工业冗余环网与民用三层网络比较
网络环路分析全解

2、网络环路的分类、特点与表现
静态路由设置不合理的情况: 设两个路由器RA和RB,其路由表中各有一 条去往相同目的网络的静态路由, 但下一跳彼此指向对方,形成环路。
2、网络环路的分类、特点与表现
动态路由造成的情况: 假设某路由器RA通过RB至网络netb,但RB到netb 不可达了,这时候RB的广播路由比RA先来到,RB 去netb不可达,但RA中有去往netb路由,且下一跳 是RB,这时RB就会从RA那里学习该路由,将去往 netb的指向RA,跳数加1。netb的路由原本是RB传 给RA的,现RB却从RA学习该路由,显然是不对的, 但这一现象还会继续,RA去netb网络的下一路是 RB,当RB的跳数加1的时候,RA将再加1,周而复 反形成环路,直至路由达到最大值数据包才丢弃。
2、网络环路的分类、特点与表现
(2)三层环路 在维护路由表信息的时候,如果在拓扑发生改变后,网络 收敛缓慢产生了不协调或者矛盾的路有选择条目,就会发生 路由环路的问题,这种条件下,路由器对无法到达的网络路 由不予理睬,导致用户的数据包不停在网络上循环发送,最 终造成网络资源的严重浪费。 矢量路由的一个弱点就是可能产生路由环路,产生路由环路 的原因有两种: 一是静态路由设置的不合理,二是动态路由定时广播产生的 误会。
2、网络环路的分类、特点与表现
(5)三层环路的解除 解决路由环路问题的方法,概括来讲,主要分为六种: (1)定义最大值; 距离矢量路由算法可以通过IP头中的生存时间(TTL)自纠 错,但路由环路问题可能首先要求无穷计数。为了避免这个 延时问题,距离矢量协议定义了一个最大值,这个数字是指 最大的度量值 (2) 水平分割 水平分割是过滤掉发送给原发者的路由信息。其规则就是不 向原始路由更新来的方向再次发送路由更新信息 ,具体路由 信息单向传送。
网络环路分析

2、网络环路的分类、特点与表现
路由器通过交换信息建立路由表,当网络结构变化时,路由表能自动维 护。 路由表跟随网络结构变化过程称为收俭。为了减少收俭过程引起的网络 动荡,要考滤 路由交换范围。 RIP协议通过network命令指定,例如:设置10.0.0.0网络的接口参与路由 信息交换 router(config-router)network 10.0.0.0 ospf协议通过network命令指定,例如:设置10.65.1.1 接口参与路由交 换 router(config-router)network 10.65.1.1 0.0.0.0 area 0 area是网络管理员在自治系统(国际机构分配)AS(Autonomous System) 内部划分的区域。 0.0.0.0是匹配码,0表示要求匹配,1表示不关心。
2、网络环路的分类、特点与表现
C.路由毒化 水平分割的改进,收到原是自己发出的路由信息时,将这条 信息最大的度量值 ,即毒化。 D.毒化逆转 超越水平分割的一个特列,这样保证所有的路由器都接受到 了毒化的路由信息。 E. 触发方式 一旦发现网络变化,不等呼叫,立即发送更新信息,迅速通 知相邻路由器,防止误传。 F. 抑制时间 在收到路由变化信息后,启动抑制时间,此时间内变化项被 冻结,防止被错误地覆盖。
2、网络环路的分类、特点与表现
(4)二层环路的诊断 A.链路流量:在不该有大流量的链路上发现有大流 量 B设备日志:有HSRP、OSPF邻居DOWN的告警, 表明主备或者邻居明同步包的被阻塞 C.端口状态:本应该block的端口被打开 D.STP协议计数器,如TCN的个数:如果TCN个数 不断频繁的增加,说明有拓扑不稳定
2、网络环路的分类、特点与表现
D.尽量采用交换机上修改优先级来改变拓扑,而不 是改变设备端口上的cost值 E.采用三角形的冗余设计,而不是矩阵型的网络冗 余设计 F.对不参与STP运算的PortFast端口,采用 BPDUGuard进行防护,设置为交换网络末梢,避 免错误的将用户端口接入交换设备 G.谨慎选取根桥,根桥的位置确定性,在诊断问题 的时候可以对网络拓扑有非常好的辅助作用,交换 网络的核心节点一般规划会该局域网内的核心交换 机。
网络设备冗余和链路冗余-常用技术(图文)

