七年级上册数学一元一次方程重点难点题型全覆盖试卷附详细答案
部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

专题08 解一元一次方程(40题) 专项训练1.(2022·河南周口·七年级期末)解方程:(1)2(3)37(1)3x x x +-=--; (2)3151123y y +-=+2.(2022·江苏扬州·七年级期末)解下列方程:(1)4x ﹣3=2(x ﹣1)(2)152126x x -+-=3.(2022·河北保定·七年级期末)解方程:(1)2(1)129x x --=; (2)13124x x +--=1.【答案】(1)2x =-;(2)1x =-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.(1)解:去括号得:22129x x --=,移项得:29212x x -=+,合并同类项得:714x -=,系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)(31)4x x +--=,去括号得:22314x x +-+=,移项得:23412x x -=--,合并同类项得:1x -=,系数化为1得:1x =-.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.4.(2022·浙江丽水·七年级期末)解下列方程(1)3x +1=-2 (2)13132y y -+=-5.(2022·黑龙江·七年级期末)解下列方程:(1)862(64)x x x =--(2)231147x x +--=【答案】(1)x =2 (2)x =-2【分析】(1)先去括号,移项,合并同类项,系数化为1可得(2)去分母,去括号,移项,合并同类项,系数化为1可得(1)解:去括号得:8x =6x +8x -12移项得:8x -6x -8x =-12合并同类项得:-6x =-12系数化为1得:x =2(2)解:去分母得:7(x +2)-4(3x -1)=28去括号得:7x+14-12x +4=28移项得:7x -12x =28-14-4合并同类项得:-5x =10系数化为1得:x =-2【点睛】本题考查了解一元一次方程,熟练掌握解题步骤并小心计算是解题关键.6.(2022·福建泉州·七年级期末)解方程:714(10)3x x --=-.【答案】10x =【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:()()371210x x --=-,去括号得:3712120x x -+=-,移项得:1212037x x --=---,合并同类项得:13130x -=-,系数化为1得:10x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.7.(2022·河北·涿州市七年级期末)解一元一次方程(1)0.50.7 6.5 1.3x x -=-(2)1123x x --=8.(2022·陕西渭南·七年级期末)解方程:5144123x x x --+=-.9.(2022·四川眉山·七年级期末)解方程:213134x x -+-=10.(2022·河南郑州·七年级期末)解下列方程:(1)2(32)14x -=(2)13735x x x -+-=-【答案】(1)3x =(2)7x =【分析】(1)先去括号,再移项,合并同类项,化系数为 1;(2)先去分母,再去括号,移项,合并同类项,化系数为 1.(1)解:去括号,可得:6414x -=,移项,合并同类项:618x =,系数化为1,可得:3x =;(2)解:去分母,可得:155(1)7153(3)x x x --=´-+,去括号,可得:155510539x x x -+=--,移项,合并同类项,可得:1391x =,系数化为1,可得:7x =.【点睛】本题考查解一元一次方程,掌握解一元一次方程的方法是解题关键.11.(2022·新疆塔城·七年级期末)解方程:(1)()73326x x -+=(2)16136x x x -+-=-【答案】(1)6x =- (2)2x =【分析】(1)先去括号,再移项,合并同类项,最后化系数为1即可;(2)先去分母,再去括号,移项、合并同类项,最后化系数为1.(1)解:7966x x --=212x -=6x =-.(2)解:()()62166x x x --=-+714x -=-2x =.【点睛】此题考查了解一元一次方程,涉及去分母、去括号、移项,合并同类项、化系数为1等知识,解题的关键是掌握相关知识.12.(2022·福建泉州·七年级期末)解方程:2141126x x +--=.【答案】x =1【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【详解】去分母,得:3(2x +1)﹣(4x ﹣1)=6,去括号,得:6x +3﹣4x +1=6,移项,得:6x ﹣4x =6﹣3﹣1,合并同类项,得:2x =2,系数化为1,得:x =1;【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.(2022·四川广安·七年级期末)解方程:(1)()43204x x --=(2)2151136x x +--=14.(2022·黑龙江绥化·期末)解方程.(1)32185525x += (2)311043x x -=15.(2022·四川广元·七年级期末)解方程:21252x x x +--=-.16.(2022·河北承德·七年级期末)解下列方程:①2342x x -=- ②123123x x +--=.17.(2022·黑龙江牡丹江·七年级期末)解方程:312123x x x ---+=.18.(2022·安徽阜阳·七年级期末)2121134-+=-x x .19.(2022·贵州毕节·七年级期末)解方程:(1)2(3)3(1)6x x -+-=(2)123126x x +--=【答案】(1)3x = (2)0x =20.(2022·黑龙江大庆·期末)解方程:(1)3(x ﹣2)=2﹣5(x ﹣2); (2)223146x x +--=21.(2022·河南许昌·七年级期末)解方程:(1)83(21)172(3)--=++x x(2)14527-+-=-x x x22.(2022·宁夏·七年级期末)解下列方程:(1)5(2)3(21)7x x +--=(2)123123x x +--=23.(2022·陕西·西安七年级期末)解方程:(1)3x ﹣2(10﹣x )=5;(2)123146x x +--=.【答案】(1)x =5; (2)x =-3【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:去括号得:3x -20+2x =5,移项合并得:5x =25,解得:x =5;(2)去分母得:3x +3-4x +6=12,移项合并得:-x =3,解得:x =-3;【点睛】此题考查了解一元一次方程,熟练掌握解方程的基本步骤是解本题的关键.24.(2022·辽宁·朝阳七年级期末)解方程:(1)2(21)37x x -=-; (2)341125x x -+-=.25.(2022·海南·七年级期末)解下列方程:(1)()()4321x x -+=-; (2)2543137x x +--=.26.(2022·安徽·七年级期末)解方程:123152x x -+-=27.(2022·山东聊城·七年级期末)解下列一元一次方程:(1)()()73124x x -+=- (2)121123x x --+=【答案】(1)4x =-(2)5x =【分析】(1)根据去括号,移项,合并同类项的步骤解一元一次方程即可;(2)根据去分母,去括号,移项,合并同类项的步骤解一元一次方程即可;28.(2022·湖南永州·七年级期末)解方程:(1)()()31241x x +=-; (2)5121136x x +--=.29.(2022·云南临沧·七年级期末)解方程:(1)4x -4=6-x(2)142123x x ---=【答案】(1)2(2)-1【分析】(1)根据解方程的步骤求解即可;(2)根据解方程的步骤求解即可.