2018年浙江省温州市鹿城区中考数学模拟试卷(5月份)
〖汇总3套试卷〗温州市2018年中考数学毕业生学业模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 【答案】C 【解析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x 元,根据题意,得(180+x ﹣20)(50﹣x 10)=1. 故选:C .【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.2.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x 图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 1 【答案】D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y 1<0<y 2<y 3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y =﹣1x中k =﹣1<0, ∴此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大,∵y 1<0<y 2<y 3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限,∴x 2<x 3<x 1.故选:D .【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.3.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 2【答案】D【解析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D4.已知圆内接正三角形的面积为33,则边心距是( )A .2B .1C .3D .3 【答案】B【解析】根据题意画出图形,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,由三角形重心的性质得AD=3x , 利用锐角三角函数表示出BD 的长,由垂径定理表示出BC 的长,然后根据面积法解答即可. 【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,则AD=3x ,∵tan ∠BAD=BD AD, ∴BD= tan30°·3,∴3,∵1332BC AD ⋅=, ∴1233, ∴x =1所以该圆的内接正三边形的边心距为1,故选B .【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.5.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tan米B.30sinα米C.30tanα米D.30cosα米【答案】C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.6.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【答案】B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.7.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C3 2 D3 3 【答案】A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠3,EC=cos∠C×DC=12DC,又∵DC+BD=BC=AC=32 DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:3 DEAC⎛⎫==⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.8.下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.9.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.1313B.31313C.23D13【答案】B【解析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+=,∴313cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 10.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A .(3 ,1)B .(3 ,2)C .(2 ,3)D .(1 ,3)【答案】D 【解析】解决本题抓住旋转的三要素:旋转中心O ,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.二、填空题(本题包括8个小题)11.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为____.【答案】3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.1212+3.【答案】31223.【详解】原式3+3=33故答案为33【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.13.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】85 【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:22345AC =+=,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.14.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为________.【答案】2【解析】试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22CD=2CE=42考点:1.解直角三角形、2.垂径定理.15.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.【答案】5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m ≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>16.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .【答案】4【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.17.如图,AB为⊙O的直径,C、D为⊙O上的点,AD CD=.若∠CAB=40°,则∠CAD=_____.【答案】25°【解析】连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.【详解】如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵AD CD=,∠ABC=25°,∴∠ABD=∠CBD=12∴∠CAD=∠CBD=25°.故答案为25°.【点睛】本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.18.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.【答案】4【解析】根据规定,取101+的整数部分即可.【详解】∵103<<4,∴104<+1<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.三、解答题(本题包括8个小题) 19.先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1. 【答案】15. 【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++ 当x=1时,原式2123-=+=15. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.20.某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:直接写出1y 、2y 与x 的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?甲、乙两班相距4千米时所用时间是多少小时?【答案】(1)y1=4x,y2=-5x+1.(2)409km.(3)23h.【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=10 9.当x=109时,y2=−5×109+1=409,∴相遇时乙班离A地为409km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=23 h.∴甲、乙两班首次相距4千米时所用时间是23h.21.如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?【答案】(1)直线y=32x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m 的值,从而确定点C 的坐标;(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166a -,从而得到MN+3PM=﹣14a 2+3a+9,确定二次函数的最值即可. 【详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,21(2)14y =⨯-=,A 点的坐标为(-2,1), 设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8,当x=8时,y=16,∴点B 的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB 2=22(82)(161)=325 .设点C(m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-12; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6; ③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32,∴点C 的坐标为(-12,0),(0,0),(6,0),(32,0) (3)设M(a ,14a 2), 则MN2114a =+, 又∵点P 与点M 纵坐标相同,∴32x +4=14a 2, ∴x=2166a - , ∴点P 的横坐标为2166a -, ∴MP =a -2166a -, ∴MN +3PM =14a 2+1+3(a -2166a -)=-14a 2+3a +9=-14 (a -6)2+1, ∵-2≤6≤8,∴当a =6时,取最大值1,∴当M 的横坐标为6时,MN +3PM 的长度的最大值是122.