浙江省2019初中学业水平考试(温州卷)数学试题卷(含答案(真题试卷)
2019年初中毕业升学考试(浙江嘉兴卷)数学【含答案及解析】

2019年初中毕业升学考试(浙江嘉兴卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 计算2-3的结果为()(A)-1 (B)-2 (C)1 (D)22. 下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()(A)1个(B)2个(C)3个(D)4个3. 2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为()(A)33528×107 (B)0.33528×1012(C)3.3528×1010 (D)3.3528×10114. 质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件。
由此估计这一批次产品中的次品件数是()(A)5 (B)100 (C)500 (D)10 0005. 如图,直线l1// l2// l3,直线AC分别交l1, l2, l3于点A,B,C;直线DF分别交l1, l2, l3于点D,E,F .AC与DF相较于点H,且AH=2,HB=1,BC=5,则的值为()(A)(B)2 (C)(D)6. 与无理数最接近的整数是()(A)4 (B)5 (C)6 (D)77. 如图,中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则☉C的半径为()(A)2.3 (B)2.4 (C)2.5 (D)2.68. 一元一次不等式2(x+1)≥4的解在数轴上表示为()9. 数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l与点Q .”分别作出了下列四个图形.其中做法错误的是()10. 如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是()(A)① (B)②(C)③ (D)④二、填空题11. 因式分【解析】 ab – a=________.12. 如图是百度地图的一部分(比例尺1:4 000 000).按图可估测杭州在嘉兴的南偏西________度方向上,到嘉兴的实际距离约为________.13. 把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是________.14. 如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC的中点上,折痕经过AC上的点E,则线段AE的长为________.15. 公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.16. 如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的☉P周长为1.点M从A开始沿☉P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m< 1).(1)当m= 时,n=________;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为________.三、解答题17. (1)计算:|-5|+x2-1;(2)化简:a(2-a)+(a+1)(a-1).18. 小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.19. 如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.20. 如图,直线y=2x与反比例函数(k≠0,x>0)的图像交于点A(1,a),点B是此反比例函数图形上任意一点(不与点A重合),BC⊥x轴于点C.(1)求k的值.(2)求△OBC的面积.21. 嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).22. 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?23. 某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价-成本)24. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。
2019年浙江省杭州市中考数学试卷(word版,含答案解析)

2019年浙江省杭州市中考数学试卷(word版,含答案解析)2019年浙江省杭州市中考数学试卷副标题题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.计算下列各式,值最⼩的是()A. 2×0+1?9B. 2+0×1?9C. 2+0?1×9D. 2+0+1?92.在平⾯直⾓坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=?3,n=2C. m=2,n=3D. m=?2,n=?33.如图,P为圆O外⼀点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学⽣种树72棵,男⽣每⼈种3棵树,⼥⽣每⼈种2棵树,设男⽣有x⼈,则()A. 2x+3(72?x)=30B. 3x+2(72?x)=30C. 2x+3(30?x)=72D. 3x+2(30?x)=725.点点同学对数据26,36,46,5□,52进⾏统计分析,发现其中⼀个两位数的个位数字被⿊⽔涂污看不到了,则计算结果与被涂污数字⽆关的是()A. 平均数B. 中位数D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE//BC,M为BC边上⼀点(不与点B,C重合),连接AM交DE于点N,则()A. ADAN =ANAEB. BDMN =MNCEC. DNBM =NEMCD. DNMC =NEBM7.在△ABC中,若⼀个内⾓等于另外两个内⾓的差,则()A. 必有⼀个内⾓等于30°B. 必有⼀个内⾓等于45°C. 必有⼀个内⾓等于60°D. 必有⼀个内⾓等于90°8.已知⼀次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,⼀块矩形⽊板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同⼀平⾯内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx10.在平⾯直⾓坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N?1或M=N+1C. M=N或M=N+1D. M=N或M=N?1⼆、填空题(本⼤题共6⼩题,共24.0分)11.因式分解:1?x2=______.12.某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是⼀个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底⾯圆半径为3cm,则这个冰淇淋外壳的侧⾯积等于______cm2(结果精确到个位).14.在直⾓三⾓形ABC中,若2AB=AC,则cosC=______.15.某函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,写出⼀个满⾜条件的函数表达式______.16.如图,把某矩形纸⽚ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同⼀点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的⾯积为4,△D′PH的⾯积为1,则矩形ABCD 的⾯积等于______.三、解答题(本⼤题共7⼩题,共66.0分)17.化简:4xx2?4?2x?21圆圆的解答如下:4x x2?4?2x?21=4x2(x+2)(x24)=x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐⽔果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不⾜基准部分的千克数记为负数,甲组为实际称量读数,⼄组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954⼄组?22?3?14(1)补充完成⼄组数据的折线统计图.(2)①甲,⼄两组数据的平均数分别为x甲?,x⼄?,写出x甲?与x⼄?之间的等量关系.②甲,⼄两组数据的⽅差分别为S甲2,S⼄2,⽐较S甲2与S⼄2的⼤⼩,并说明理由.19.如图,在△ABC中,AC(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆⼼,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.⽅⽅驾驶⼩汽车匀速地从A地⾏驶到B地,⾏驶⾥程为480千⽶,设⼩汽车的⾏驶时间为t(单位:⼩时),⾏驶速度为v(单位:千⽶/⼩时),且全程速度限定为不超过120千⽶/⼩时.(1)求v关于t的函数表达式;(2)⽅⽅上午8点驾驶⼩汽车从A地出发.①⽅⽅需在当天12点48分⾄14点(含12点48分和14点)间到达B地,求⼩汽车⾏驶速度v的范围.②⽅⽅能否在当天11点30分前到达B地?说明理由.21.如图,已知正⽅形ABCD的边长为1,正⽅形CEFG的⾯积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的⾯积为S2,且S1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .22. 