(1)解:4x -4=6-x ,移项得4x +x =6+4,合并同类项得5x =10,系数化1得x =2;(2)解:去分母得 3(x -1)-2(4x -2)=6,去括号得 3x -3-8x +4=6,移项合并得 -5x =5,系数化1得 x =-1;【点睛】本题考查了一元一次方程的解法,解题的关键是熟练掌握解方程的步骤.30.(2022·山东聊城·七年级期末)解下列方程:(1)32(3)23(21)--=--x x(2)332164x x +-=-31.(2022·福建龙岩·七年级期末)解方程:(1)6742x x -=-;(2)3157146y y --=+.32.(2022·山东威海·期末)解方程:(1)42(4)2(1)x x -+=-; (2)121(7)(5)352x x +=--; (3)0.30.40.50.220.20.3x x --+=.33.(2022·山东烟台·期末)解方程:(1)0.170.210.70.03x x--=(2)31423x x--+=∴x =7.【点睛】本题考查一元一次方程的应用,熟练掌握一元一次方程的解法是解题关键.34.(2022·山东济南·期末)解方程:(1)51263x x x +--=- (2)20.820.50.4x x --=35.(2022·吉林四平·七年级期末)某同学解方程12324x x +-=+的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得()()2123x x +=-+.(第一步)去括号,得2223x x +=-+.(第二步)移项,得2223x x +=-+.(第三步)合并同类项,得33x =.(第四步)系数化为1,得1x =.(第五步)(1)该同学解答过程从第___________步开始出错,错误原因是____________________;(2)写出正确的解答过程.【答案】(1)一,漏乘不含分母的项(2)见解析.【分析】(1)观察第一步,可得结论;(2)按解一元一次方程的一般步骤求解即可.(1)解:方程去分母,得2(x +1)=(2-x )+12,所以该同学从第一步就出错了,错误的原因是去分母时,不含分母的项漏乘了.故答案为:一,漏乘不含分母的项;(2)解:去分母,得2(x +1)=(2-x )+12,去括号,得2x +2=2-x +12,移项,得2x +x =2-2+12,合并同类项,得3x =12,系数化为1,得x =4.【点睛】本题主要考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.36.(2022·河南开封·七年级期末)下面是某同学解方程的过程,请认真阅读并完成相应的任务:解方程:51263x x x +--=-解:去分母,得()()125621x x x -+=--………………第一步去括号,得125622x x x -+=-+ ……………………第二步移项,得621252x x x --+=--+ ……………………第三步合并同类项,得515x -=- ………………………………第四步系数化为1,得3x = ………………………………………第五步(1)任务一:填空:①以上解方程步骤中,第一步去分母的依据是___.②第___步开始出现错误,这一步错误的原因是.(2)任务二:请写出本题正确的解题过程.(3)任务三:请你根据平时的学习经验,在解方程时还需注意的事项提一条合理化建议.【答案】(1)①等式的基本性质二;②二,去括号时没有变符号;(2)1x =(3)去分母时要注意每一项都要乘到,(答案不唯一,合理就行)【分析】(1)观察这位同学解方程的步骤,利用等式的基本性质及去括号可进行求解;(2)根据一元一次方程的解法可直接进行求解;37.(2022·吉林长春·七年级期末)阅读下面方程的求解过程:解方程:31421 25x x-+=-解15x﹣5=8x+4﹣1,(第一步)15x﹣8x=4﹣1+5,(第二步)7x=8,(第三步)78x=.(第四步)上面的求解过程从第 步开始出现错误;这一步错误的原因是 ;此方程正确的解为 .38.(2022·山东滨州·七年级期末)学习了一元一次方程的解法后,老师布置了这样一道计算题3157146x x ---=,甲、乙两位同学的解答过程分别如下:甲同学:解方程3157146x x ---=.解:3157121121246x x --´-´=´ 第①步3(31)122(57)x x --=- 第②步3112107x x --=- 第③步3107112x x -=-++ 第④步76x -= 第⑤步67x =-. 第⑥步乙同学:解方程3157146x x ---=.解:31571211246x x --´-=´ 第①步3(31)12(57)x x --=- 第②步3311014x x --=- 第③步3101413x x -=-++ 第④步710x -=- 第⑤步107x =-. 第⑥步老师发现这两位同学的解答过程都有错误,请回答以下问题:(1)甲同学的解答过程从第__________步开始出现错误(填序号);(2)乙同学的解答过程从第__________步开始出现错误(填序号);错误的原因是_________________________.(3)请写出正确的解答过程.【答案】(1)③(2)①,错用等式的性质2(方程两边漏乘)(3)1x =-【分析】准确运用一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出答案.39.(2022·浙江台州·七年级期末)解方程:213x +﹣1016x +=1.甲、乙两位同学的解答过程如下甲同学:解:213x +×6﹣1016x +×6=1第①步2(2x +1)﹣10x +1=1⋯⋯第②步4x +2﹣10x +1=1⋯⋯第③步4x ﹣10x =1﹣2﹣1⋯⋯第④步﹣6x =﹣2⋯⋯第⑤步x =13……第⑥步乙同学:解:426x +﹣1016x +=1⋯⋯第①步421016x x +-+=1⋯⋯第②步636x -+=1⋯⋯第③步﹣6x +3=6⋯⋯第④步﹣6x =3⋯⋯第⑤步x =﹣12⋯⋯第⑥步老师发现这两位同学的解答过程都有错误.(1)请你指出甲、乙两位同学分别从哪一步开始出错,甲:第 步,乙:第 步(填序号);(2)请你写出正确的解答过程.40.(2022·浙江宁波·七年级期末)在解方程231136x x -=-时,小元同学的解法如下: 41(31)x x =--……第①步4131x x =--……第②步70x =……第③步0x =……第④步小元同学的解法正确吗?若不正确,请指出他在第 步开始出现错误,并写出正确的解题过程:【答案】小元同学的解法不正确,①,正确的解题过程见解析【分析】他在第①步开始出现错误,应该是:4x =6-(3x -1),根据解一元一次方程的一般步骤,写出正确的解题过程即可.【详解】解:小元同学的解法不正确,他在第①步开始出现错误,正确的解题过程如下:去分母得:46(31)x x =--,去括号得:4631x x =-+移项合并同类项得:77x = 解得:1x =【点睛】此题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.。
七年级数学上册一元一次方程试题(带答案)

七年级数学上册一元一次方程试题(带答案)题目:七年级数学上册一元一次方程试题(带答案)一、填空题1. 解方程:5x - 2 = 3x + 8解:将方程化简得到:5x - 3x = 8 + 22x = 10x = 52. 解方程:2(x - 3) = 18解:将方程化简得到:2x - 6 = 182x = 18 + 62x = 24x = 123. 解方程:3(2x + 4) = 2(3x + 5)解:将方程化简得到:6x + 12 = 6x + 100x = -2 (解不存在)二、选择题1. 解方程:3x - 4 = 5 - xA) x = 3 B) x = 2 C) x = 1 D) x = 0答案:B) x = 22. 解方程:4(2x + 5) = 3(3x + 4)A) x = 23 B) x = 21 C) x = 19 D) x = 17答案:C) x = 19三、解答题1. 解方程:5(x + 3) = 5x + 8 - 2(x - 1)解:将方程化简得到:5x + 15 = 5x + 8 - 2x + 2移项得:5x - 5x - 2x = 2 - 8 - 15合并同类项得:-2x = -21两边同时除以-2得:x = 10.52. 解方程:2(x + 1) + 3x = 4(2x + 1) - 1解:将方程化简得到:2x + 2 + 3x = 8x + 4 - 1合并同类项得:5x + 2 = 8x + 3移项得:5x - 8x = 3 - 2合并同类项得:-3x = 1两边同时除以-3得:x = -1/3四、应用题1. Sam的年龄比Dave大4岁,四年前Dave的年龄是Sam的2倍。