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A 、C 两地海拔高度约为1000米,山顶B 处的海拔高度约为1400米,由B 处望山脚A 处的俯角为30°,由B 处望山脚C 处的俯角为45°,若在A 、C 两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)【答案】隧道最短为1093米.【解析】作BD ⊥AC 于D ,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD ⊥AC 于D ,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt △ABD 中,∵tan30°=BD AD ,即4003AD = ∴3(米),在Rt △BCD 中,∵tan45°=BDCD ,即4001CD=,∴CD=400(米),∴AC=AD+CD=4003+400≈1092.8≈1093(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.23.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.【答案】(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.25.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥100,3∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.26.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【答案】﹣1≤x<1.【解析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a =B .2a =C .4a =D .10a = 【答案】D【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.2.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥 【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状3.如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有2x =、3x =,那么适合这个不等式组的整数a 、b 组成的有序数对(,)a b 共有()A .3个B .4个C .5个D .6个 【答案】D【解析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案.【详解】解不等式2x−a≥0,得:x ≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4,解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.4.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可. 5.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C 【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED,得∠B=∠D,因为CD BF,若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.7.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为AB 上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.45【答案】D【解析】如图,连接AB,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .8.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >3【答案】B【解析】试题分析:观察图象可知,抛物线y=x 2+bx +c 与x 轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y <0时,x 的取值范围正好在两交点之间,即﹣1<x <1. 故选B .考点:二次函数的图象.1061449.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱. 【详解】解:观察图形可知,这个几何体是三棱柱.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..10.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.【答案】D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.则△CBM ≌△CDN ,(HL ) ∴S 四边形BCDG =S 四边形CMGN . S 四边形CMGN =1S △CMG , ∵∠CGM=60°, ∴GM=12CG ,CM=3CG , ∴S 四边形CMGN =1S △CMG =1×12×12CG×32CG=CG 1.③过点F 作FP ∥AE 于P 点. ∵AF=1FD ,∴FP :AE=DF :DA=1:3, ∵AE=DF ,AB=AD , ∴BE=1AE ,∴FP :BE=1:6=FG :BG , 即 BG=6GF . 故选D .二、填空题(本题包括8个小题)11.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元. 【答案】1【解析】试题分析:设该商品每件的进价为x 元,则 150×80%-10-x =x×10%, 解得 x =1.即该商品每件的进价为1元. 故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.12.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.【答案】10【解析】根据翻折的特点得到'AD F CBF ∆≅∆,AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解出x,再根据三角形的面积进行求解.【详解】∵翻折,∴'4AD AD BC ===,'90D B ∠=∠=︒, 又∵'AFD CFB ∠=∠, ∴'AD F CBF ∆≅∆,∴AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-, 解得3x =, ∴5AF =, ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用. 13.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.【答案】65°【解析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m ∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75° ∴∠α=∠2−∠3=140°−75°=65° 故答案为:65°. 【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.14.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是____________.【答案】15°【解析】分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.详解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN为AB的中垂线,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.415.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.【答案】y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.【答案】2【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:20 12xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.详解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是AB的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=22451(42)43602π⨯⨯-⨯=4π-1.故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.18.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.【答案】1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x=2/3解得:x=1.∴黄球的个数为1.三、解答题(本题包括8个小题)19.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:整理、描述数据将成绩按如下分段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你。
<合集试卷5套>2018年温州市中考学业质量检查模拟数学试题

∵反比例函数y= (k≠0)过点A(1,1),
A.无实数根
B.有两个正根
C.有两个根,且都大于﹣3m
D.有两个根,其中一根大于﹣m
【答案】A
【解析】先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
【详解】方程整理为 ,
△ ,
∵ ,
∴ ,
∴△ ,
∴方程没有实数根,
故选A.
【点睛】
本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
详解:
∵在△ABC中,点E,F分别是AC,BC的中点,
∴EF是△ABC的中位线,
∴EF∥AB,EF:AB=1:2,
∴△CEF∽△CAB,
∴S△CEF:S△CAB=1:4,
设S△CEF=x,
∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
∴ ,
解得: ,
经检验: 是所列方程的解.
