高温结构材料

合集下载

先进高温结构材料与技术

先进高温结构材料与技术

先进高温结构材料与技术随着科技的不断发展,各种高温行业的发展也变得越来越重要。

例如航空航天、能源领域、化工等,这些行业对于高温结构材料和技术的需求也随之而增加。

先进高温结构材料和技术的应用,成为了行业升级和企业竞争的重要策略。

一、高温结构材料的种类及功能高温结构材料主要包括金属、陶瓷、复合及其它新兴材料。

在高温环境下,这些材料有不同的特点和性能,例如高强度、高温抗氧化、高温稳定等,可以应对各种不同的高温环境并满足多样化的应用需求。

二、现有高温结构材料的局限性虽然现有的高温结构材料在一定程度上已经满足了行业需求,但是也有一定的局限性。

例如,金属材料易熔化、内氧化等问题,陶瓷材料脆性大、成型难等问题,这些都影响了应用效果和经济效益。

三、先进高温结构材料的研发和应用随着技术的不断进步,出现了一些新型高温结构材料,例如金属基复合材料、陶瓷基复合材料、碳材料等,这些材料具有更好的高温抗氧化性能、机械强度和热稳定性等特点。

此外,为了提高材料的经济效益,一些新型高温结构材料还可以通过先进制造技术进行节能和环保。

四、先进高温结构材料的市场前景先进高温结构材料的市场前景十分广阔。

随着全球经济的持续发展和科技的进步,高温行业的发展需求会不断增加。

因此,先进高温结构材料和技术的开发和应用,将会在未来成为一个重要的市场。

总之,先进高温结构材料和技术在航空航天、电力、化工等众多领域中都有广泛的应用。

因此,在加强研究和开发先进高温结构材料和技术的同时,还需要保证其质量和安全性,以满足广大行业的需求。

Ni3Al基础知识

Ni3Al基础知识

Ni3Al基金属间合金的研究S1******* 陈义高温结构材料起源于40年代军用飞机的需要, 目前已成为军用和民用高温燃汽轮机不可代替的关键性材料。

高温结构材料在高温下具有高强度, 以保证发动机的油耗不致过高; 具有很强的抗腐蚀能力, 在高温燃气的冲刷及腐蚀性介质的侵蚀下保持其性能; 还能长期安全可靠地工作。

而金属间化合物以其耐高温, 抗腐蚀和耐冲刷等特性成为航空航天、交通运输、化工机械等行业重要的结构材料, 并在近20年受到广泛研究。

由于金属间化合物晶体中金属键与共价键共存, 同时兼有金属韧性和陶瓷的高温性能, 因此具有很大的发展潜力。

由于金属间化合物Ni3Al 基高温结构材料在室温下具有优异的抗腐蚀性能, 受到工业界的注意, 但其晶间脆断是制约其工程化应用最大障碍, 表明这类材料具有巨大的应用潜力同时也存在一定缺陷。

1. Ni3Al 金属间化合物的特性Ni3Al 是一种具有L12 型晶体结构的长程有序金属间化合物( 表1) , 当接近其熔点时还能保持高度有序, 其晶格常数a= 0. 3561nm, 熔点为 ,杨氏模量, 电阻率为,热导率为, Ni3Al 金属间化合物熔点高, 抗高温氧化性能好, 有较高的高温强度和蠕变抗力以及强度大等特点, 而且在一定的温度范围内, 其屈服强度反而随温度的上升而提高, 这些特点都是高温结构材料所希望的。