求他们现在的年龄。
解:设Sam现在的年龄为x岁,所以Dave现在的年龄为x + 4岁。
根据题意,有方程:(x + 4) - 4 = 2(x - 4)化简得:x = 12所以Sam现在的年龄为12岁,Dave现在的年龄为16岁。
七年级上册数学一元一次方程重点难点题型全覆盖试卷附详细答案

D. 1
10.一个教室有 5 盏灯,其中有 40 瓦和 60 瓦的两种,总的瓦数为 260 瓦,则 40 瓦和 60 瓦的灯泡个数分别
是( )
A. 1,4
B. 2,3
C. 3,2
D. 4,1
11.一益智游戏分二阶段进行,其中第二阶段共有 25 题,答对一题得 3 分,答错一题扣 2 分,不作答得 0
三、计算题(共 3 题;共 30 分)
17.解方程:
(1) t t t
ht
(2)3x﹣7(x﹣1)=3+2(x+3)
18.知关于 x 的方程 2(x-1)=3m-1 与 3x+2=-2(m+1)的解互为相反数,求 m 的值.
第 2 页 共 32 页
19. 解方程: (1) t t
t
t t
(3)
t
t
27.某工人原计划 13 小时生产一批零件,后因每小时多生产 10 件,用 12 小时不但完成了任务,而且比原 计划多生产了 60 件,问原计划生产多少零件?
禀Ꙧ t
(2)
t
t t
(4)t t
tt t
t
四、解答题(共 24 题;共 145 分)
20.一架飞机在两城之间飞行,风速为 24 千米 /小时 ,顺风飞行需 2 小时 50 分,逆风飞行需要 3 小时。 (1)求无风时飞机的飞行速度 (2)求两城之间的距离。
21.某儿童服装店欲购进 A、B 两种型号的儿童服装;经调查:B 型号童装的进货单价是 A 型号童装的进货 单价的两倍,购进 A 型号童装 60 件和 B 型号童装 40 件共用去 2100 元. 求 A、B 两种型号童装的进货单价各是多少元?
A. 不赔不赚
七年级数学一元一次方程难题难度精选(含解析答案)

第1页 共12页七年级数学一元一次方程难题难度精选(含解析答案)学校: 姓名: 班级: 考号:1. 某企业对应聘人员进行英语考试,试题由50道选择题组成,每道试题答对得4分,不答得0分,答错扣1分.已知某位应聘者有5道题未答,得了140分,则他答错的题目有 ( )A. 37道B. 45道C. 8道D. 9道2. 一个水池有甲、乙两个水龙头,单独开甲水龙头,4 h 可把空水池灌满;单独开乙水龙头,6 h 可把空水池灌满,同时开甲、乙两个水龙头来灌满水池的23所需的时间是 ( )A. 83 hB. 43 hC. 4 hD. 85 h3. 地球正面临第六次生物大灭绝,据科学家预测,则2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝.2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%~15%范围内,由此预测,2013年底剩下江豚的数量可能为( )A. 970头B. 860头C. 750头D. 720头4. 关于x 的方程x -4=3m 和x +2=m 有相同的解,则m 的值是 ( ) A. 3 B. -3 C. 6 D. -65. 将方程x+13-3x+22=13-x 去分母,得( )A. 2(x +1)-3(3x +2)=2-xB. 2(x +1)-3(3x +2)=13-6xC. 2(x +1)-3(3x +2)=2-6xD. 以上都不对6. 一个三角形的三边长之比是3∶5∶7,且最长边比最短边长8 cm,则该三角形的周长是( )A. 10 cmB. 20 cmC. 30 cmD. 40 cm7. 当1-(3m-5)2取得最大值时,关于x的方程5m-4=3x+2的解是( )A. x=79B. x=97C. x=-1D. x=-978. 若式子12(x-2)与3(x-1)-3的值互为相反数,则x的值为( )A. 1B. 167C. 0D. 29.两根同样长的蜡烛,粗蜡烛可燃4h,细蜡烛可燃3h,一次停电,同时点燃两根蜡烛,来电时熄灭,发现粗蜡烛的长是细蜡烛的2倍,则停电的时间是.10.[2014·银川外国语实验九下一模,11]某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款元.11.随着电子技术的发展,手机的价格不断降低,某品牌手机按原价每部降价m元后,又降价20%,此时售价为n元,则该手机原价为每部元.12.如图(1)是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图(2)所示的长方体盒子,已知该长方体的宽是高的2倍,则它的长为cm,体积是cm3.13.三个连续奇数的和为15,设最小的奇数为x,则可列方程为.14.已知单项式13x2m-1与-2x2+m是同类项,那么m的值是.15.若关于x的方程(a-2)x|a-1|+7=5是一元一次方程,则a的值为.第3页 共12页16. 某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,小明买了 张成人票, 张儿童票.17. 服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是_______元.18. 相传有个人因为不讲究说话的方式,常引起误会,把好事办成坏事.一天,这个人摆宴席,请来了一些客人,他见几位客人还没到,就自言自语地说:“怎么该来的还不来呢?”客人们听了,心想:这么说,我们是不该来的了.于是,有一半客人悄悄走了.他见客人走了,十分焦急,又说:“不该走的倒走了.”剩下的客人一听:已走的都是不该走的,那么该走的是我们了,于是又有三分之二的客人离开了.人一见客人都不辞而别,急得直拍大腿,连连说:“这,这,我说的不是他们!”最后剩下的3位客人一听,心想:那肯定是我们了.于是一个个也抬腿告辞了.主人一见此景,长叹一声,说:“不会说话愣请客,鸡鸭鱼肉全白做,”请问:开始时共来了多少位客人?19. 电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位长度到K 1,第二步由K 1向右跳2个单位长度到K 2,第三步由K 2向左跳3个单位长度到K 3,第四步由K 3向右跳4个单位长度到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是19.94.试求电子跳蚤的初始位置K 0点所表示的数.20. 学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:每份按定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份按定价1.5元的价格不变,而900元的制版费则六折优惠.问:(1)学校印制多少份节目单时用两个印刷厂的费用是相同的? (2)学校要印制1500份节目单,选哪个印刷厂所付费用少?21. 如图是一套小户型房子的平面尺寸图.(1)这套房子的总面积是多少?(用含有x,y的代数式表示)(2)已知x=1.8 m,y=1 m,这套小户型房子的面积是多少平方米?(3)开发商为提高资金回笼率,给出优惠政策:如果一次性付足房款,则按房价的九折收取.小李按优惠政策,一次性付房款18.63万元,那么打折前每平方米多少元?22. 温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.23.已知34m-1=34n,试用等式的性质比较m,n的大小.24.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,如果以单价28元销售,那么每月可售出44万件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高2元,销售量相应减少4万件.设销售量y(万件),销售单价为x(元)(利润=售价-制造成本).