故答案为:3.
【答案】4
【解析】根据规定,取 的整数部分即可.
【详解】∵ ,∴
∴整数部分为4.
【点睛】
本题考查无理数的估值,熟记方法是关键.
13.可燃冰是一种新型能源,它的密度很小, 可燃冰的质量仅为 .数字0.00092用科学记数法表示是__________.
【答案】9.2×10﹣1.
【解析】根据科学记数法的正确表示为 ,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
【答案】(1) ;(2)1<x<1.
【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
2018年温州市中考数学模拟试卷

2018年温州市中考数学模拟试卷2018年中考模拟试题选⼀、选择题:1.我市南⽔北调配套⼯程建设进展顺利,⼯程运⾏调度有序.截⽌2015年12⽉底,已累计接收南⽔北调来⽔812000000⽴⽅⽶.使1100余万市民喝上了南⽔;通过“存⽔”增加了约550公顷⽔⾯,密云⽔库蓄⽔量稳定在10亿⽴⽅⽶左右,有效减缓了地下⽔位下降速率. 将812000000⽤科学记数法表⽰应为( )A.812×106B.81.2×107 C.8.12×108 D.8.12×1092.下列运算正确的是()A.3a2+5a2=8a4 B.a6?a2=a12C.(a+b)2=a2+b2D.(a2+1)0=13.如图所⽰的标志中,是轴对称图形的有( )A.1个B.2个C.3个D.4个4.为估计池塘两岸A,B间的距离,杨阳在池塘⼀侧选取了⼀点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15m B.17m C.20m D.28m5.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°6.估计+1的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间7.在平⾯直⾓坐标系中,点P(-1,2)所在的象限是()A.第⼀象限B.第⼆象限C.第三象限D.第四象限8.已知⼀次函数y=kx﹣k,y随x的增⼤⽽减⼩,则函数图象不过第()象限.A.第⼀象限B.第⼆象限C.第三象限D.第四象限9.计算的结果是()A.6 B.C.2 D.10.⼀个暗箱⾥装有10个⿊球,8个红球,12个⽩球,每个球除颜⾊外都相同,从中任意摸出⼀球,不是⽩球的概率是()11.如图,l∥l2∥l3,两条直线与这三条平⾏线分别交于点A.B、C和D、E、F.已知,则1的值为()A.B.C.D.12.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最⼤⾯积是()A.60 m2B.63 m2C.64 m2D.66 m2⼆、填空题:13.分解因式:x3y﹣2x2y+xy= .14.函数的⾃变量x的取值范围是.15.化简221(1)11x x -÷+-的结果是 . 16.某直⾓三⾓形三条边的平⽅和为200,则这个直⾓三⾓形的斜边长为.17.如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为.18.已知圆O 的半径为5,AB 是圆O 的直径,D 是AB 延长线上⼀点,DC 是圆O 的切线,C 是切点,连接AC ,若∠CAB=30°,则BD 的长为.三、计算题:19.解⽅程组:20.解不等式组.四、解答题:21.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD 的延长线相交于点F.(1)求证:四边形BDFC是平⾏四边形;(2)若△BCD是等腰三⾓形,求四边形BDFC的⾯积.22.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.。
2018年浙江省温州市乐清市中考数学模拟试卷(5月份)

2018年浙江省温州市乐清市中考数学模拟试卷(5月份)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是()A.A′B′>AB B.A′B′=AB C.A′B′<AB D.A′B′≤AB2.(4分)如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.a﹣2a=a B.(a2)3=a6C.a2+a3=a5 D.a6÷a3=a24.(4分)化简的结果是()A.B.C.D.a+15.(4分)如果=2,则的值是()A.3 B.﹣3 C.D.6.(4分)某种学生快餐(300g)营养成分的统计如图所示,根据统计图,下列结论错误的是()A.这种快餐中,脂肪有30gB.这种快餐中,蛋白质含量最多C.表示碳水化合物的扇形的圆心角是144°D.最多的营养成分是最少的8倍7.(4分)如图,数轴上A,B两点所表示的数互为倒数,则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合8.(4分)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸9.(4分)如图,矩形ABCD中,点E是CD边上的中点,连结AE取AE中点F,连结FC,FB,若△FCB是等边三角形,则CD:CF=()A. B.C.1 D.210.(4分)如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C 与C′分别对应),点D从点B运动运动至点C,△B′C′D面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)请写出一个比﹣π大的负整数:.12.(5分)不等式组的解集是.(5分)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.13.14.(5分)在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,则x的最小值为.15.