设⼆次函数y =(x ?x 1)(x ?x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;⼄求得当x =12时,y =?12.若甲求得的结果都正确,你认为⼄求得的结果正确吗?说明理由.(2)写出⼆次函数图象的对称轴,并求该函数的最⼩值(⽤含x 1,x 2的代数式表⽰). (3)已知⼆次函数的图象经过(0,m)和(1,n)两点(m,n 是实数),当016.23. 如图,已知锐⾓三⾓形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =12OA .②当OA=1时,求△ABC⾯积的最⼤值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB= n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m? n+2=0.1.【答案】A【解析】解:A.2×0+1?9=?8,B.2+0×1?9=?7C.2+0?1×9=?7D.2+0+1?9=?6,故选:A.有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=?3,n=2.故选:B.直接利⽤关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三⾓形全等的判定和性质,作出辅助线根据全等三⾓形是解题的关键.4.【答案】D【解析】【分析】此题主要考查了由实际问题抽象出⼀元⼀次⽅程,正确表⽰出男⼥⽣的植树棵数是解题关键.直接根据题意表⽰出⼥⽣⼈数,进⽽利⽤30位学⽣种树72棵,得出等式求出答案.【解答】解:设男⽣有x⼈,则⼥⽣(30?x)⼈,根据题意可得:3x+2(30?x)=72.故选D.5.【答案】B利⽤平均数、中位数、⽅差和标准差的定义对各选项进⾏判断.本题考查了标准差:样本⽅差的算术平⽅根表⽰样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.【解答】解:这组数据的平均数、⽅差和标准差都与第4个数有关,⽽这组数据的中位数为46,与第4个数⽆关.故选:B.6.【答案】C【解析】解:∵DN//BM,∴△ADN∽△ABM,∴DNBM =ANAM,∵NE//MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NEMC.故选:C.先证明△ADN∽△ABM得到DNBM =ANAM,再证明△ANE∽△AMC得到NEMC=ANAM,则DNBM=NEMC,本题考查了相似三⾓形的判定与性质:在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形;灵活运⽤相似三⾓形的性质表⽰线段之间的关系.7.【答案】D【解析】【分析】根据三⾓形内⾓和定理得出∠A+∠B+∠C=180°,把∠A=∠C?∠B代⼊求出∠C即可.本题考查了三⾓形内⾓和定理的应⽤,能求出三⾓形最⼤⾓的度数是解此题的关键,注意:三⾓形的内⾓和等于180°.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C?∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直⾓三⾓形,故选:D.8.【答案】A【解析】A、由图可知:直线y1,a>0,b>0.∴直线y2经过⼀、⼆、三象限,故A正确;B、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、四、三象限,故B错误;C、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、⼆、四象限,交点不对,故C错误;D、由图可知:直线y1,a<0,b<0,∴直线y2经过⼆、三、四象限,故D错误.故选:A.根据直线判断出a、b的符号,然后根据a、b的符号判断出直线经过的象限即可,做出判断.本题主要考查的是⼀次函数的图象和性质,掌握⼀次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a?cosx+b?sinx,根据题意,作出合适的辅助线,然后利⽤锐⾓三⾓函数即可表⽰出点A到OC的距离,本题得以解决.本题考查解直⾓三⾓形的应⽤?坡度⾓问题、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2?4ab=(a?b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2?4ab=(a?b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为⼀次函数,与x轴有⼀个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成⼀般形式,若为⼆次函数,再计算根的判别式,从⽽确定图象与x轴的交点个数,若⼀次函数,则与x轴只有⼀个交点,据此解答.本题主要考查⼀次函数与⼆次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,⼆次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进⽽确定与x轴的交点个数.11.【答案】(1?x)(1+x)【解析】解:∵1?x2=(1?x)(1+x),故答案为:(1?x)(1+x).根据平⽅差公式可以将题⽬中的式⼦进⾏因式分解.本题考查因式分解?运⽤公式法,解题的关键是明确平⽅差公式,会运⽤平⽅差公式进⾏因式分解.12.【答案】mx+nym+n【解析】解:∵某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的总和为:mx+ny,.所以平均数为:mx+nym+n故答案为:mx+ny.m+n直接利⽤已知表⽰出两组数据的总和,进⽽求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧⾯积=1利⽤圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长和扇形的⾯积公式计算.本题考查了圆锥的计算:圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长.14.【答案】√32或2√55【解析】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2?x 2=√3x ,所以cosC =BC AC=√3x2x=√32;若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cosC =ACBC =5x=2√55;综上所述,cos C 的值为√32或2√55.故答案为√32或2√55.讨论:若∠B =90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√3x ,然后根据余弦的定义求cos C 的值;若∠A=90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√5x ,然后根据余弦的定义求cos C 的值.本题考查了锐⾓三⾓函数的定义:熟练掌握锐⾓三⾓函数的定义,灵活运⽤它们进⾏⼏何计算.15.【答案】y =?x +1(答案不唯⼀)【解析】解:设该函数的解析式为y =kx +b ,∵函数满⾜当⾃变量x =1时,函数值y =0,当⾃变量x =0时,函数值y =1,∴{k +b =0b =1解得:{k =?1,所以函数的解析式为y =?x +1,故答案为:y =?x +1(答案不唯⼀).根据题意写出⼀个⼀次函数即可.本题考查了各种函数的性质,因为x =0时,y =1,所以不可能是正⽐例函数. 16.【答案】2(5+3√5)【解析】解:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA′=AB =x ,PD′=CD =x ,∵△A′EP 的⾯积为4,△D′PH 的⾯积为1,∴A′E =4D′H ,设D′H =a ,则A′E =4a ,∵△A′EP∽△D′PH ,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或?2a(舍弃),∴PA′=PD′=2a,∵12a2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的⾯积=2(5+3√5).故答案为2(5+3√5)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的⾯积为4,△D′PH的⾯积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D′HPA′=PD′EA′,推出ax=x4a,可得x=2a,再利⽤三⾓形的⾯积公式求出a即可解决问本题考查翻折变换,矩形的性质,勾股定理,相似三⾓形的判定和性质等知识,解题的关键是学会利⽤参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:4xx2?4?2x?21=4x(x?2)(x+2)2(x+2)(x?2)(x+2)(x?2)(x+2)(x?2)(x+2) =4x?2x?4?x2+4(x?2)(x+2)=2x?x2(x?2)(x+2)=?xx+2.【解析】直接将分式进⾏通分,进⽽化简得出答案.此题主要考查了分式的加减运算,正确进⾏通分运算是解题关键.18.【答案】解:(1)⼄组数据的折线统计图如图所⽰:(2)①x 甲?=50+x ⼄?.②S 甲2=S ⼄2.