(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?25. 某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图11所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图12所示的函数关系.图11图12根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1,y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?说明理由.第5页共12页26. 解方程:3x-3=2x-3,王同学是这样做的:根据等式的性质1,方程两边都加3,得3x-3+3=2x-3+3,①化简,得3x=2x,②根据等式的性质2,方程两边都除以x,得3=2,③所以此方程无解.④王同学的解题过程是否正确?如果不正确,指出是从第几步开始出错的及错误的原因,并加以改正.27. 甲、乙两人骑自行车同时从相距65 km的两地出发相向而行,甲的速度为17.5 km/h,乙的速度为15 km/h,经过多长时间,甲、乙两人相距32.5 km?28. 若关于x的方程3(x-1)+8=2x+3与x+k5=2-x3的解相同,求k的值.29. 某市百货商场元月一日搞促销活动:购物不超过200元不给予优惠;购物超过200元而不足500元优惠10%;购物超过500元,其中500元按九折优惠,超过部分按八折优惠.某人两次购物分别用了134元和466元.(1)此人两次所购买的商品如果不打折,值多少钱?(2)在此次活动中,他节省了多少钱?(3)若此人将两次购物合成一次,则比分两次购物节省多少钱?30.甲、乙两人骑自行车同时从相距65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时两人相距32.5千米?31. 下表是2011~2012年度德国足球甲级联赛部分球队积分榜,观察后请把表格填完整.(规定:足球比赛胜一场积3分,平一场积1分,负一场积0分)32. 已知(2m-8)x2+x3n-2=-6是关于x的一元一次方程,求m,n的值.参考答案1. 【答案】C【解析】可设答错了x道题目,因为有5道题未答,所以答对的题目有(50-5-x)道,可得方程4(50-5-x)-x=140,去括号、移项、合并同类项得x=8.2. 【答案】D【解析】设所需的时间是x h,若整个水池为整体1,则甲水龙头的速度为14,乙水龙头的的速度为16, 所以甲、乙两个水龙头x h的工作量分别是x4,x6,则可列方程x4+x6=23,解得x=85,故选D.3. 【答案】B【解析】因为1000×(1-13%)=870,1000×(1-15%)=850,故选B.4. 【答案】B【解析】由题意可知两方程得解为x=3m+4, x= m-2,所以3m+4=m-2,即2m=-6,解得m=-3.5. 【答案】C【解析】本题重点考查了去分母时,等号两边的每一项都要乘各分母的最小公倍数.A选项等号右边的x没有乘最小公倍数;B选项等号右边的13没有乘最小公倍数;C选项正确.6. 【答案】C【解析】解这类问题的技巧是设一份为未知数,所以设三边长分别是3x cm,5x cm,7x cm,则可列方程7x-3x=8,解得x=2,所以三边长分别是6cm,10 cm,14 cm,则三角形的周长是6+10+14=30 cm.7. 【答案】A【解析】要使1-(3m-5)2取得最大值,则(3m-5)2取最小值,需3m-5=0,则m=53,把m=53代入5m-4=3x+2中,解得x=79,故选A.8. 【答案】D【解析】本题运用了译式法,因为12(x-2)与3(x-1)-3的值互为相反数,根据相反数的定义,可以翻译成12(x-2)+3(x-1)-3=0或12(x-2)= -[3(x-1)-3],然后解方程进行求解即可.9. 【答案】125h【解析】根据题意可设停电的时间是x h,则列方程为1-x4=2(1-x3),解得x=125.第7页共12页10. 【答案】16.8【解析】因为采取“买二赠一”活动,所以一箱牛奶18袋,只收18×23=12袋的钱,故买一箱需要花12×1.4=16.8元.11. 【答案】54n+m【解析】设原价为每部x元,根据题意可列方程为(x-m)(1-20%)=n,解得x=54n+m.12. 【答案】20;1000【解析】先设长方体的高为x cm,得出宽为(12×30-x)cm,再利用宽是高的2倍列出方程,即12×30-x=2x,解方程得x=5,所以长方体的高为5cm,宽为10cm,再观察正方形可得关系式,长+2高=30,得长为30-2高=30-10=20cm.体积为20×10×5=1000 cm3.13. 【答案】x+(x+2)+(x+4)=15【解析】相邻奇数之间相差2,所以三个连续的奇数分别为x,x+2,x+4,故方程可列为x+(x+2)+(x+4)=15.14. 【答案】3【解析】解本题的技巧是用同类项的定义可以构造方程为2m-1=2+m,解得m=3.15. 【答案】0【解析】由题意,知|a-1|=1,且a-2≠0,所以a=0.该题容易填成0或2,原因是没有考虑x的系数不能为0.16. 【答案】15;5【解析】设小明买了x张成人票,则买了(20-x)张儿童票,所列方程为70x+35(20-x)=1225,解得x=15,20-x=5,所以小明买了15张成人票,5张儿童票.17. 【答案】200【解析】设这款服装每件的进价是x元,根据题意,得300×80%-x=20%·x,解得x=200,所以这款服装每件的进价是200元.18. 【答案】设开始时共来了x位客人,则第一次走了12x位客人,第二次走了23×12x位客人,第三次走了3位客人.根据题意,得x=12x+23×12x+3,即x=12x+13x+3.移项,得x-12x-13x=3.合并同类项,得16x=3.系数化为1,得x=18.答:开始时共来了18位客人.19. 【答案】设K0点所表示的数为x,则K1,K2,K3,…,K100所表示的数分别为x-l,x-1 2,x-1 2-3,…,x-1 2-3 4-…-99 100,由题意知:x-1 2-3 4-…-99 100=x (-1 2) (-3 4)-… (-99 100)=x 11 … 1=x 50=19.94,解得x=-30.06.所以电子跳蚤的初始位置K点所表示的数是-30.06.20.(1) 【答案】设学校印制x份节目单时用两个印刷厂的费用是相同的,根据题意,得80%×1.5x+900=1.5x+900×60%,解得x=1200.答:学校印制1 200份节目单时用两个印刷厂的费用是相同的.(2) 【答案】选甲厂需付:80%×1.5×1500+900=2700(元),选乙厂需付:1.5×1500+900×60%=2790(元),因为2700<2790,所以选甲印刷厂所付费用少. 21.(1) 【答案】4x·6y-y·x=24xy-xy=23xy.(2) 【答案】当x=1.8 m,y=1 m时,这套小户型房子的面积为23×1.8×1=41.4(m2).(3) 【答案】设:打折前每平方米a元,则41.4a×90%=186 300,解得a=5000.答:打折前每平方米5000元.22.(1) 【答案】①根据信息填表:②由题意得{200−3x=2x1600+56x=4000.第9页共12页解得40≤x ≤4267.∵x 为整数,∴x =40或41或42,∴有3种方案,分别为:(ⅰ)A 地40件,B 地80件,C 地80件;(ⅱ)A 地41件,B 地77件,C 地82件;(ⅲ)A 地42件,B 地74件,C 地84件.(2) 【答案】由题意得30x +8(n -3x )+50x =5800,整理得n =725-7x . ∵n -3x ≥0,∴x ≤72.5.又∵x ≥0,∴0≤x ≤72.5且x 为整数.∵n 随x 的增大而减小,∴当x =72时,n 有最小值为221.23. 【答案】根据等式的性质1,等式两边同时加-34n +1,得34m -34n =1.根据等式的性质2,等式两边乘43,得m -n =43,因为m -n >0,所以m>n .24.(1) 【答案】销售量与单价关系:y=44-x -282×4=44-2x+56=100-2x.利润与单价关系:z=(x-18)y=-2x 2+136x-1800.