(5分)如图,平面坐标系xoy中,B(12,4),C(8,0),OA∥BC,OA=BC,= .过点A作反比例函数y=(k>0),图象交BC于点D,连结OD,则S△OCD16.(5分)平面直角坐标系中,横坐标与纵坐标都是整数时,我们称这个点为整点,当二次函数y=ax2+bx+c(a≠0)在0≤x≤4.0≤y≤4范围内通过的整点个数大于4时,则a的所有可能值是.三、解答题(本大题共8小题,共计80分)17.(10分)(1)计算:20180﹣2cos30°+,(2)解方程: +=018.(8分)已知x=2是关于x的方程x2﹣mx﹣4m2=0的一个根,求m(2m+1)的值.19.(8分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.(1)该事件最有可能是(填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯的概率;②掷一枚硬币,正面朝上;③暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.(2)你设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字正面朝上,该事件发生的概率接近于.20.(8分)如图1,2为6×6正方形方格纸中,每个小的正方形边长为单位1,点A,B,C,D都在格点处.(1)如图1,四边形ABCD的周长是.(2)如图2,AC与BD相交于点O,tan∠BOC= .21.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B 同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?22.(10分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O的切线交BC的延长线于点E.(1)求证:EF=DE;(2)若AD=4,DE=5,求BD的长.23.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)已知点D(0,﹣1),点P为线段BC上一动点,延长DP交抛物线于点H,连结BH.①当四边形ODHB面积为9,求点H的坐标;②设m=,求m的最大值.24.(14分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则CG+9= .(直接写出答案).。
2018年浙江省温州市某区中考数学一模试卷

2018年浙江省温州市某区中考数学一模试卷一、选择题(本题共10小题,每小题4分,共40分)1.(4分)在,,0,﹣2这四个数中,最小的数是()A.B.C.0D.﹣22.(4分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a5C.(2a)2=4a D.(a2)3=a5 3.(4分)如图所示,该圆柱体的左视图是()A.B.C.D.4.(4分)如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A.22°B.26°C.32°D.34°5.(4分)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表所示:成绩(分)3637383940人数(人)12142表中表示成绩分数的数据中,中位数是()A.38分B.38.5分C.39分D.39.5分6.(4分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19 7.(4分)不等式组的解集是()A.x≥2B.1<x<2C.1<x≤2D.x≤28.(4分)已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1 9.(4分)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中点E,P分别是AD,CD的中点,AB=2,一只蚂蚁从A处沿图中实线爬行到出口P处,则它爬行的最短路径长为()A.3B.2+C.4D.310.(4分)如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A.15B.18C.20D.24二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:a2﹣4a=.12.(5分)一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复实验后发现,摸到红球的频率稳定在0.3左右,则m的值约为.13.(5分)某种品牌手机经过4,5月份连续两次降价,每部售价由5000降到3600元,且5月份降价的百分率是4月份降价的百分率的2倍.设4月份降价的百分率为x,根据题意可列方程:(不解方程).14.(5分)如图,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE,若∠B=30°,则∠CDE=°.15.(5分)如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD 与灯柱BC成120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO 通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=米,则路灯的灯柱BC高度应该设计为米(计算结果保留根号).16.(5分)如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.三、解答题(本题有8小题,共80分)17.(8分)计算:(﹣2)0﹣()2+|﹣1|.18.(8分)如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.19.(8分)如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.20.