网络设备及链路冗余部署——基于锐捷设备8.1 冗余技术简介随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。
作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。
高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。
为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。
大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。
本章将对这三种冗余技术的基本原理和实现进行详细的说明。
8.2设备级冗余技术设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。
在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。
下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。
8.2.1S6806E交换机的电源冗余技术图 8-1 S6806E的电源冗余如图8-1所示,锐捷S6806E置了两个电源插槽,通过插入不同模块,可以实现两路AC 电源或者两路DC电源的接入,实现设备电源的1+1备份。
工程中最常见配置情况是同时插入两块P6800-AC模块来实现220v交流电源的1+1备份。
电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。
注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。
如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。
8.2.2 S6806E交换机的管理板卡冗余技术图 8-2 S6806E的管理卡冗余如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。
网络环路分析

2、网络环路的分类、特点与表现
(3)二层环路的避免 在网络设计阶段,应该充分考虑环路的风险、二层 转发次优路径、网络拓扑的不稳定 A.减小二层网络的广播域,尽量避免二层大平面的 网络,在同一个LAN里减少二层交换设备的个数 B.使用三层网段对二层网段进行阻隔。采用三层路 由冗余来代替二层的链路冗余 C.在上行链路上如果带宽足够,那么就没有必要采 用负荷分担的链路冗余方式
2、网络环路的分类、特点与表现
路由表(Routing Table)是路由器中路由项的集合,是路由器 进行路径选择的依据,每条路由项包括:目的网络和下一跳, 还有优先级,花费等。 路由优先匹配原则: (1)直接路由:直连的网络优先级最高。 (2)静态路由:手动配置,优先级可设,一般高于动态路由。 (3)动态路由:相同花费时,长掩码的子网优先。因为目标网 络更明确,范围更小。 (4)默认路由:最后有一条默认路由,找不到目标网络的数据 包都成默认路由转发,避免数据包丢弃。
严重的会导致网络瘫痪。 ▪ 在当前网络故障中,链路和设备故障导致网络通讯质量下降
的占多数,通常在网络部署和整改过程中也会由于路径的设 置不当导致网络环路故障。 ▪ 由于环路故障的普遍性,环路问题一直以来是困扰网络管理 人员的重要问题。
2、网络环路的分类、特点与表现
▪ 环路分类 网络环路主要分为二层网络环路和三层网络 环路 二层的环路通常都是冗余链路造成的,没有 冗余链路就不存在环路。 三层的环路通常指的是路由环路,是由于启 用路由协议不当造成的,即使没有冗余链路, 也有可能造成环路。
2、网络环路的分类、特点与表现
(2)三层环路 在维护路由表信息的时候,如果在拓扑发生改变后,网络
收敛缓慢产生了不协调或者矛盾的路有选择条目,就会发生 路由环路的问题,这种条件下,路由器对无法到达的网络路 由不予理睬,导致用户的数据包不停在网络上循环发送,最 终造成网络资源的严重浪费。 矢量路由的一个弱点就是可能产生路由环路,产生路由环路 的原因有两种: 一是静态路由设置的不合理,二是动态路由定时广播产生的 误会。
网络设备冗余和链路冗余-常用技术

网络设备及链路冗余部署——基于锐捷设备冗余技术简介随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。
作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。
高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。
为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。
大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。
本章将对这三种冗余技术的基本原理和实现进行详细的说明。
8.2设备级冗余技术设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。
在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。
下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。
8.2.1S6806E交换机的电源冗余技术图 8-1 S6806E的电源冗余如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC 电源或者两路DC电源的接入,实现设备电源的1+1备份。
工程中最常见配置情况是同时插入两块P6800-AC模块来实现220v交流电源的1+1备份。
电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。
注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。
如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。
8.2.2 S6806E交换机的管理板卡冗余技术图 8-2 S6806E的管理卡冗余如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。
基于工业环网在煤矿业的应用