(2) 【答案】因为z=-2x 2+136x-1800=-2(x 2-68x+900)=-2(x-34)2+512. 所以当销售单价为34元时,利润最大,最大为512万元.(3) 【答案】当z=350时,-2(x-34)2+512=350,可得x 1=25,x 2=43.因为x ≤32,所以厂商每月利润不低于350万元时,售价为25≤x ≤32. 制造成本为18y=18(100-2x )=-36x+1800,在x ∈[25,32]时,随x 增大而减少,当x=32时,成本为648万元.所以,至少需成本648万元.25.(1) 【答案】5元. (1分)(2) 【答案】20 000元;2.5元. (3分)(3) 【答案】设y 1=k 1x ,将(100,500)代入,得500=100k 1,k 1=5.∴y 1=5x. (5分)设y 2=k 2x+b ,将(0,20 000),(4 000,30 000)代入,得{20000=b,30000=4000k 2+b.解得{k 2=2.5,b =20000.∴y 2=2.5x+20 000. (7分)(4) 【答案】y1<y2,即5x<2.5x+20 000,解得x<8 000.y 1=y2,即5x=2.5x+20 000,解得x=8 000.y 1>y2,即5x>2.5x+20 000,解得x>8 000.∴当x<8 000时,选方案一.当x=8 000时,两个方案都一样.当x>8 000时,选方案二.(10分)26. 【答案】王同学的解题过程不正确,是从第③步开始出错的,根据等式的性质2,等式两边同时除以不等于0的同一个数,等式不变,本题不能确定x的值是否为0.当x=0时,方程两边都除以x,不符合等式的性质2.改正:①②步同题.方程的两边都减2x,得3x-2x=2x-2x,即x=0.27. 【答案】相遇前:设经过x h,甲、乙两人相距32.5 km.依题意,得17.5x+15x=65-32.5,解这个方程,得32.5x=32.5即x=1;相遇后:设从出发到相遇后共经过y h,甲、乙两人相距32.5 km.依题意,得17.5y+15y=6 5+32.5,解得y=3.故经过1h或3h,甲、乙两人相距32.5 km.28. 【答案】解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程x+k5=2-x3中,得-2+k5=2+23,解得k=263.所以k的值是263.29.(1) 【答案】因为200×(1-10%)=180(元),180>134,所以购买134元的商品未优惠,因为500×0.9=450<466,所以购买466元的商品分两部分优惠,设其售价为x元,依题意,得500×0.9+(x-500)×0.8=466,解得x=520. 所以两次所购买的商品如果不打折分别值134元和520元,共计654元.(2) 【答案】节省了654-134-466=54(元).(3) 【答案】654元商品的优惠价为500×0.9+(654-500)×0.8=573.2(元),所以节省134+466-573.2=26.8(元).所以若此人将两次购物合成一次,则比分两次购物节省26.8元.30. 【答案】本题有两种情况:相遇前相距32.5千米时,设经过x小时两人相距32.5千米,根据题意得: 17.5x+15x=65-32.5,解得x=1;相遇后相距32.5千米时,设经过y小时两人相距32.5千米,根据题意得: 17.5y+15y=65+32.5,解得y=3.第11页共12页答:经过1小时或3小时两人相距32.5千米.31. 【答案】表格中反映了两个相等关系:比赛场次=胜场数+负场数+平场数,胜场的积分+平场的积分=总积分.设B球队胜x场,则负(34-7-x)场,所以3x+7=67,解得x=20,因此A球队胜20场,负7场.所以补全表格如下:32. 【答案】因为方程是关于x的一元一次方程,所以2m-8=0,即m=4,且3n-2=1,即n=1.第12页共12页。
完整版)人教版七年级上数学一元一次方程经典题型讲解及答案

完整版)人教版七年级上数学一元一次方程经典题型讲解及答案1.为了吸引顾客,某商店开张时所有商品都按八折优惠出售。
已知一种皮鞋的进价为60元一双,商家按八折出售后获得40%的利润率。
问这种皮鞋的标价和优惠价各是多少元?2.一家商店将某种服装的进价提高40%后标价,再按八折优惠卖出,每件仍获得15元的利润。
问这种服装的进价是多少元?3.一家商店将一种自行车的进价提高45%后标价,再按八折优惠卖出,每辆仍获得50元的利润。
问这种自行车的进价是多少元?4.某商品的进价为800元,出售时标价为1200元。
由于积压,商店准备打折出售,但要保持利润率不低于5%。
问最多可以打几折?5.一家商店将某种型号的彩电的原售价提高40%,然后打广告写上“大酬宾,八折优惠”。
经过顾客投诉,被罚款2700元,罚款是非法收入的10倍。
问每台彩电的原售价是多少元?6.甲独自完成一项工作需要10天,乙独自完成需要8天,两人合作几天可以完成?7.甲独自完成一项工程需要15天,乙独自完成需要12天。
现在甲、乙合作3天后,甲有其他任务,剩下的工程由乙单独完成。
问乙还需要几天才能完成全部工程?8.一个蓄水池有甲、乙两个进水管和一个丙排水管。
单独开甲管6小时可注满水池,单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空。
现在先将甲、乙管同时开放2小时,然后打开丙管。
问打开丙管后几小时可以注满水池?9.输入一批工业最新动态信息到管理储存网络中,甲独自完成需要6小时,乙独自完成需要4小时。
甲先做了30分钟,然后甲、乙一起完成。
问甲、乙一起完成还需要多少小时?10.某车间有16名工人,每人每天可以加工甲种零件5个或乙种零件4个。
已知每加工一个甲种零件可以获得16元的利润。
现在一部分工人加工甲种零件,其余的加工乙种零件。
请问加工甲种零件的工人有多少人?1.这个车间一天可以获利60个乙种零件,因为每个乙种零件可以获利24元,而总获利是1440元。
【精选】七年级数学上册一元一次方程单元测试卷附答案

一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
七年级数学上册一元一次方程单元试卷(word版含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.2.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
(1)求饮用水和蔬菜各有多少件。
(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。
已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。
(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。
该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.3.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。
七年级上册数学专项:一元一次方程复习题精选(附答案)