理由:∵S 甲2=15[(48?50)2+(52?50)2+(47?50)2+(49?50)2+(54?50)2]=6.8.S ⼄2=15[(?2?0)2+(2?0)2+(?3?0)2+(?1?0)2+(4?0)2]=6.8,∴S 甲2=S ⼄2.【解析】(1)利⽤描点法画出折线图即可. (2)利⽤平均数和⽅差公式计算即可判断.本题考查折线统计图,算术平均数,⽅差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB ,∴∠B =∠BAP ,∵∠APC =∠B +∠BAP ,∴∠APC =2∠B ;(2)根据题意可知BA =BQ ,∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ ,∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°,∴5∠B =180°,∴∠B =36°.【解析】(1)根据线段垂直平分线的性质可知PA =PB ,根据等腰三⾓形的性质可得∠B =∠BAP ,根据三⾓形的外⾓性质即可证得∠APC =2∠B ;(2)根据题意可知BA =BQ ,根据等腰三⾓形的性质可得∠BAQ =∠BQA ,再根据三⾓形的内⾓和公式即可解答.本题主要考查了等腰三⾓形的性质、垂直平分线的性质以及三⾓形的外⾓性质,难度适中.20.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千⽶/⼩时,∴v 关于t 的函数表达式为:v =480t ,(t ≥4).(2)①8点⾄12点48分时间长为245⼩时,8点⾄14点时间长为6⼩时,将t =6代⼊v =480t得v =80;将t =245代⼊v =480t得v =100.∴⼩汽车⾏驶速度v 的范围为:80≤v ≤100.②⽅⽅不能在当天11点30分前到达B 地.理由如下: 8点⾄11点30分时间长为72⼩时,将t =72代⼊v =480t得v =9607>120千⽶/⼩时,超速了.故⽅⽅不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程⽐时间,从⽽得解; (2)①8点⾄12点48分时间长为24 5⼩时,8点⾄14点时间长为6⼩时,将它们分别代⼊v 关于t 的函数表达式,即可得⼩汽车⾏驶的速度范围;②8点⾄11点30分时间长为72⼩时,将其代⼊v 关于t 的函数表达式,可得速度⼤于120千⽶/时,从⽽得答案.本题是反⽐例函数在⾏程问题中的应⽤,根据时间、速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正⽅形CEFG 的边长为a ,∵正⽅形ABCD 的边长为1,∴DE =1?a ,∵S 1=S 2,∴a 2=1×(1?a),解得,a 1=?√5212(舍去),a 2=√5212,即线段CE 的长是√52?12;(2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52?12,∴HG =√52,∴HD =HG .【解析】(1)设出正⽅形CEFG 的边长,然后根据S 1=S 2,即可求得线段CE 的长; (2)根据(1)中的结果和题⽬中的条件,可以分别计算出HD 和HG 的长,即可证明结论成⽴.本题考查正⽅形的性质、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.22.【答案】解:(1)当x =0时,y =0;当x =1时,y =0;∴⼆次函数经过点(0,0),(1,0),∴x 1=0,x 2=1,∴y =x(x ?1)=x 2?x ,当x =12时,y =?14,∴⼄求得的结果不对; (2)对称轴为x =x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)⼆次函数的图象经过(0,m)和(1,n)两点,∴m =x 1x 2,n =1?x 1?x 2+x 1x 2,∴mn =[?(x 1?12)2+14][?(x 2?12)2+14]∵0∴02)2+14≤14,02)2+14≤14,且x 1和x 2不可以同时等于12,∴0【解析】(1)将(0,0),(1,0)代⼊y =(x ?x 1)(x ?x 2)求出函数解析式即可求解; (2)对称轴为x = x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)将已知两点代⼊求出m =x 1x 2,n =1?x 1?x 2+x 1x 2,再表⽰出mn =[?(x 1?12)2+14][?(x 2?12)2+14],由已知04,0<(x 212)2+14≤14,即可求解.本题考查⼆次函数的性质;函数最值的求法;熟练掌握⼆次函数的性质,能够将mn 准确的⽤x 1和x 2表⽰出来是解题的关键. 23.【答案】解:(1)①连接OB 、OC ,则∠BOD =12∠BOC =∠BAC =60°,∴∠OBC =30°,∴OD=12OB=12OA;②∵BC长度为定值,∴求△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,当AD过点O时,AD最⼤,即:AD=AO+OD=32,△ABC⾯积的最⼤值=12×BC×AD=12×2OBsin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,∵OE=OD,∴∠AOD=180°?2x,即:180°+mx?nx=180°?2x,化简得:m?n+2=0.【解析】(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,即可求解;(2)∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,⽽∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,即可求解.本题为圆的综合运⽤题,涉及到解直⾓三⾓形、三⾓形内⾓和公式,其中(2)∠AOD=∠COD+∠AOC是本题容易忽视的地⽅,本题难度适中.。
2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
2019年温州永嘉中学提前自主招生选拔模拟考试数学试题及答案(含详解)

2019年温州永嘉中学提前自主招生选拔模拟考试数学试题(满分:120分时间:100分钟)一、选择题(共8小题,满分32分,每小题4分)1.任意选择一对有序整数(b,c),其中每一个整数的绝对值小于或等于5,每一对这样的有序整数被选择的可能性是相等的.方程x2+bx+c=0没有相异正实根的概率是()A.B.C.D.2.若(a2+b2)(a2+b2﹣2)=8,则a2+b2的值为()A.4或﹣2 B.4 C.﹣2 D.﹣43.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.4.已知实数x,y,z适合x+y=6,z2=xy﹣9,则z=()A.±1 B.0 C.1 D.﹣15.已知a、b、c为自然数,且a2+b2+c2+42<4a+4b+12c,且a2﹣a﹣2>0,则代数式的值为()A.1 B.C.10 D.116.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5 C.2D.7.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为()A.2 B.3 C.4 D.58.如图,直线y=x+m交双曲线y=于A、B两点,交x轴于点C,交y轴于点D,过点A作AH⊥x轴于点H,连结BH,若OH:HC=1:5,S△ABH =1,则k的值为()A.1 B.C.D.二、填空题(共7小题,满分35分,每小题5分)9.若多项式x2﹣y2+3x﹣7y+k可以分解成两个一次因式的乘积,则k=.10.设x﹣y﹣z=19,x2+y2+z2=19,则yz﹣zx﹣xy=.11.符号“f”表示一种运算,它对一些数的运算如下:,,,,…,利用以上运算的规律写出f(n)=(n为正整数);f(1)•f(2)•f(3)…f(200)=.12.已知P是中心为O的正方形ABCD内一点,AP⊥BP,OP=,P A=6,则正方形ABCD的边长是.13.在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有个.14.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是.15.设[x]表示不超过x的最大整数(例如:[2]=2,[1.25]=1),已知0≤a≤1,且满足,则[10a]=.三、解答题(共5小题,满分53分)16.(8分)设=a(a≠0),求的值.17.(10分)永嘉中学高一段组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局,…,十号选手胜a10局,输b10局.试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.18.(10分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).19.(12分)如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y=kx+b.(1)求k的取值范围;(2)当k为取值范围内的最大整数时,若抛物线y=ax2﹣5ax的顶点在直线PQ、OA、AB、BC围成的四边形内部,求a的取值范围.20.(13分)已知抛物线y=ax2+bx+c经过点(1,2).(1)若a=1,抛物线顶点为A,它与x轴交于两点B,C,且△ABC为等边三角形,求b的值;(2)若abc=4,且a≥b≥c,求|a|+|b|+|c|的最小值.2019年温州重点高中提前自主招生选拔模拟考试数学试题参考答案与试题解析一、选择题(共8小题,满分32分,每小题4分)1.