2.合金元素在Ni3Al 金属间化合物中的作用2.1合金元素对力学性能的影响2.1. 1对强度的影响Ni3Al 在室温下通常强度不是很高。

但是大多数有序合金特别是那些具有L12 结构的大部分合金, 其塑性变形的一个显著特点是流变应力随温度升高而急剧增加。

Ni 基高温合金主要包括两相,固溶相 ( 无序的面心立方相, 具有A1结构)和中间化合物 ( 有序的面心立方相,具有L12 结构)。

通常,与无序或部分有序合金相比, 长程有序合金具有高的应变硬化速率。

W和Mo 的添加可大幅度地提高材料的高温抗拉强度和持久性能,W和Mo 同时加入要比单独添加Mo的强化效果好,但W和Mo 的加入降低了合金的塑性。

高温结构材料

高温结构材料

高温结构材料高温结构材料引言:随着社会的进步和科技的发展,高温工作环境下的物理和化学要求也越来越高,因此高温结构材料的研发和应用变得至关重要。

高温结构材料主要用于承受高温环境下的力学负荷和物理化学反应,它们需要具备高熔点、高强度、高韧性和耐腐蚀性等特点。

本文将介绍高温结构材料的种类、特点以及在各个领域中的应用。

一、高温结构材料的种类根据其组成和结构特点,高温结构材料可分为金属、陶瓷和复合材料三大类。

1. 金属材料金属材料是最常见的高温结构材料,高温合金是其中最重要的一类。

高温合金是以镍、铁、钛等为基础金属,通过添加合适的合金元素如铬、钴和钼来提高其耐高温性能,使其具有较高的熔点和较好的力学性能。

高温合金在航空航天、石油化工、能源等领域得到广泛应用。

2. 陶瓷材料陶瓷材料具有优异的高温性能和耐腐蚀性,常用的高温陶瓷材料有氧化锆、氧化铝、碳化硅等。

陶瓷材料可用于高温炉窑的耐火材料、燃烧器喷嘴、催化剂载体以及火箭喷嘴等领域。

3. 复合材料复合材料由两种或两种以上的材料组成,具有综合性能优异的特点。

碳纤维增强复合材料是最常见的一类高温复合材料,它具有高强度、低密度、耐高温、抗腐蚀等优点。

碳纤维增强复合材料广泛应用于航空航天、汽车制造、船舶建造等领域。

二、高温结构材料的特点不同种类的高温结构材料具有不同的特点,但一般来说,高温结构材料具备以下特点:1. 高熔点:高温结构材料在高温环境中能够保持稳定的物理和化学性质。