七年级上册数学一元一次方程一.选择题1.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.252.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2二.解答题3.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?4.一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟,若每小时行驶50km,就要迟到6分钟,求快递员所要骑行的路程.5.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.6.甲、乙两个仓库共存有粮食60t.解决下列问题,3个小题都要写出必要的解题过程:(1)甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?(2)如果甲仓库原有的粮食比乙仓库的2倍少3t,则甲仓库运出多少t粮食给乙仓库,可使甲、乙两仓库粮食数量相等?(3)甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1t,乙仓库运进的数量是本仓库原有粮食数量加上8t所得的和的一半.求此时甲、乙两仓库共有粮食多少t?7.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?8.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,才能使商场销售完节能灯时获利为13500元?9.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?10.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.11.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.12.有一些相同的房间需要粉刷,一天3名师傅去粉刷7个房间,结果其中有30m2墙面未来得及粉刷;同样的时间内5名徒弟粉刷了9个房间之外,还多粉刷了另外的10m2墙面.每名师傅比徒弟一天多刷20m2墙面.求每个房间需要粉刷的墙面面积.13.某城市按以下规定收取天然气费:(1)每月所用天然气按整立方米计算;(2)若每月用天然气不超过60立方米,按每立方米2.4元收费,若超过60立方米,超过部分按每立方米3元收费.已知某户人家冬季某月的天然气气费平均每立方米2.6元,试求这户人家该月需要交多少天然气费.14.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价 1500 元,售价 2000 元;乙种手机每部进价 3500 元,售价 4500 元;采购这两种手机恰好用了 27 万元.把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了 5000 元,经销商把甲种手机加价 50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.15.某市滴滴快车运价调整后实行分时段计价,部分的计价规则如下表:(1)小明今天早上在7:30﹣8:00之间乘坐滴滴快车去单位上班,行车里程4公里,行车时间20分钟,则他应付车费多少元?(2)上周五小明在单位加班,一直工作到晚上23:45才乘坐滴滴快车回家,已知行车里程为m公里(m>15),行车时间为n分钟(n<100),请用含m,n的代数式表示小明应付的车费.(3)若小明和小亮在17:00﹣18:30之间各自乘坐滴滴快车回家,行车里程分别为9.6公里与12公里,如果下车时两人所付车费相同,问这两辆滴滴快车的行车时间相差多少分钟?16.某商店购进一批棉鞋,原计划每双按进价加价60%标价出售.但是,按这种标价卖出这批棉鞋90%时,冬季即将过去.为加快资金周转,商店以打6折(即按标价的60%)的优惠价,把剩余棉鞋全部卖出.(1)剩余的棉鞋以打6折的优惠价卖出,这部分是亏损还是盈利?请说明理由.(2)在计算卖完这批棉鞋能获得的纯利润时,减去购进棉鞋的钱以及卖完这批棉鞋所花的1400元的各种费用,发现实际所得纯利润比原计划的纯利润少了20%.问该商店买进这批棉鞋用了多少钱?该商店买这批棉鞋的纯利润是多少?17.某水果批发市场苹果的价格如下表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果千克,第二次购买千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题,写出分析过程)18.为了丰富学生的课外活动,某校决定购买一批体育活动用品,经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每副球拍贵50元,两个篮球与三副球拍的费用相等,经洽谈,甲体育用品商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球超过80个,则购买羽毛球拍打八折.该校购买100个篮球和a(a>10)副羽毛球拍.(1)求每个篮球和每副羽毛球拍的价格分别是多少?(2)请用含a的式子分别表示出到甲商店和乙商店购买体育活动用品所花的费用;(3)当该校购买多少副羽毛球拍时,在甲、乙两个商店购买所需费用一样?19.学校“数学魔盗团”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买1个A种魔方比1个B种魔方多花5元.(1)求这两种魔方的单价;“双(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).11期间”某商店有两种优惠活动,如图所示.请根据以上信息填空:购买A种魔方个时选择活动一盒活动二购买所需费用相同.20.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?22.某公路收费站的收费标准是大客车20元,大货车10元,轿车5元,某天通过收费站的这三种车辆的数量之比是5:7:6,共收费4.8万元,问这天通过收费站的大货车是多少辆?23.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?24.一辆客车以每小时30千米的速度从甲地出发驶向乙地,经过45分钟,一辆货车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,求甲、乙两地的距离.25.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?26.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?27.“五一”期间,小明一家人乘坐高铁前往某市旅游,计划第二天开始租用新能源汽车自驾出游.经了解,甲、乙两公司的收费标准如下:甲公司:按日收取固定租金80元,另外再按租车时间计费,每小时的租费是15元;乙公司:无固定租金,直接以租车时间计费,每小时的租费是30元.(1)若租车时间为x小时,则租用甲公司的车所需费用为元,租用乙公司的车所需费用为元(结果用含x的代数式表示);(2)当租车时间为11小时时,选择哪一家公司比较合算?(3)当租车多少时间时,两家公司收费相同?28.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)29.某商场开展春节促销活动出售A 、B 两种商品,活动方案如下两种:(1)某单位购买A 商品30件,B 商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A 商品x 件(x 为正整数),购买B 商品的件数是A 商品件数的2倍少1件,若两方案的实际付款一样,求x 的值.30.2018年元旦期间,某商场打出促销广告,如下表所示: (1)用代数式表示(所填结果需化简)设一次性购买的物品原价是x 元,当原价x 超过200元但不超过500元时,实际付款为 元;当原价x 超过500元时,实际付款为 元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?31.某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.32.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小敏乘坐滴滴快车,行车里程5公里,行车时间20分钟,写小敏下车时付多少车费?(2)小红乘坐滴滴快车,行车里程10公里,下车时所付车费29.4元,则这辆滴滴快车的行车时间为多少分钟?33.列一元一次方程解应用题.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?34.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?35.