任意选择一对有序整数(b,c),其中每一个整数的绝对值小于或等于5,每一对这样的有序整数被选择的可能性是相等的.方程x2+bx+c=0没有相异正实根的概率是()A.B.C.D.【解析】∵任意选择一对有序整数(b,c),其中每一个整数的绝对值小于或等于5,∴b与c可取的整数分别为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5共11种情况,∴有序整数(b,c)共有:11×11=121(种),∵若方程x2+bx+c=0有相异正实根,则需:△=b2﹣4c>0,﹣b>0,c>0,∴方程x2+bx+c=0有相异正实根的有:(﹣5,1),(﹣5,2,),(﹣5,3),(﹣5,4),(﹣5,5),(﹣4,1),(﹣4,2),(﹣4,3),(﹣3,1),(﹣3,2)共10种情况,∴方程x2+bx+c=0没有相异正实根的情况有:121﹣10=111(种),∴方程x2+bx+c=0没有相异正实根的概率是:.故选:C.2.若(a2+b2)(a2+b2﹣2)=8,则a2+b2的值为()A.4或﹣2 B.4 C.﹣2 D.﹣4【解析】设a2+b2为x,可得:x(x﹣2)=8,解得:x1=4,x2=﹣2,因为a2+b2的值为非负数,所以a2+b2的值为4,故选:B.3.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.【解析】作AE⊥BD,交DB的延长线于点E.由题意可得:∠ABE=∠CBD=45°,设AE=1,则AB=∴BC=,∵Rt△BCD是等腰直角三角形,∴BD=,∴DE=1+,∴tan∠ADB=1÷(+1)=.故选:D.4.已知实数x,y,z适合x+y=6,z2=xy﹣9,则z=()A.±1 B.0 C.1 D.﹣1【解析】∵实数x、y、z满足x+y=6,z2=xy﹣9即xy=z2+9,∴以x,y为根的二次方程为t2﹣6t+z2+9=0,其中△=36﹣4(z2+9)=﹣4z2≥0,所以z=0.故选:B.5.已知a、b、c为自然数,且a2+b2+c2+42<4a+4b+12c,且a2﹣a﹣2>0,则代数式的值为()A.1 B.C.10 D.11【解析】由a2﹣a﹣2>0,a为自然数,可知a>2,将化a2+b2+c2+42<4a+4b+12c为(a﹣2)2+(b﹣2)2+(c﹣6)2<2,因为(a﹣2)2、(b﹣2)2、(c﹣6)2都大于0,当a≥4时,上式不成立,所以自然数a只能取值为3.当a=3时,代入上式,得:(b﹣2)2+(c﹣6)2<1,所以只能使(b﹣2)2=0,(c﹣6)2=0,即b=2,c=6,所以=1.故选:A.6.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5 C.2D.【解析】如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA 为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=4,则BC=5.故选:B.7.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为()A.2 B.3 C.4 D.5【解析】∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故选:B.8.如图,直线y=x+m交双曲线y=于A、B两点,交x轴于点C,交y轴于点D,过点A作AH⊥x轴于点H,连结BH,若OH:HC=1:5,S△ABH=1,则k的值为()A.1 B.C.D.【解析】设OH=a,则HC=5a,∴C(6a,0)代入y=﹣x+m,得m=3a,设A点坐标为(a,n)代入y=﹣x+m,得n=﹣a+3a=a,∴A(a,a),代入y=得,∴k=a2,∴y=,解方程组,可得:,,∴A点坐标为(a,a),B点坐标为(5a,a),∴AH=a,∴S△ABH=×a×(5a﹣a)=5a2,∵S△ABH=1,∴5a2=1,即a2=,∴k=×=.故选:B.二、填空题(共7小题,满分35分,每小题5分)9.若多项式x2﹣y2+3x﹣7y+k可以分解成两个一次因式的乘积,则k=﹣10.【解析】∵x2﹣y2+3x﹣7y+k=(x+)2﹣(y+)2=(x++y+)(x+﹣y﹣)=(x+y+5)(x﹣y﹣2),又∵(x+y+5)(x﹣y﹣2)=x2﹣y2+3x﹣7y﹣10,∴k=﹣10.故答案为:﹣10.10.设x﹣y﹣z=19,x2+y2+z2=19,则yz﹣zx﹣xy=171.【解析】将x﹣y﹣z=19两边平方得:(x﹣y﹣z)2=361,即x2+y2+z2﹣2xy﹣2xz+2yz=361,∵x2+y2+z2=19,∴x2+y2+z2﹣2xy﹣2xz+2yz=19+2(yz﹣xy﹣xz)=361,则yz﹣xy﹣xz==171.答案为:171.11.符号“f”表示一种运算,它对一些数的运算如下:,,,,…,利用以上运算的规律写出f(n)=1+(n为正整数);f(1)•f(2)•f(3)…f(200)=20301.【解析】∵f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+,…,∴f(n)=1+;∵f(n)=1+=,∴f(1)•f(2)•f(3)…f(200)=×××…××==20301.故答案为:1+;20301.12.已知P是中心为O的正方形ABCD内一点,AP⊥BP,OP=,P A=6,则正方形ABCD的边长是10或2.【解析】如图1,过O作OH⊥AP于H,∵四边形ABCD是正方形,AP⊥BP,∴∠AOB=∠APB=90°,∴A,B,O,P四点共圆,∴∠BPO=∠BAO=45°,∴∠OPH=45°,∴PH=OH=1,∴AH=7,∴AO==5,∴AB=AO=10;如图2,过O作OH⊥BP于H,∵四边形ABCD是正方形,AP⊥BP,∴∠AOB=∠APB=90°,∴A,B,P,O四点共圆,∴∠OPH=∠BAO=45°,∴PH=OH=1,设BP=m,AB=x,∴(m+1)2+1=()2,m2+62=x2,解得:m=4,x==2,∴AB=2,综上所述:正方形ABCD的边长是10或2,故答案为:10或2.13.在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有25个.【解析】将该二次函数化简得,y=﹣[(x﹣4)2﹣],令y=0得,x=或.则在红色区域内部及其边界上的整点为(2,0),(3,0),(4,0),(5,0),(6,0),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2)共25个,故答案为:25.14.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.【解析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵AB=2,∴AE=,P A=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为:2+.15.设[x]表示不超过x的最大整数(例如:[2]=2,[1.25]=1),已知0≤a≤1,且满足,则[10a]=6.【解析】∵1<a+<2,∴[a+]=1,∵,0≤a≤1,∴[a+]=[a+]=…=[a+]=0,[a+]=[a+]=…=[a+]=1,∴0<a+<1,1≤a+<2,∴0<a<,0.6≤a<1,∴0.6≤a<,∴[10a]=6.故答案为6.三、解答题(共5小题,满分53分)16.(8分)设=a(a≠0),求的值.【解析】∵a≠0,=a,∴=,即x+=∵=x2+1+=(x+)2﹣1=(﹣1)2﹣1=﹣=∴=17.(10分)永嘉中学高一段组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局,…,十号选手胜a10局,输b10局.试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.【解析】依题意可知,a1+b1=9,a2+b2=9,a3+b3=9…,且a1+a2+…+a10=b1+b2+…+b10=45,∴(a12+a22+…+a102)﹣(b12+b22+…b102)=(a12﹣b12)+(a22﹣b22)+…+(a102﹣b102)=(a1+b1)(a1﹣b1)+(a2+b2)(a2﹣b2)+…+(a10+b10)(a10﹣b10)=9[(a1+a2+…+a10)﹣(b1+b2+…+b10)]=0,∴a12+a22+...+a102=b12+b22+ (102)18.(10分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).【解析】证明:(1)∠ABF=∠ADC=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,(6分)因为∠ACF=∠ADE,(7分)所以∠ABF=∠F,所以AB=AF.(2)四边形ABCD内接于圆,所以∠ABD=∠ACD,又DE=DC,所以∠DCE=∠DEC=∠AEB,所以∠ABD=∠AEB,所以AB=AE.∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.19.(12分)如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y=kx+b.(1)求k的取值范围;(2)当k为取值范围内的最大整数时,若抛物线y=ax2﹣5ax的顶点在直线PQ、OA、AB、BC围成的四边形内部,求a的取值范围.