2. 高强度:高温结构材料需要在高温条件下承受较大的力学负荷。

3. 高韧性:高温结构材料需要具有较好的抗变形和抗断裂性能。

4. 耐腐蚀性:高温结构材料需要能够耐受高温环境中的腐蚀。

5. 热传导性:高温结构材料需要具备良好的热传导性能,以保证高温下的热量平衡。

三、高温结构材料的应用高温结构材料广泛应用于多个领域,主要包括以下几个方面:1. 航空航天领域高温结构材料在航空航天领域中扮演着重要角色。

航空发动机中的涡轮叶片、燃烧室和喷嘴等关键部件需要用高温合金和陶瓷材料制造,以承受高温和高压的工作环境。

世界上最耐高温的材料

世界上最耐高温的材料

世界上最耐高温的材料世界上最耐高温的材料高温环境对材料的使用带来了巨大的挑战,因为高温会引起许多材料的熔化、氧化、膨胀等问题。

然而,科学家们一直在努力寻找能够在极端高温下保持稳定性的材料。

本文将介绍几种世界上最耐高温的材料,这些材料不仅能够承受极端高温,还具有其他优异的性能。

1. 石墨烯(Graphene)石墨烯是由单层碳原子排列形成的二维结构材料。

它具有极高的热导率和化学稳定性,可以在高达5000摄氏度的温度下保持稳定性。

同时,石墨烯还具有出色的强度和柔韧性,使得它成为高温环境中理想的材料选择。

2. 碳化硅(Silicon Carbide)碳化硅是一种陶瓷材料,具有惊人的耐高温性能。

它在高达2700摄氏度的温度下可以保持结构稳定性,并且具有优异的热传导性能和低热膨胀系数。

碳化硅被广泛应用于高温应用中,如航天器热结构件、高温传感器等。

3. 钼合金(Molybdenum Alloys)钼合金是一种由钼和其他金属元素(如钛、锆等)合成的高温材料。

它具有良好的热膨胀性能和出色的耐高温稳定性,可以在高达2000摄氏度的温度下保持结构强度。

钼合金被广泛应用于高温工艺中,如高温炉的加热元件、火箭发动机喷头等。

4. 高温合金(Superalloys)高温合金是一类特殊的金属材料,具有出色的高温稳定性和优异的机械性能。

它们通常由镍、铬、钼等元素合成,并添加了其他合金元素以增强其高温性能。

高温合金可以在高达1300摄氏度的温度下保持稳定性,并且具有优异的耐腐蚀性能。

高温合金广泛应用于航空、航天等领域,如航空发动机的涡轮盘、燃烧室等部件。

5. 纳米陶瓷材料(Nanoceramics)纳米陶瓷材料是一种具有纳米尺度结构的陶瓷材料。

它们通过纳米颗粒的控制制备方法,具有惊人的耐高温性能。

许多纳米陶瓷材料可以在高达2000摄氏度的温度下保持稳定性,并具有出色的机械性能和耐腐蚀性能。

纳米陶瓷材料在航天、能源等领域有广泛的应用潜力。

高温结构材料

高温结构材料

高温结构材料
高温结构材料是指在高温环境下能够保持良好性能和稳定结构的材料。

在高温
工作环境下,材料需要具备优异的耐热性能、强度和稳定性,以确保设备和结构在高温条件下能够正常工作,不会出现损坏或失效的情况。

因此,高温结构材料在航空航天、能源、化工等领域具有重要的应用价值。

首先,高温结构材料需要具备优异的耐热性能。

在高温环境下,材料需要能够
承受高温引起的热膨胀和热应力,不发生变形、热裂和热疲劳等现象。

因此,高温结构材料通常采用高熔点金属、陶瓷、碳素等材料,以确保在高温条件下仍能保持结构的稳定性和完整性。

其次,高温结构材料需要具备优异的强度和稳定性。

在高温环境下,材料需要
能够承受机械载荷和热应力的作用,不会发生强度下降、蠕变和疲劳等现象。

因此,高温结构材料通常采用高强度合金钢、耐热合金、陶瓷复合材料等材料,以确保在高温条件下仍能保持良好的强度和稳定性。

此外,高温结构材料还需要具备良好的耐腐蚀性能。

在高温环境下,材料需要
能够抵抗腐蚀介质的侵蚀,不会发生腐蚀破坏和损坏。

因此,高温结构材料通常采用耐热合金、耐蚀钢、陶瓷涂层等材料,以确保在高温腐蚀环境下仍能保持良好的耐腐蚀性能。

综上所述,高温结构材料在高温工作环境中具有重要的应用价值,其优异的耐