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x|=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图(25﹣1)可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图(25﹣2),在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.36.两种移动电话计费方式表如下:设主叫时间为t分钟.(1)请完成下表(2)问主叫时间为多少分钟时,两种方式话费相等?(3)问主叫时间超过400分钟时,哪种计费方式便宜?便宜多少元?(用含t的式子表示)37.如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C 出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C→D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示);(2)求点P原来的速度.(3)判断E点的位置并求线段DE的长.38.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.39.成都某网络约车公司的收费标准是:起步价8 元,不超过3 千米时不加价,行程在3 千米到5 千米时,超过3 千米但不超过5 千米的部分按每千米1.8 元收费(不足1 千米按1 千米计算),当超过5 千米时,超过5 千米的部分按每千米2 元收费(不足1 千米按1 千米计算).(1)若李老师乘坐了2.5 千米的路程,则他应支付费用为元;若乘坐的5 千米的路程,则应支付的费用为元;若乘坐了10 千米的路程,则应支付的费用为元;(2)若李老师乘坐了x(x>5 且为整数)千米的路程,则应支付的费用为元(用含x 的代数式表示);(3)李老师周一从家到学校乘坐出租车付了19.6元的车费(且他所乘路程的千米数为整数),若李老师改骑电动自行车从家到学校与乘坐出租车所走路程相等,李老师骑电动自行车的费用为每千米0.1元,不考虑其他因素,问李老师可以节约多少元钱?40.甲乙两地相距400千米,一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,相向而行.已知客车的速度为60千米/小时,出租车的速度是100千米/小时.(1)多长时间后两车相遇?(2)若甲乙两地之间有相距100km的A、B两个加油站,当客车进入A站加油时,出租车恰好进入B站加油,求A加油站到甲地的距离.(3)若出租车到达甲地休息40分钟后,按原速原路返回.出租车能否在到达乙地或到达乙地之前追上客车?若不能,则出租车往返的过程中,至少提速为多少才能在到达乙地或到达乙地之前追上客车?是否超速(高速限速为120千米/小时)?为什么?七年级上册数学一元一次方程参考答案与试题解析一.选择题(共2小题)1.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10 B.20 C.30 D.25【分析】设乙中途离开了x天,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设乙中途离开了x天,根据题意得:×40+×(40﹣x)=1,解得:x=25,则乙中途离开了25天.故选:D.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.2.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1 B.C.D.2【分析】利用总共量为1,进而表示出甲、乙的工作量得出等式求出答案.【解答】解:设两小组合做1h后,再由乙小组单独做,还需x小时才能完成这台机器的检修任务,根据题意可得:2(+)+x•=1,解得:x=.答:还需小时后才能完成这台机器的检修任务.选:C.【点评】此题主要考查了一元一次方程的应用,根据总共量为1得出等式是解题关键.二.解答题(共38小题)3.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50,y=答:爸爸第一次追上小明后,在第二次相遇前,再经过分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.4.一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟,若每小时行驶50km,就要迟到6分钟,求快递员所要骑行的路程.【分析】设路程为xkm,根据时间=路程÷速度、“若每小时行驶60km,就早到12分钟;若每小时行驶50km,就要迟到6分钟”,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设路程为xkm,以每小时60km的速度到达目的地所需的时间为;以每小时50km的速度到达目的地所需的时间为.根据题意得:+=﹣,解得:x=90.答:快递员需要骑行90km.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据时间=路程÷速度表示出两种速度下将快递送到某地所需时间;(2)根据两种速度下所需时间之间的关系,列出关于x的一元一次方程.5.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【解答】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学一元一次方程重点难点题型全覆盖试卷附详细答案一、单选题(共11题;共22分)1.方程2- =- 去分母得( )A. 2-5(3x -7)= -4(x+17)B. 40-15x -35=-4x -68C. 40-5(3x -7)= -4x+68D. 40-5(3x -7)= -4(x+17)2.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A. x+312+x 8=1B. x+312+x−38=1C. x 12+x 8=1D. x 12+x−38=13.某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打( )A. 9折B. 8折C. 7折D. 6折4.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折5.某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生( )名.A. 20B. 21C. 22D. 236.若x =2是方程k (2x -1)=kx +7的解,那么k 的值是( )A. 1B. -1C. 7D. -77.商店同时以60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则卖这两件衣服总的是( )A. 不赔不赚B. 亏损8元C. 盈利3元D. 亏损3元8.下列式子中,是一元一次方程的是( )A. x+2y=1B. −5x +1C. x 2=4D. 2t+3=19.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润率由m%提高到(m+6)%,则m 的值为( )A. 10B. 12C. 14D. 110.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( )A. 1,4B. 2,3C. 3,2D. 4,111.一益智游戏分二阶段进行,其中第二阶段共有25题,答对一题得3分,答错一题扣2分,不作答得0分.若小明已在第一阶段得50分,且第二阶段答对了20题,则下列哪一个分数可能是小明在此益智游戏中所得的总分( )A. 103分B. 106分C. 109分D. 112分二、填空题(共5题;共11分)12.已知方程(a-2)x|a|-1=1是一元一次方程,则a=________,x=________ .13.无论x取何值等式2ax+b=4x-3恒成立,则a+b=________。