基于工业环 网在 煤矿业 的应 用
任 宏 山西省 介休 市汾西矿 业 ( 团)有限责任 公司信息中心 集 02 0 300
摘 要 近年 来 ,建立 完 整 的煤 矿 大型 设备 实时监 测 系统 ,逐 步整合煤 矿安 全生产 中各 类信 息成 为趋 势 ,其 中一种 方 法就是 利 用现 有 网络 技 术 建立 信 息传输 , 煤矿 安 全 生产 中各 子 系 为 统 的整合提 供方 便 、快捷 、安 全的 “ 高速 公
关键 词
应 用 ;工业 以太环 网 ;系统接 入
1工 业 以太 环网建 设 的必 要性及 要求
简 言之 工业 以太环 网是 将 以太 网技术 应 用 于 工业 控 制和 管 理 的局 域 网技 术 , 过 网 通 络 交换 支持 对光 纤环路 的 自动 检测 ,当环 网 网络上 设备 故障 或一 个方 向光 缆断 传时 ,能 迅 速切 换到 备用 链路 ,保证 数 据信 息的 可靠 传输。 根 据矿 井安 全生产 实 际需 求 ,工业 以太 环 网建 设完 成后 能够 对全矿 井 各生 产环节 的 生 产工 况信 息和视 频信 息在 一 个统 一的 网络 平 台运 行 ,能够 使不 同功能 的 应用 系统联 系 起 来 。同时 ,能够 对 全矿井 安 全生 产的 主要 环 节设 备进 行实 时监测 和 必要 的控制 ,实现 全 矿井 的数 据采 集 、生产 调度 、决 策指 挥的 信 息化 、集 中化 ,为企业 信息 化的 应用 和发
展 奠定 基础 。
4 井下 环 网交换机 设计
井 下 环 网交 换 机 布 置 于集 中 皮 带 变 电 所 、三 采一 段变 电所 、三 采二 段变 电所 、三 采三 段变 电所 、三采 4 #二 段 变 电所 、三 采4 #一 段变 电所 、中央 水泵 房 、中央 变 电所 、
三层网络架构

罗克韦尔的三层网络架构随着制造业竞争的加剧,制造商更加追求生产设备的可靠性,尤其是那些控制关键性生产工序的设备,往往需要采用冗余配置。
目前,多数的基于可编程控制器的冗余系统采用了两套CPU处理器模块,一个处理器模块作为主处理器,另外一个作为从处理器。
正常情况下,由主处理器执行程序,控制I/O设备,从处理器不断监测主处理器状态。
如果主处理器出现故障,从处理器立即接管对I /O的控制,继续执行程序,从而实现对系统的冗余控制。
很多厂商都能够提供可编程控制器冗余系统解决方案,用户在使用过程中往往对其冗余原理理解不深,造成系统冗余性能下降。
本文以罗克韦尔自动化Alle n Bradley品牌ControlLogix控制器为例,介绍其冗余系统的构建和性能优化问题。
2 冗余系统构建ControlLogix系统采用了基于“生产者/消费者”的通讯模式,为用户提供了高性能、高可靠性、配置灵活的分布式控制解决方案。
ControlLogix系统实现了离散、过程、运动三种不同控制类型的集成,能够支持以太网、ControlNet控制网和DeviceNet设备网,并可实现信息在三层网络之间的无缝传递。
因而,C ontrolLogix被广泛地应用于各种控制系统。
[1]构建ControlLogix冗余系统的核心部件是处理器和1757-SRM冗余模块。
目前,有1756-L55系列处理器模块支持冗余功能,其内存容量从750KB到7.5MB不等。
1757-SRM冗余模块是实现冗余功能的关键。
如图1所示,在冗余系统中,处理器模块和1757-SRM冗余模块处于同一机架内。
为了避免受到外界电磁干扰,提高数据传输速度,两个机架的1757-SRM模块通过光纤交换同步数据。
所有的I/ O模块通过ControlNet控制网与主、从控制器机架内的1756-CNB(R)控制网通讯模块相连接。
图1 冗余系统结构以往的冗余系统通常需要用户编制复杂的程序对处理器状态进行判断,在两个处理器之间传输同步数据并实现I/O控制权的切换,两个处理器中的程序也各不相同,这使得冗余系统本身的建立和维护工作非常繁琐。
工业级交换机和普通交换机的区别