【解析】(1)直线y=kx+b经过P(0,3),∴b=3,∵B(3,2),A(5,0),BD=BA,∴点D的坐标是(1,0),∴BD的解析式是y=x﹣1(1≤x≤3),依题意,得,∴x=,∴1≤≤3,解得﹣3≤k≤﹣;(2)∵﹣3≤k≤﹣,且k为最大整数,∴k=﹣1,则直线PQ的解析式为y=﹣x+3,又∵x=﹣=﹣=,==﹣a,∴抛物线y=ax2﹣5ax的顶点坐标是(,﹣a),对称轴为x=,解方程组,得,即直线PQ与对称轴为x=的交点坐标为(,),∴<﹣a<2,解得﹣<a<﹣.20.(13分)已知抛物线y=ax2+bx+c经过点(1,2).(1)若a=1,抛物线顶点为A,它与x轴交于两点B,C,且△ABC为等边三角形,求b的值;(2)若abc=4,且a≥b≥c,求|a|+|b|+|c|的最小值.【解析】(1)由题意,a+b+c=2,∵a=1,∴b+c=1抛物线顶点为A(﹣,c﹣)设B(x1,0),C(x2,0),∵x1+x2=﹣b,x1x2=c,△=b2﹣4c>0∴|BC|=|x1﹣x2|===∵△ABC为等边三角形,∴﹣c=即b2﹣4c=2•,∵b2﹣4c>0,∴=2,∵c=1﹣b,∴b2+4b﹣16=0,b=﹣2±2所求b值为﹣2±2.(2)∵a≥b≥c,若a<0,则b<0,c<0,a+b+c<0,与a+b+c=2矛盾.∴a>0.∵b+c=2﹣a,bc=∴b,c是一元二次方程x2﹣(2﹣a)x+=0的两实根.∴△=(2﹣a)2﹣4×≥0,∴a3﹣4a2+4a﹣16≥0,即(a2+4)(a﹣4)≥0,故a≥4.∵abc>0,∴a,b,c为全大于0或一正二负.①若a,b,c均大于0,∵a≥4,与a+b+c=2矛盾;②若a,b,c为一正二负,则a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,∵a≥4,故2a﹣2≥6当a=4,b=c=﹣1时,满足题设条件且使不等式等号成立.故|a|+|b|+|c|的最小值为6.。
中考数学真题知识分类练习试卷:有理数(含答案)

有理数一、单选题1.【湖南省娄底市2019年中考数学试题】2019的相反数是()A. B. 2019 C. -2019 D.【答案】C2.【山东省德州市2019年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市2019年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市2019年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省2019年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D8.【江苏省连云港市2019年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市2019年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C.D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市2019年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省2019年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键. 12.【2019年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市2019年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣【答案】A14.【2019年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市2019年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市2019年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B17.【江苏省连云港市2019年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市2019年中考数学试题】-2019的相反数是()A. 2019B. -2019C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2019的相反数是2019.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市2019年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市2019年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.【广东省深圳市2019年中考数学试题】260000000用科学计数法表示为( ) 21.A. B. C. D.【答案】B22.【四川省成都市2019年中考数学试题】2019年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2019年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市2019年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2019年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2019年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2019年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)三、解答题28.【江苏省南京市2019年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边 B.线段上 C.点的右边【答案】(1).(2)B.。
2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)

2019-2020学年浙江省温州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−3中x的取值范围是()A. x≥0B. 3C. x≥3D. x≤−32.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.方程x2=9x的解为()A. x=0B. x=9C. x1=0,x2=9D. x1=3,x2=−34.下列二次根式中,是最简二次根式的是()A. √8B. √10C. √16D. √275.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.27m.方差分别是S甲2=0.60,S乙2=0.62,S丙2=0.57,S丁2=0.49,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A. 72°B. 36°C. 30°D. 54°7.如图,▱ABCD的对角线相交于点O,下列条件中能判定这个平行四边形是矩形的是()A. AC=BDB. AB=BCC. ∠BAC=∠CADD. AC⊥BD8.用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设()A. √a2≠aB. a≤0C. a<0D. a>09.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 500(1+x)2=740B. 500(1+2x)=740C. 500(1+x)=740D. 500(1−x)2=74010.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF 的最小值为()A. 4B. 4.8C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.计算:√6÷√2=______.12.已知x=1是方程x2+ax+2=0的一个根,则a的值为______ .13.在某市举办的垂钓比赛上,7名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,7,9,则这组数据的众数是______ .14.若关于x的一元二次方程kx2−5x+4=0有两个相等的实数根,则k的值为______ .15.如图,河坝横断面迎水坡AB的坡比是1:√3(坡比是斜坡AB两点之间的高度差BC与水平距离AC之比),坝高BC=2m,则坡面AB的长度是______m.16.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=7,则EF的长为______ .17.七巧板又称“智慧板”,是我们古代祖先的一项卓越创造.小华利用七巧板(如图1)拼出一个房子模型(如图2),已知图1中正方形ABCD的边长为4cm,则图2中六边形EFGHIJ的周长是______ cm.18.如图1,在菱形ABCD中,动点P从点C出发,沿C−A−D运动至终点D.设点P的运动路程为x(cm),△BCP的面积为y(cm2).若y与x的函数图象如图2所示,则图中a的值为______ .三、解答题(本大题共6小题,共46.0分)19.计算与解方程:(1)计算(4+√32)×2−8;(2)解方程x2−4x+1=0.20.如图,在所给的8×8方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.21.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,某高校为了解本校学生出行使用共享单车的情况,随机调查了某天50名出行学生使用共享单车的情况,并整理成如下统计表.