热性能、强度和稳定性,以及良好的耐腐蚀性能,为各种高温设备和结构的安全运行提供了重要保障。

随着科学技术的不断进步,高温结构材料的研究和应用将会得到进一步的发展,为高温工作环境下的材料选择和设计提供更多的可能性。

镍基高温合金 硬度

镍基高温合金 硬度

镍基高温合金硬度镍基高温合金是一类重要的高温结构材料,具有优异的高温强度和耐热腐蚀性能。

而硬度是衡量材料抵抗外力侵蚀和变形能力的重要指标之一。

本文将从镍基高温合金的硬度方面进行探讨。

镍基高温合金的硬度受多种因素的影响。

一方面,合金中添加的合金元素对硬度起着重要的作用。

比如,添加钼、铬等元素可以提高合金的硬度。

此外,合金中的相组织结构也对硬度有影响,比如固溶强化相和沉淀强化相的存在可以增加合金的硬度。

另一方面,合金的热处理工艺也会对硬度产生影响,比如时效处理可以提高合金的硬度。

镍基高温合金的硬度与温度密切相关。

在高温环境下,合金的硬度会发生变化。

一般来说,在高温下合金的硬度会降低,这是由于高温使得合金中的固溶强化相和沉淀强化相发生溶解,从而降低了合金的硬度。

然而,对于某些镍基高温合金来说,在高温下硬度可能会增加,这是由于高温下合金形成了新的相组织结构或者发生了相变,从而提高了合金的硬度。

镍基高温合金的硬度还与应力状态有关。

在材料力学中,硬度一般是指材料在受压缩或者受加载作用下的抵抗变形能力,也可以理解为材料的抵抗划痕能力。

因此,不同应力状态下,合金的硬度可能会有所不同。

比如,在受拉伸应力作用下,合金的硬度通常会降低;而在受压缩应力作用下,合金的硬度通常会增加。

为了提高镍基高温合金的硬度,可以采取一些措施。

一方面,可以通过选择合适的合金元素和调整合金的配比来提高合金的硬度。

比如,添加适量的钼、铬等元素可以增加合金的硬度。

另一方面,可以通过热处理工艺来改善合金的硬度。

比如,通过固溶和时效处理可以形成细小的固溶强化相和沉淀强化相,从而提高合金的硬度。

镍基高温合金的硬度是一个重要的性能指标,受多种因素的影响。

了解和掌握这些影响因素,对于设计和制备高性能的镍基高温合金具有重要的意义。

通过合理选择合金元素、优化合金配比以及合适的热处理工艺,可以提高镍基高温合金的硬度,进而满足高温环境下的工程需求。

6.1高温结构材料汇总

6.1高温结构材料汇总

与前面学过的尖晶石的形成过程类似,在金
属表面形成氧化物后,能否继续向内部扩展,取
决于氧原子穿过表面氧化膜的扩散速度,而此速
度取决于温度和表面氧化膜的结构。
以铁的氧化为例来看一下金属的氧化过程。通常铁 能与氧形成FeO,Fe3O4,Fe2O3等一系列氧化物。 570℃以下,铁表面形成的是构造复杂的Fe3O4, Fe2O3氧化膜,氧原子难以扩散,这种氧化膜起着减 缓进一步氧化、保护内部的作用,但温度高于570℃, 氧化物中除了Fe3O4,Fe2O3氧化膜外,还增加了FeO 成分,而FeO晶格结构很疏松,所以为了阻止进一步
的氧化,必须设法阻止FeO的形成。
改进的方法:
在钢中加入对氧的亲和力大于铁的Cr,Si,Al
等,可优先形成稳定、致密的Cr2O3、Al2O3、
SiO2等氧化物保护膜,从而可以提高钢的耐热性。
超耐热合金的发展过程:
50年代前后,钴基合金(较高的耐用温度) →50年代后期,镍基合金(合金体为稳定的面心 立方结构)→高温合金中镍含量越来越高,可以
(2)非氧化物陶瓷
•碳化硅:
高温强度大(~1400℃
•氮化硅: 高化学稳定性;
500~600MPa);
高温结构件(炉管、火箭尾管喷嘴)。
耐蚀、耐磨材料(赛隆刀具)。
•氮化硼:
耐热、绝缘性好;
高温结构元件及刀具等。
氮化硅陶瓷
氮化硅基陶瓷具有密度小、高强、高硬、高韧 性、耐磨损、耐腐蚀、抗氧化、抗热震、自润滑、 隔热、电绝缘等一系列优良性能。 Si3N4基陶瓷球轴承 氮化硅陶瓷部件
提高使用温度、延长高温下的使用时间、并减
轻质量。
习惯上,将含镍25%-60%及含铁的高温合金
称为铁镍基高温合金。