(10分)随着道路交通的不断完善,某市旅游业快速发展,该市旅游景区有A、B、C、D、E等著名景点,市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2017年“五•一”期间,该市旅游景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)在等可能性的情况下,甲、乙两个旅行团在A、B、D三个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.21.(10分)如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.22.(10分)如图,▱ABCD位于直角坐标系中,AB=2,点D(0,1),以点C 为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.(1)求点A,B,C的坐标.(2)将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.①求MN的长.②点P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°得AQ,则OQ的最小值为(直接写出答案即可)23.(12分)如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.(1)当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.(2)若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.(3)求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.24.(14分)如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=m.(1)当m=6时,求AF的长.(2)在点P的整个运动过程中.①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围.②当矩形ABCD恰好有2个顶点落在⊙O上时,求m的值.(3)若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的m的值.(直接写出答案即可)2018年浙江省温州市某区中考数学一模试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.(4分)在,,0,﹣2这四个数中,最小的数是()A.B.C.0D.﹣2【考点】2A:实数大小比较.【专题】1:常规题型.【分析】先根据实数的大小比较法则比较数的大小,即可得出选项.【解答】解:∵﹣2<0<<,∴在,,0,﹣2这四个数中,最小的数是﹣2,故选:D.【点评】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.2.(4分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a5C.(2a)2=4a D.(a2)3=a5【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】11:计算题;512:整式.【分析】分别根据合并同类项法则、同底数幂的乘法、积的乘方和幂的乘方依次计算即可判断.【解答】解:A、a2、a3不是同类项,不能合并,此选项错误;B、a2•a3=a5,此选项正确;C、(2a)2=4a2,此选项错误;D、(a2)3=a6,此选项错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、同底数幂的除法、积的乘方与幂的乘方.3.(4分)如图所示,该圆柱体的左视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【专题】1:常规题型;55F:投影与视图.【分析】先细心观察原立体图形,是一个圆柱,所以它的左视图是矩形.【解答】解:该圆柱体的左视图是:故选:C.【点评】本题考查了圆柱的三视图,应熟练掌握:圆柱的主视图和左视图都是矩形,俯视图是圆.4.(4分)如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A.22°B.26°C.32°D.34°【考点】M5:圆周角定理;MA:三角形的外接圆与外心.【专题】1:常规题型.【分析】直接利用圆周角定理得出∠BOC=136°,再利用三角形内角和定理得出答案.【解答】解:连接CO,∵∠A=68°,∴∠BOC=136°,∴∠OBC=∠OCB=(180°﹣136°)=22°.故选:A.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠BOC 的度数是解题关键.5.(4分)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表所示:成绩(分)3637383940人数(人)12142表中表示成绩分数的数据中,中位数是()A.38分B.38.5分C.39分D.39.5分【考点】W4:中位数.【专题】1:常规题型;542:统计的应用.【分析】根据中位数的定义求解可得.【解答】解:∵一共有1+2+1+4+2=10个数据,∴第5和第6名同学的成绩的平均值为中位数,中位数为:=39,故选:C.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义.6.(4分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19【考点】A6:解一元二次方程﹣配方法.【专题】11:计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.