使用次数(012345次)人数(名)12144884(1)这50名出行学生使用共享单车次数的中位数是______ 次.(2)这50名出行学生平均每人使用共享单车多少次?(3)若该校某天有1100名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?22.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,AE=CF,连接BF、AF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,DE=4.则AF长为______ .23.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为______ 元?(请直接写出答案)24.如图1,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y=2x−4经过线段OA的中点D,与y轴交于点G,E是射线CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)求点B的坐标是(______ ,______ ).(2)如图2,当点F落在线段BA的延长线上时,求证:四边形BEGF为菱形.(3)在点E的整个运动过程中,①当S△BEG=58S正方形OABC时,求线段CE的长.②N为平面内任意一点,当B,E,F,N四点构成的四边形为矩形时,则m的值为______ .(请直接写出答案)答案和解析1.【答案】C【解析】解:由题意知x−3≥0,解得:x≥3,故选:C.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】C【解析】解:移项,得x2−9x=0,x(x−9)=0,即x=0或x−9=0∴x1=0,x2=9.故选:C.方程x2=9x移项,得x2−9x=0,再运用因式分解法求出方程的解,选出正确的答案.此类问题也可以根据方程的解的定义,把四个选项分别代入原方程进行检验得出正确的解.4.【答案】B【解析】解:A 、√8=√4×2=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;B 、√10是最简二次根式;C 、√16=4,被开方数中含能开得尽方的因数,不是最简二次根式;D 、√27=√9×3=3√3,被开方数中含能开得尽方的因数,不是最简二次根式; 故选:B .根据最简二次根式的概念判断.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.【答案】D【解析】解:∵S 甲2=0.60,S 乙2=0.62,S 丙2=0.57,S 丁2=0.49, ∴S 丁2<S 丙2<S 甲2<S 乙2,∴这四名同学跳高成绩最稳定的是丁, 故选:D .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】B【解析】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA =36°. 故选:B .利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n −2).7.【答案】A【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项A符合题意;B、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAC=∠ACD,∵∠BAC=∠CAD,∴∠ACD=∠CAD,∴AD=CD,∴平行四边形ABCD是菱形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D不符合题意;故选:A.根据矩形的判定方法和菱形的判定方法分别对各个选项进行判断,即可得出结论.本题考查矩形的判定、菱形的判定、平行四边形的性质、等腰三角形的判定等知识;熟练掌握矩形和菱形的判定方法是解题的关键,属于中考常考题型.8.【答案】C【解析】解:用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设a<0.故选:C.用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”9.【答案】A【解析】解:设快递量平均每年增长率为x,依题意,得:500(1+x)2=740.故选:A.设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】B【解析】解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=12BD=8,OC=12AC=6,∴BC=√OB2+OC2=√64+36=10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=12OB×OC=12BC×OP,∴OP=6×810=4.8,∴EF的最小值为4.8,故选:B.由菱形的性质可得AC⊥BD,BO=12BD=8,OC=12AC=6,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.本题考查了菱形的性质,矩形的判定和性质,勾股定理,掌握菱形的性质是本题的关键.11.【答案】√3【解析】解:√6÷√2=√6÷2=√3,故答案为:√3.根据二次根式的除法法则:√a√b =√ab(a≥0,b>0)进行计算即可.此题主要考查了二次根式的除法,关键是掌握计算法则.12.【答案】−3【解析】解:∵x=1是方程x2+ax+2=0的一个根,∴1+a+2=0,∴a=−3.故答案为:−3.把x=1代入方程得到关于a的方程,解方程即可.本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.【答案】10【解析】解:这组数据中数字10出现2次,次数最多,所以这组数据的众数是10,故答案为:10.根据众数的概念求解可得.本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.【答案】2516【解析】解:根据题意得k≠0且△=(−5)2−4k×4=0,.解得k=2516.故答案为2516根据判别式的意义得到△=(−5)2−4k×4=0,本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】4【解析】解:∵坡AB的坡比是1:√3,坝高BC=2m,∴AC=2√3,由勾股定理得,AB=√BC2+AC2=4(m),故答案为:4.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度的概念是解题的关键.16.【答案】1.5【解析】解:∵DE为△ABC的中位线,BC=3.5,∴DE=12在Rt△AFB中,∠AFB=90°,D是AB的中点,∴DF=1AB=2,2∴EF=DE−DF=1.5,故答案为:1.5.根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】8√2+4.【解析】解:在图2中加上节点K:观察图1和图2可知:EK=EF=FL=HG=12BD,JI=KH=LG=12EK=14BD,EJ=IH,∵正方形ABCD的边长为4CM,∴BD=√42+42=4√2,FL=EF=HG=12×4√2=2√2,JI=KH=LG=12EK=14×4√2=√2,则EJ=IH=2,∴六边形EFGKIJ的周长为:EJ+JI+IH+HG+(LG+FL)+EF,=2+√2+2+2√2+√2+2√2+2√2,=8√2+4,故答案为:8√2+4.七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成),再根据图形的特点,由正方形的性质和勾股定理求出各板块的边长,即可求出图2中六边形的周长.本题考查七巧板的识图以及正方形的性质和勾股定理,数形结合是解决本题的关键.18.【答案】2512【解析】解:从图2知,AC=5,AD=2a,当点P在点A时,此时,y=4a=S△BCP=S△ABC,此时,AB=BC=AD=2a,即△ABC为等腰三角形,过点B作BH⊥AC于点H,则CH=AH=12AC=52,在△ABC中,S△ABC=12AC×BH=12×5×BH=4a,解得BH=8a5,在Rt△HBC中,BC2=BH2+CH2,即(2a)2=(8a5)2+(52)2,解得a=±2512(舍去负值),故答案为2512.从图2知,AC=5,AD=2a,在△ABC中利用S△ABC=12AC×BH=12×5×BH=4a,求得BH=8a5,最后在Rt△HBC中,利用勾股定理即可求解.本题考查的是动点图象问题,涉及到三角形的面积公式、菱形和等腰三角形的性质,勾股定理的运用等,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.【答案】解:(1)原式=(4+4√2)×2−8=8+8√2−8=8√2;(2)∵x2−4x=−1,∴x2−4x+4=−1+4,即(x−2)2=3,则x−2=±√3,∴x=2±√3,即x1=2+√3,x2=2−√3.【解析】(1)先化简二次根式,再计算乘法,最后计算加减可得;(2)利用配方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:(1)如图,矩形ABCD即为所求.(2)如图,正方形ADBC即为所求.【解析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】1=1(次),【解析】解:(1)这50名出行学生使用共享单车次数的中位数是1+12故答案为:1;×(0×12+1×14+2×4+3×8+ (2)这50名出行学生平均每人使用共享单车1504×8+5×4)=1.96(次);=440(人).