世界十大高温材料

世界十大高温材料

世界⼗⼤⾼温材料1、铪合⾦铪合⾦中含有⾦属元素铪,是当今世界上熔点最⾼的物质。

已知熔点最⾼的物质是铪的化合物:五碳化四钽铪(Ta4HfC5)熔点4215摄⽒度。

铪,⾦属Hf,原⼦序数72,原⼦量178.49,是⼀种带光泽的银灰⾊的过渡⾦属。

铪有6种天然稳定同位素:铪174、176、177、178、179、180。

铪不与稀盐酸、稀硫酸和强碱溶液作⽤,但可溶于氢氟酸和王⽔。

元素名来源于哥本哈根城的拉丁⽂名称。

1925年瑞典化学家赫维西和荷兰物理学家科斯特⽤含氟络盐分级结晶的⽅法得到纯的铪盐,并⽤⾦属钠还原,得到纯的⾦属铪。

铪在地壳中的含量为0.00045%,在⾃然界中常与锆伴⽣。

2、⽯墨⽯墨是元素碳的⼀种同素异形体,每个碳原⼦的周边连结着另外三个碳原⼦(排列⽅式呈蜂巢式的多个六边形)以共价键结合,构成共价分⼦。

耐⾼温性:⽯墨的熔点为3850±50℃,沸点为4250℃,即使经超⾼温电弧灼烧,重量的损失很⼩,热膨胀系数也很⼩。

⽯墨强度随温度提⾼⽽加强,在2000℃时,⽯墨强度提⾼⼀倍。

3、⾦刚⽯⾦刚⽯俗称“⾦刚钻”。

也就是我们常说的钻⽯的原⾝,它是⼀种由碳元素组成的矿物,是碳元素的同素异形体。

⾦熔点(ºC):3550°C-4000°C,⾦刚⽯是在地球深部⾼压、⾼温条件下形成的⼀种由碳元素组成的单质晶体。

⾦刚⽯是⽆⾊正⼋⾯体晶体,其成分为纯碳,由碳原⼦以四价键链接,为⽬前已知⾃然存在最硬物质。

由于⾦刚⽯中的C-C键很强,所有的价电⼦都参与了共价键的形成,没有⾃由电⼦,所以⾦刚⽯硬度⾮常⼤,熔点在华⽒6900度,⾦刚⽯在纯氧中燃点为720~800℃,在空⽓中为850~1000℃,⽽且不导电。

4、钨钨,⼀种⾦属元素。

原⼦序数74,原⼦量183.84,熔点3400℃。

钢灰⾊或银⽩⾊,硬度⾼,熔点⾼,常温下不受空⽓侵蚀;主要⽤途为制造灯丝和⾼速切削合⾦钢、超硬模具,也⽤于光学仪器,化学仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高温结构材料
作者:10063122翁丰壕10063121温可明
关键词:高温合金金属间化合物
摘要:在材料中,有一类叫结构材料,主要利用其强度、硬度韧性等机械性能制成的各种材料。

金属作为结构材料,一直被广泛使用。

但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。

高温结构材料的出现,弥补了金属材料的弱点。

这类材料具有能经受高温、不怕氧化、耐酸碱腐蚀、硬度大、耐磨损、密度小等优点,作为高温结构材料,非常适合。

下面我们来了解高温结构材料的几种主要类型,制造工艺,应用现状及发展趋势,以便为我们的研究指明方向。

引言:随着工业文明的发展,全球一体化的深入,对深空世界的探索,人类对各种材料的要求也越来越高,特别是航空航天领域,对材料的耐高温性能有着近乎苛刻的要求。

我们明白,只有提高材料的各项性能,才能让我们的飞行器更快,更强,所以对高温结构材料的研究,一直是我们注重的方向。

一、高温结构材料主要类型:高温合金:指在650°C以上温度下具有一定力学性能和抗氧化、耐腐蚀性能的合金。

目前常是镍基、铁基、钴基高温合金的统称。

金属间化合物:金属与金属或与类金属元素之
间形成的化合物。

难熔金属合金:有将熔点高于锆熔一般指熔点高于1650℃并有一定储量的金属(钨、钽、钼、铌、铪、铬、钒、锆和钛),也点(1852℃)的金属称为难熔金属。

以这些金属为基体,添加其他元素形成的合金称为难熔金属合金。

等等
二、高温结构材料的应用现状: 1.镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件。

若以150MPA-100H持久强度为标准,而目前镍合金所能承受的最高温度〉1100℃,而镍合金约为950℃,铁基的合金〈850℃,即镍基合金相应地高出150℃至250℃左右。