14.饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为________.15.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?如果设每件服装的成本价为x元,那么:每件服装的标价为:________ ;每件服装的实际售价为:________ ;每件服装的利润为:________ ;由此,列出方程:________ ;解方程,得x = ________ .因此每件服装的成本价是________ 元.16.如图,AB=20cm,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/s的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点也能相遇,则点Q运动的速度为________cm/s三、计算题(共3题;共30分)17.解方程:(1)0.1−0.2x0.3−1=0.7−x0.4(2)3x﹣7(x﹣1)=3+2(x+3)18.知关于x的方程2(x-1)=3m-1与3x+2=-2(m+1)的解互为相反数,求m的值.19. 解方程:(1)x−x−14=1−3−x2(2)1+1+3x4=x−x−12(3)12[3x−15(x+1)]−1=x(4)2x+14−1=2x−13−10x+112四、解答题(共24题;共145分)20.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时。
(1)求无风时飞机的飞行速度(2)求两城之间的距离。
21.某儿童服装店欲购进A、B两种型号的儿童服装;经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?22.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?23.一份数学试卷有25道选择题,规定做对一题得4分,一题不做或做错扣1分,结果某学生得分为75分,则他做对多少道题?24.一件服装进价为108元,若按标价的九折出售仍能获利10%,问这件服装的标价是多少?25.如果方程x−43﹣8=﹣x+22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a﹣a2的值.26.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?27.某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且比原计划多生产了60件,问原计划生产多少零件?28.某农场有300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜三种农作物,已知种植各种农作物每公顷所需劳动力人数及投入资金如下表:应该怎样安排这三种农作物的种植才能使所有职工都有工作,而且收入的最大?29.商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打几折?30.如图,已知数轴上有A.B、C三点,分别表示有理数﹣26、﹣10、10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.31.小明解方程2x−15+1=x+a2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.32.某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了萝卜和白菜共40kg到菜市场去卖,萝卜和白菜这天每千克的批发价与零售价如下表所示:问:他当天卖完这些萝卜和白菜共能赚多少钱?33.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。
这个班有多少名学生?34.(盈利问题)某商场新进一批同型号的电脑,按进价提高40%标价,此商场为了促销,又对该电脑打8折销售,每台电脑仍可盈利420元,那么该型号电脑每台进价为多少元.35.一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数.36.(工程问题)满池水的游泳池需要换水,单独打开甲管30小时可将全池水排完,单独打开乙管20小时可将全池水排完,若两管同时打开3小时后,关闭甲管让乙管排水3小时,再打开甲管同时关闭乙管,几小时后可将余下水放完?37.小乐的数学积累本上有这样一道题:解方程:2x+13﹣5x−16=1解:去分母,得6(2x+1)﹣(5x﹣1)=6…第一步去括号,得4x+2﹣5x﹣1=6…第二步移向、合并同类项,得x=5…第三步方程两边同除以﹣1,得x=﹣5…第四步在题后的反思中看,小郑总结到:解一元一次方程的一般步骤都知道,却没有掌握好,因此解题时有一步出现了错误…小乐的解法从第几步开始出现错误,然后,请你自己细心地解下面的方程:2﹣15(x+2)= 12(x﹣1)38.安宁市的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,若经粗加工后销售,每吨利润可达4500元;若经精加工后销售每吨获利7500元.当地一家农产品企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了四种可行方案:方案一:全部直接销售;方案二:全部进行粗加工;方案三:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案四:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.请通过计算以上四个方案的利润,帮助企业选择一个最佳方案使所获利润最多?39.某人八点多吃早饭,他发现钟上的分针与时针的夹角成25°角.等他吃完早饭,发现钟上的时间还是八点多,两针之间的夹角还是25°角.问他吃早饭用了多少时间?40.为了迎接校运动会,排好入场式,七年级某班安排数名同学手持鲜花,他们买了一束鲜花,分配时发现:如果一人分6枝,则多了3枝;如果一人分8枝,则有一名同学只能分到3枝,请问本班安排了几名同学手持鲜花,这束鲜花共有多少枝?41.春节某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?42.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.43.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.五、综合题(共7题;共78分)44.某中学初一(二)班5位教师决定带领本班a名学生在五一期间在元旦期间去珠海长隆海洋王国旅游,每张票的价格为350元,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律六折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;A旅行社所需费用为________元,B旅行社所需费用为________元,(2)如果这5位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?45.【现场学习】定义:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.|﹣x=1,…都是含有绝对值的方程.如:|x|=2,|2x﹣1|=3,| x−12怎样求含有绝对值的方程的解呢?基本思路是:含有绝对值的方程→不含有绝对值的方程.我们知道,根据绝对值的意义,由|x|=2,可得x=2或x=﹣2.(1)[例]解方程:|2x﹣1|=3.我们只要把2x﹣1看成一个整体就可以根据绝对值的意义进一步解决问题.解:根据绝对值的意义,得2x﹣1=3或2x﹣1=________ .解这两个一元一次方程,得x=2或x=﹣1.检验:①当x=2时,原方程的左边=|2x﹣1|=|2×2﹣1|=3,原方程的右边=3,∵左边=右边∴x=2是原方程的解.②当x=﹣1时,原方程的左边=|2x﹣1|=|2×(﹣1)﹣1|=3,原方程的右边=3,∵左边=右边∴x=﹣1是原方程的解.综合①②可知,原方程的解是:x=2,x=﹣1.【解决问题】|﹣x=1.解方程:| x−12|﹣x=1.(2)【解决问题】解方程:| x−1246.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元。