(4分)不等式组的解集是()A.x≥2B.1<x<2C.1<x≤2D.x≤2【考点】CB:解一元一次不等式组.【专题】11:计算题.【分析】分别解两个不等式得到x>1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:解①得x>1,解②得x≤2,所以不等式组的解集为1<x≤2.故选:C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.(4分)已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【专题】1:常规题型.【分析】先根据点(1,0)在一次函数y=kx﹣2的图象上,求出k=2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【解答】解:∵点(1,0)在一次函数y=kx﹣2的图象上,∴k﹣2=0,∴k=2>0,∴y随x的增大而增大,∵﹣2<1<3,∴y1<0<y2.故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.9.(4分)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中点E,P分别是AD,CD的中点,AB=2,一只蚂蚁从A处沿图中实线爬行到出口P处,则它爬行的最短路径长为()A.3B.2+C.4D.3【考点】IM:七巧板;LF:正方形的判定.【专题】1:常规题型.【分析】由图可知,蚂蚁从点A处沿图中实线爬行到出口点P处,它爬行的最短路程为AE+EP.【解答】解:∵正方形ABCD,E,P分别是AD,CD的中点,AB=2,∴AE=DE=DP=,∠D=90°,∴EP===2,∴蚂蚁从点A处沿图中实线爬行到出口点P处,它爬行的最短路程为AE+EP=+2.故选:B.【点评】本题考查了正方形的性质,七巧板以及勾股定理等知识,找出蚂蚁爬行的最短路线是解题的关键.10.(4分)如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A.15B.18C.20D.24【考点】LB:矩形的性质;R2:旋转的性质.【专题】554:等腰三角形与直角三角形;556:矩形菱形正方形;558:平移、旋转与对称.【分析】设HD为x,表示HP,由面积法证明HP=AP,由勾股定理求x,再由勾股定理求HA,问题可解.【解答】解:设HD=x,由已知HC=x+8∵P是CH的中点∴HP=有图形可知,△HP A中,边HP和边AP边上高相等∴由面积法HP=AP∴AP=4+∵DP=HP﹣HD=4﹣∴Rt△APD中AP2=DP2+AD2∴(4+)2=(4﹣)2+62解得x=∴HP=4+=∴Rt△ADH中,HA=∴△APH的周长为=20故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:a2﹣4a=a(a﹣4).【考点】53:因式分解﹣提公因式法.【分析】由于原式子中含有公因式a,可用提取公因式法求解.【解答】解:a2﹣4a=a(a﹣4).故答案为:a(a﹣4).【点评】主要考查提公因式法分解因式,是基础题.12.(5分)一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复实验后发现,摸到红球的频率稳定在0.3左右,则m的值约为3.【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【解答】解:根据题意得,解得m=3.故答案为:3.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(5分)某种品牌手机经过4,5月份连续两次降价,每部售价由5000降到3600元,且5月份降价的百分率是4月份降价的百分率的2倍.设4月份降价的百分率为x,根据题意可列方程:5000(1﹣x)(1﹣2x)=3600(不解方程).【考点】AC:由实际问题抽象出一元二次方程.【专题】123:增长率问题.【分析】设4月份降价的百分率为x,则5月份降价的百分率为2x,根据某件商品原价5000元,经过两次降价后,售价为3600元,可列方程.【解答】解:设4月份降价的百分率为x,则5月份降价的百分率为2x,根据题意,得:5000(1﹣x)(1﹣2x)=3600,故答案为:5000(1﹣x)(1﹣2x)=3600.【点评】本题考查从实际问题抽象出一元二次方程,求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.(5分)如图,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE,若∠B=30°,则∠CDE=45°.【考点】L8:菱形的性质;PB:翻折变换(折叠问题).【专题】556:矩形菱形正方形;558:平移、旋转与对称.【分析】由菱形性质可知∠BAD=150,由折叠AB=AE=AD,∠BAE=120°,则∠DAE=30°,由等腰三角形性质,可求∠ADE从而求∠CDE.【解答】解:由折叠,BA=EA∵∠B=30°∴∠BAC=120°∵四边形ABCD为菱形∴∠BAD=150°∴∠EAD=30°∵AD=AB=AE∴∠ADE=75°∵∠ADC=∠B=30°∴∠CDE=45°故答案为:45【点评】本题为图形折叠问题,考查了菱形性质和图形折叠的相关性质,解答时注意数形结合.15.(5分)如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD 与灯柱BC成120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=米,则路灯的灯柱BC高度应该设计为8米(计算结果保留根号).【考点】T8:解直角三角形的应用.【专题】1:常规题型.【分析】出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=10米,CD=米,∴在直角△CPD中,DP=DC•tan60°=3m,PC=CD÷(sin30°)=2(米),∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===10(米),∴BC=PB﹣PC=10﹣2=8(米).