所以人们称镍合金为发动机的心脏。

目前,在先进的发动机上,镍合金已占总重量的一半,不仅涡轮叶片及燃烧室,而且涡轮盘甚至后几级压气机叶片也开始使用镍合金。

与铁合金相比,镍合金的优点是:工作温度较高,组织稳定、有害相少及抗氧化搞腐蚀能力大。

与钴合金相比,镍合金能在较高温度与应力下工作,尤其是在动叶片场合。

镍合金具有上述优点与其本身的某些卓越性能有关。

镍为面心立方体,组织非常
高温合金生产用关键设备真空炉
稳定,从室温到高温不发生同素异型转变;这对选作基体材料十分重
要。

众所周知,奥氏体组织比铁素体组织具有一系列的优点。

镍具有高的化学稳定性,在500度以下几乎不发生氧化,学温下也不受温气、水及某些盐类水溶液的作用。

镍在硫酸及盐酸中溶解很慢,而在硝酸中溶解很快。

镍具有很大的合金能力,甚至添加十余种合金元素也不出现有害相,这就为改善镍的各种性能提供潜在的可能性。

纯镍的力学性能虽不强,但塑性却极好,尤其是低温下塑性变化不大。

2.金属间化合物主要有TiAl,NiAl和铂族金属
TiAl由于其室温韧性低,断裂韧性小,断裂寿命的高压敏感性以及高的制造成本制约了其发展应用
NiAl则要求有更好的室温韧性和高温蠕变性能
ceramic matrix composites(CMCs)有良好的冲击抗性,高温稳定性。

但是强度相对较低,即使比强度也相对较低,同时成本,可靠性,和寿命预测都需要做出努力。

Mo-Si-B有良好的高温蠕变强度,突出的高温屈服强度和超过1000时良好的抗氧化性,但是其中温抗氧化性不尽人意,同时可加工性,疲劳抗力,冲击抗力和断裂强度都较差
PGM合金有良好的抗氧化性,但其密度大,成本高,力学性能低. Nb-Si合金虽然在合金化后有良好的室温韧性(>20MPam0.5),较好的高温强度(1473K,压缩强度310MPa),较好的可加工性,但其抗氧化性还需进一步提高,蠕变强度也不尽人意。

同时由于其熔体温度过高且我们没有足够的工艺得到kg基的熔体,至今没有合适的材料作为模具生产部件。

3.制造耐1093℃(2000°F)以上高温的结构材料所使
用的难熔金属主要是钨、钼、钽和铌。

在难熔金属合金中钼合金是最早用作结构材料的合金,Mo-0.5Ti-0.1Zr-0.02C合金具有良好的高温强度和低温塑性,在工业上广泛应用。

铌合金的出现迟于钼合金,但发展很快,已有30余种牌号。

航天工业中使用的主要是中强合金和低强高塑性的铌合金。

三、发展前景:高温合金发展的趋势是进一步提高合金的工作温度和改善中温或高温下承受各种载荷的能力,延长合金寿命。

就涡轮叶片材料而言,单晶叶片将进入实用阶段,定向结晶叶片的综合性能将得到改进。

此外,有可能采用激冷态合金粉末制造多层扩散连接的空心叶片,从而适应提高燃气温度的需要。

就导向叶片和燃烧室材料而言,有可能使用氧化物弥散强化的合金,以大幅度提高使用温度。

为了提高抗腐蚀和耐磨蚀性能,合金的防护涂层材料和工艺也将获得进一步发展。

难熔金属合金的发展趋势也和高温合金大同小异主要在加工方法坯锭塑性加工定向凝固技术定向凝固法粉末冶金技术等方面加以改进。

充分利用难熔金属的各自特点,开发出性能优异的难熔金属合金将成为研究的重点。

四、参考文献
/ProductShow.asp?ID=348
/jscl/tsg/200806/124634.html
/pages/sipo/20048000/32/2c906139e008440f2f4b 20c532f8ed0e_0.html
李哲郑欣——难熔金属单晶技术现状与展望。

相关文档
最新文档