(3)估计这天使用共享单车次数在3次以上(含3次)的学生有1100×8+8+450(1)根据中位数的概念求解可得;(2)利用加权平均数的概念列式计算可得;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生人数占被调查人数的比例.本题考查了中位数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22.【答案】4√5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴DF//BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)解:∵AB//CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD=√32+42=5,∴DF=5,∵四边形DEBF是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴AF=√AB2+BF2=√82+42=4√5;故答案为:4√5.(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD=5,由矩形的性质得BE=DF=5,BF=DE=4,则AB=AE+BE=8,由勾股定理即可解决问题.本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、等腰三角形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】25000【解析】解:(1)设通道的宽为x米,根据题意得:(58−2x)(22−2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70−110a)=−110(a−700)(a+300),∵−110<0,故w有最大值,当a=12(700−300)=200(元)时,w的最大值为25000(元),故答案为25000.(1)设通道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(70−110a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式,进而求解.本题考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,进而求解.24.【答案】4 4 83【解析】解:(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即正方形的边长为4,故点B(4,4),故答案为4,4;(2)如题干图2,∵点E、点F关于直线DG对称,∴BE=BF,EG=GF,而BG=BG,∴△BGE≌△BGF(SSS),∴∠EBG=∠FBG,∵BF//EG,∴∠GBF=∠EGB,∴∠EBG=∠EGB,∴BE=GE,∵BE=BF,EG=GF,∴EB=BF=FG=GE,∴四边形BEGF为菱形;(3)①∵S△BEG=58S正方形OABC,∴12×GE×BC=58×4×4,即12×|m+4|×4=10,解得m=1或−9,故CE=3或13;②如下图,当B,E,F,N四点构成的四边形为矩形时,∵BE=BF,则该矩形为正方形,则∠EBF为直角,故点F作x轴的平行线交BA的延长线于点T,∵∠CBE+∠EBA=90°,∠EBA+∠FBA=90°,∴∠CBE=∠FBA,∵∠BCE=∠BTF=90°,BE=BF,∴△BCE≌△BTF(AAS),∴CE=TF=4−m,BT=BC,故点A、T重合,则点F在x轴上,则AF=CE=4−m,故点F(8−m,0),∵GE=GF,∴(m+4)2=(8−m)2+(−4)2,解得:m=83,故答案为83.(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即可求解;(2)证明△BGE≌△BGF(SSS),则可证∠EBG=∠EGB,则BE=GE,进而求解;(3)①S△BEG=58S正方形OABC,即12×GE×BC=58×4×4,则12×|m+4|×4=10,即可求解;②当B,E,F,N四点构成的四边形为矩形时,则该矩形为正方形,然后证明△BCE≌△BGF(AAS),得到F(8−m,0),再利用GE=GF,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形全等等,其中(3)①,要注意分类求解,避免遗漏.。
浙江省丽水市2019年中考数学真题试题(含解析)

浙江省丽水市2019年中考数学试卷一、选择题目(共10题;共30分)1.初数4的相反数是()A. B. -4 C. D. 4【答案】 B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a3【答案】 D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】 C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】 C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.【答案】 A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处【答案】 D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=1【答案】 A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=【答案】 C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴AO= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO= AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】 D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr· r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.【答案】 A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴= = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题目(共6题;共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
2019年普通高中学业水平合格性考试(会考)数学试卷三(含答案)

2019年普通高中学业水平合格性考试数学试卷(考试时间:90分钟满分:100分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至6页。
考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上。
考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色字迹签字笔在答题卡上作答。
在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷和答题卡一并收回。
第Ⅰ卷(选择题45分)一、选择题(本大题有15小题,每小题3分,共45分。
每小题只有一个选项符合题目要求)1.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩C uA=9)A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}2.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,...1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。
若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生3.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.44.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.135.幂函数y=f(x)的图象经过点(8,22),则f(x)的图象是()6.经过点A(8,-2),斜率为.−12的直线方程为()A.x+2y-4=0B.x-2y-12=0C.2x+y-14=0D.x+2y+4=07.设f(x)为奇函数,且当x≥0时,f(x)=e-X-1.则当x<0时,f(x)=()A.e-X-1B.e-X+1C.-e-X-1D.-e-X+18.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB =(1,-2),AD =(2,1),则AB ·AD =()A.5B.4C.3D.29.函数f(x)=1X—x3的图像关于()A.x轴对称B.y轴对称C.直线y=x对称D.坐标原点对称10.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.111.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的是()A.若m⊥n,n//α,则m⊥αB.若m//β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α12.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或一12C.-2或-12D.2或1213.在区间[o,2]上随机地取一个数x,则事件“-1≤log1(x+12)≤1发生的概率为()2A.34B.23C.13D.1414.为了得到函数y=sin2x的图象,只要把函数y=sin x的图象上所有点()A.横坐标缩短到原来的12,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的12,横坐标不变D.纵坐标伸长到原来的2倍,横坐标不变15.已知{a n}是首项为1的等比数列,s n是{a n}的前n项和,且9S3=S6,则数列{1a n}的前5项和为()A.158或5B.3116或5C.3116D.158第Ⅱ卷(非选择题55分)二、填空题(本大题共5小题,每小题3分,共15分)16.函数y=7+6x−x2的定义域是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2019年初中学业水平考试(温州卷)
