号,是不可能的。
在这种情况下,1号可以给4号和5号每人2颗,自己收买他们。
这样,2号和3号反对是无效的。
因此,1号的一种分配方案是:96,0,0,2,2。
这是不是最佳方案呢?再想一想,1号也可以不给4号和5号各2个,而只需要1个就搞定了3号,因为如果轮到2号来分配,2号是可以不给3号的,3号的得益只有0。
所以,能得到1个,3号也该很满意了。
所以,最后的解应该是:97,0,1,2,0。
好,再倒推。
假设1号提出了97,0,1,0,2的方案,1号自己赞成。
2和4反对。
3∶2,关键就在于3号和5号会不会反对。
假设3号反对,杀掉1号,2号来分配,3自己只能得到0。
显然,3号不划算,他不会反对。
如果5号反对,轮到2号、3号、4号来分配,5号自己最多只能得到1。
所以,3号和5号与其各得到0和1,还不如现在的1和2。
正确的答案应该是:1号分配,依次是:97,0,1,0,2;或者是:97,0,1,2,0。