工业级交换机和普通交换机的区别工业以太网交换机与普通交换机到底有什么区别呢?其实在性能上,工业以太网交换机和普通交换机是没有多大区别的,从网络层级上看,有二层交换机,当然也有三层交换机。
工业以太网交换机在其产品设计和元器件选取上是有讲究的,它是面向工业现场使用需求的,在机械、气候、电磁等环境较为恶劣的情况下,仍然能够正常工作,所以,可以常常广泛应用于条件较为恶劣的工业生产场景。
工业交换机和普通交换机的区别有哪些呢?工业以太网交换机与民用以太网交换机相比,工业以太网交换机产品在设计上以及在元器件的选用上,产品的强度和适用性方面都能满足工业现场的需要。
2. 工业以太网交换机包括机械环境适应性(如耐振动、耐冲击)、气候环境适应性(工作温度要求为-20~+85℃,至少为-10~+70℃,并要耐腐蚀、防尘、防水)、电磁环境适应性或电磁兼容性EMC应符合EN 50081-2、EN 50082-2、EN 50082-3、EN 50082-4、FCC、GB/T17626、IEC61000等标准。
3. 工业以太网交换机产品要适应工业控制现场的恶劣环境。
在工业现场使用网络设备必须通过IEC61000-4-5、GB/T17626.5等标准进行浪涌测试,通过IEC61000-4-8、GB/T17626.8等标准进行工频磁场抗扰度测试,通过IEC61000-4-9、GB/T17626.9等标准进行脉冲磁场抗扰度测试,可按标准IEC61000-4-11、GB/T17626.11等进行电压变化抗扰度测试。
4. 工业以太网交换机大都宽电压设计,工作电压18VDC~36 VDC,220VA、220VDC、110VDC等。
5. 工业以太网交换机电源一般为冗余双电源设计,民用以太网交换机为单电源。
6. 工业以太网交换机安装方式DIN导轨、机架等。
民用以太网交换机安装方式桌面、机架。
7. 工业以太网交换机工作温度宽工作温度(工作温度要求为-20~+85℃,至少为-10~+70℃),民用以太网交换机工作温度范围窄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业冗余环网与民用三层网络比较
1、引言
有鉴于目前工业设计院和工业系统集成单位,为工业客户设计实施现场工业以太网方案时,仍然采用三层网络结构。
本文就工业冗余环网与民用三层网络做了个比较。
2、工业化设计冗余环网
交换机数据转发延迟小,存储转发(Store and Forward)是网络领域使用最为广泛技术之一,以太网交换机控制器先将输入端口到来数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。
确定包正确后,取出目址,查找表找到想要发送输出端口址,然后将该包发送出去。
交换机数据存储转发由硬件实现,数据转发延迟为1~2ms
交换机带宽高, 100M。
提供冗余链路,网络故障恢复时间<300ms。
工业冗余环网网络环境里,交换机不会立即开始转发功能,主交换机(Local)由手动指定,选择主链路和备份
链路建立一个指定路径,由Supreme-Ring协议自动指定。
一个工业冗余环网网络里面只能有一个主交换机(Local)。
主交换机(Local)会定期发送配置信息,这种配置信息将会被所有从交换机(Remote)发送。
一旦网络结构发生变化,网络状态将会重新配置。
当指定主交换机(Local)之后,转发数据包之前,所有端口都以阻塞方式启动。
运用Supreme-Ring算法,主交换机(Local)选择最低COST值端口作为主链路,另一条COST值高端口作为备份链路。
备份链路不转发数据,只接收和处理HELLO包,处于热备(Hot Standby)状态。
从交换机(Remote)没有主链路和备份链路区别。
Supreme-Ring协议是一种简洁高效冗余协议,能够保证环网链路故障时,300ms之内恢复网络通信。
Supreme-Ring状态:
运行Supreme-Ring协议交换机上端口,总是处于下面四个状态中一个:阻塞:所有端口以阻塞状态启动止回路,处于阻塞状态端口不转发数据帧但可接受HELLO包。
热备:不转发数据帧,但学习MAC址表,主链路故障时,300ms之内,立刻进入转发状态。
转发:可以传送和接受数据数据帧。
禁用:通常端口故障或交换机配置错误引起。
工业冗余环网网络简洁高效。
3、三层设计网络
路由器数据转发延迟大,当一个数据包进入路由器,首先查看二层帧,进行CRC校验,进入缓冲区,查看路由表,从缓冲区取出数据包目IP址与路由表进行匹配与运算,重新封装二层帧头,此时二层帧头源MAC址已经变为路由器出口MAC址,从路由器出口转发。
路由器改写二层帧源MAC址和数据转发由软件实现,不同路由器数据转发延迟差别较大,通常一个路由器延迟不少于50ms。
普通路由器带宽低,10M。
能够提供冗余链路,网络收敛时间长。
四种最常见路由协议是RIP、IGRP、OSPF和EIGRP。
上述几种域内路由算法中,RIP和IGRP收敛时间相对较长,都是分钟数量级;OSPF要短一些,数十秒内可以收敛;EIGRP最短,网络拓扑发生变化之后,几秒钟即可达到收敛状态。
收敛是路由算法选择时所遇到一个重要问题。
收敛时间是指从网络拓扑结构发生变化到网络上所有相关路由器都知这一变化,相应做出改变所需要时间。
这一时间越短,网络变化对全网扰动就越小。
收敛时间过长会导致路由循环出现。
三层设计网络复杂繁琐。
4、结束语
三层设计网络可扩展性高,民用领域是事实上标准,数据转发延迟大、带宽低、网络收敛时间长、配置与实施复杂繁琐等缺点,并不适用于工业现场环境。
工业化设计冗余环网简洁高效是专为工业现场环境设计,带宽高,低于<300ms网络故障恢复时间,满足工业现场要求。