数学试题卷
卷I
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.计算:(3)5
-⨯的结果是()
.A15
-.B15.C2-.D
2
2.太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为()
.A
18
0.2510
⨯.B17
2.510
⨯.C16
2510
⨯.D16
2.510
⨯
3.某露天舞台如图所示,它的俯视图
...是()
4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6 张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()
.A 1
6
.B
1
3
.C
1
2
.D 2
3
5.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()
.A20人.B40人.C60人.D
80人
.A.B.C
.D
6. 验光师测得一组关于近视眼镜的度数 y (度)与镜片焦距x (米)的对应数据如下表. 根据表中数据,可得y 关于x 的函数表达式为( ) 近视眼镜的度数 y (度)
200 250 400 500 1000 镜片焦距x (米) 0.50 0.40 0.25 0.20 0.10 .A 100y x
= .B 100x y = .C 400y x = .
D 400x y = 7.若扇形的圆心角为 90o ,半径为6,则该扇形的弧长为( )
.A 32π .B 2π .C 3π .
D 6π
8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )
.A 95sin α
.B 95cos α .C 59sin α .D 59cos α 9.已知二次函数242y x x =-+,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( )
.A 有最大值1-,有最小值2- .B 有最大值0,有最小值1-
.C 有最大值7,有最小值1- .D 有最大值7,有最小值2- 10. 如图,在矩形 ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使 BM BC =,作 MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解
释了22
()()a b a b a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结 EP ,记△EPH 的面积为1S ,图中阴影部分的面积为2S .若点 A ,L ,G 在同一直线上,则12S S 的值为( ) .A 22 .B 23 .C 24 .D 26
卷 II
二、填空题(本题有6小题,每小题5分,共30分)
11.分解因式:2
44m m ++= . 12.不等式组23142
x x +>⎧⎪⎨-≤⎪⎩的解为 . 13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80 分及以上)的学生有 人.
14.如图,⊙O 分别切BAC ∠ 的两边 AB ,AC 于点E ,F ,点P 在优弧(¼BDF )上,若66BAC ∠=o
,则EPF ∠ 等于 度.
15. 三个形状大小相同的菱形按如图所示方式摆放,已知90AOB AOE ∠=∠=o , 菱形的较短对角线长为 2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .
16. 图 1 是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图 2 所示,两支脚10OC OD == 分米,展开角60COD ∠=o ,晾衣臂
10OA OB == 分米,晾衣臂支架 6HG FE ==分米,且
4HO FO ==分米,当90AOC ∠=o 时,点A 离地面的距离
AM 为 分米;当OB 从水平状态旋转到OB '(在
CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '
处,则 B E BE ''-为 分米.
三、解答题(本题有8小题,满分80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(本题10分)
(1)计算:0
69(12)(3)--+---
(2) 224133x x x x x
+-++
18.(本题8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F
(1) 求证:△BDE ≌△CDF .
(2) 当AD ⊥BC ,1AE =,2CF = 时,求AC 的长.
19.(本题8分)车间有 20 名工人,某一天他们生产的零件个数统计如下表.
车间 20 名工人某一天生产的零件个数统计表
生产零件的个数(个)
9 10 11 12 13 15 16 19 20 工人人数(人) 1 1 6 4 2 2 2 1 1
(1)求这一天 20 名工人生产零件的平均个数.
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者, 从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
20. (本题8分)如图,在 7×5 的方格纸 ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点 A ,B ,C ,D 重合.
(1)在图1 中画一个格点△EFG ,使点 E ,F ,G 分别落在边 AB ,BC ,CD ,且90EFG ∠=o
.
(2)在图2 中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,第18题
且 .MP NQ = 注:图 1,图2 在答题纸上.
21. (本题10分)如图,在平面直角坐标系中,二次函数 21262
y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).
(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.
(2)把点B 向上平移m 个单位得点1B .若点1B 向左平移n 个单位,将与该二次函数图象上的点2B 重合;若点1B 向左平移(6)n +个单位,将与该二次函数 图象上的点3B 重合.已知0m >,0n >,求 m ,n 的值.
22. (本题10分)在△ABC 中,90BAC ∠=o
,点E 在BC 边上,且 CA CE =,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结 CD ,CF .
(1)求证:四边形DCFG 是平行四边形. 第21题
(2)当4BE =,38
CD AB =
时,求⊙O 的直径长.
23. (本题满分12分)某旅行团 32 人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童 10人,成人比少年多 12人.
(1)求该旅行团中成人与少年分别是多少人?
(2)因时间充裕,该团准备让成人和少年(至少各1名)带领 10 名儿童去另一景区B 游玩,景区B 的门票价格为 100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.
①若由成人8 人和少年5 人带队,则所需门票的总费用是多少元?
②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
24.(本题14分)如图,在平面直角坐标系中,直线1
4
2
y x
=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO 上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点1Q向终点2Q匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长.
(2)设点
2
Q为(,)
m n,当
1
tan
7
n
EOF
m
=∠时,求点
2
Q的坐标.
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点3Q,当点Q在线段23
Q Q上时,设
3
=
Q Q s,AP t=,求s关于t的函数表达式亚.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
第24题。