故答案为:8.【点评】此题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确作出辅助线是解题关键.16.(5分)如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为5.【考点】G8:反比例函数与一次函数的交点问题.【专题】534:反比例函数及其应用.【分析】由题意B(0,b),A(b,0),推出OA=OB=b,因为直线y=﹣x+b 关于直线y=x对称,反比例函数y=﹣关于y=x对称,推出BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),想办法构建方程求出a、b的关系,求出点D的坐标(用b表示),再利用待定系数法即可解决问题;【解答】解:由题意B(0,b),A(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵,∴=,整理得:12a2+17ab﹣7b2=0,解得a=b或a=﹣b(舍弃),∴D(b,﹣b),∵D在y=﹣的图象上,∴b×(﹣b)=﹣4,解得b=3或﹣3(舍弃),∴D(4,﹣1),C(﹣1,4),∴CD==5,故答案为5.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是学会利用轴对称的性质解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共80分)17.(8分)计算:(﹣2)0﹣()2+|﹣1|.【考点】2C:实数的运算;6E:零指数幂.【专题】1:常规题型.【分析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣6+1=﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.【考点】KD:全等三角形的判定与性质.【专题】55:几何图形.【分析】(1)根据角的关系得出∠AEB=∠DBC,利用全等三角形的判定证明即可;(2)根据全等三角形的性质得出BE=BD,再利用等腰三角形的性质解答即可.【解答】证明:(1)∵∠ABE+∠EBD+∠DBC=180°,∠A+∠AEB+∠EBA=180°,∵∠EBD=∠A=∠DCB,∴∠EBA=∠DBC,在△ABE与△CDB中,∴△ABE≌△CDB(AAS),(2)∵△ABE≌△CDB,∴BE=DB,∠AEB=∠DBC,∵∠CDB=60°,∠AEB=50°,∴∠DBC=50°,∴∠C=180°﹣60°﹣50°=70°,∴∠EBD=∠DCB=70°,∴∠BDE=.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.19.(8分)如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.【考点】KA:全等三角形的性质;N4:作图—应用与设计作图.【专题】13:作图题.【分析】利用数形结合的思想,构造直角三角形即可解决问题;【解答】解:△POQ如图所示;【点评】本题考查作图﹣应用与设计、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)随着道路交通的不断完善,某市旅游业快速发展,该市旅游景区有A、B、C、D、E等著名景点,市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2017年“五•一”期间,该市旅游景点共接待游客50万人,扇形统计图中A景点所对应的圆心角的度数是108°,并补全条形统计图.(2)在等可能性的情况下,甲、乙两个旅行团在A、B、D三个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.【考点】VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【专题】1:常规题型;54:统计与概率.【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【解答】解:(1)该市旅游景点共接待游客15÷30%=50(万人),扇形统计图中A景点所对应的圆心角的度数是360°×30%=108°,B景点的人数为50×24%=12(万人),补全条形图如下:故答案为:50、108°;(2)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.【点评】本题考查的是条形统计图、扇形统计图、用样本估计总体以及概率的计算的综合应用,读懂统计图、从中获取正确的信息是解题的关键.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.21.(10分)如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.【考点】KH:等腰三角形的性质;MC:切线的性质.【专题】55C:与圆有关的计算.【分析】(1)连接OE,如图,先证明OE∥AC,再利用切线的性质得OE⊥EF,从而得到EF⊥AC;(2)连接DE,如图,设.⊙O的半径长为r,利用圆周角定理得到∠BED=90°,则DE=BD=r,BE=r,再证明∠EDF=90°,∠DFE=60°,接着用r表示出DF=r,EF=r,CE=r,从而得到r+r=2,然后解方程即可.【解答】(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC;(2)解:连接DE,如图,设.⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE=BD=r,BE=r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF=r,∴EF=2DF=r,在Rt△CEF中,CE=2EF=r,而BC=2,∴r+r=2,解得r=,即⊙O的半径长为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和垂径定理.22.(10分)如图,▱ABCD位于直角坐标系中,AB=2,点D(0,1),以点C 为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.(1)求点A,B,C的坐标.(2)将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.①求MN的长.②点P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°得AQ,则OQ的最小值为(直接写出答案即可)【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)先确定出OE=2,进而得出AE=BE=1,OA=2﹣1=1.OB=OE+BE =3即可得出结论;(2)先确定出抛物线解析式为y=﹣(x﹣2)2+1,①确定出平移后的抛物线解析式为y=﹣(x﹣2)2+5,进而求出M(2+,0),N(2﹣,0),即可得出结论;②先确定出点Q的运动轨迹,再利用三角形的面积即可得出结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD=AB=2,∵CE⊥x轴,∴OE=2,∵点E是AB中点,∴AE=BE=1,∴OA=2﹣1=1.OB=OE+BE=3,∴A(1,0),B(3,0),∵D(0,1),∴C(2,1);(2)由(1)知,抛物线的顶点C(2,1),∴设抛物线的解析式为y=a(x﹣2)2+1,∵A(1,0)在抛物线上,∴a(1﹣2)2+1=0,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣2)2+1,①该抛物线向上平移m个单位恰好经过点D,设平移后的抛物线解析式为y=﹣(x﹣2)2+1+m,∵D(0,1),∴﹣(﹣2)2+1+m=1,∴m=4,∴平移后的抛物线解析式为y=﹣(x﹣2)2+5,令y=0,∴0=﹣(x﹣2)2+5,∴x=2±,∴M(2+,0),N(2﹣,0),∴MN=2;②如图,在第一象限的抛物线对称轴上取一点P1,使∠P1AB=60°,在Rt△AEP1中,AP1=2AE=2,P2E=∴点Q1和点B重合,∴Q1(3,0),P1(2,),在第一象限的抛物线对称轴上取一点P2,使∠P2AB=30°,在Rt△AEP2中,P2E=AE tan30°=,∴点Q2(2,﹣),∴直线Q1Q2的解析式y=x﹣在第二象限的抛物线对称轴上取一点P3,使∠P3AE=60°,由旋转知,Q3和点P1关于点A对称,∴Q3(0,﹣),∴点Q3在直线Q1Q2上,∴点Q的运动轨迹是直线Q1Q2,∴当OQ⊥Q1Q2时,OD最短,∵Q1Q3=2==,∴OD最小故答案为.【点评】此题是二次函数综合题,主要考查了待定系数法,含30度的直角三角形的性质,平移的性质,解本题的关键是确定出点Q的轨迹.23.(12分)如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.(1)当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.(2)若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.(3)求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.【考点】HE:二次函数的应用;SA:相似三角形的应用.【专题】552:三角形.【分析】(1)作AH⊥BC于H,交MN于D.想办法用x表示CE、EF、BF,构建方程即可解决问题;(2)根据种植韭菜的收益等于另两种蔬菜收益之和的2倍,构建方程即可解决问题;(3)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)作AH⊥BC于H,交MN于D.∵AB=AC,AH⊥BC,∴CH=HB=3,在Rt△ACH中,AH==4,∵ME∥AH,∴==,∴CE=3x,EM=EF=4x,易证△MEC≌△NFB,∴CE=BF=3x,∴3x+4x+3x=6,∴x=,∴EM=,∴矩形MNFE的面积为平方米.(2)由题意:100×4x•(6﹣6x)=2•[60××(6﹣6x)•(4﹣4x)+40×4x×3x],解得x=或.(3)由题意W=100×4x•(6﹣6x)+60××(6﹣6x)•(4﹣4x)+40×4x×3x=﹣1200x2+960x+720=﹣1200(x﹣)2+912,,∵﹣1200<0,∴x=时,W有最大值,最大值为912元.【点评】本题考查等腰三角形的性质、矩形的性质、平行线的性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(14分)如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=m.(1)当m=6时,求AF的长.(2)在点P的整个运动过程中.①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围.②当矩形ABCD恰好有2个顶点落在⊙O上时,求m的值.(3)若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的m的值.(直接写出答案即可)【考点】MR:圆的综合题.【专题】152:几何综合题.【分析】(1)如图1中,连接AE.由△ADE∽△FEP,推出=,求出PF,再利用勾股定理即可解决问题;(2)①由圆周角定理可知,∠PFE=∠DAE,推出tan∠PFE=tan∠DAF=即可解决问题;②分三种情形画出图形分别求解即可解决问题;(3)分四种情形画出图形分别求解即可;【解答】解:(1)如图1中,连接AE.在Rt△DPE中,∵DE=5,DP=AD﹣AP=4,∴PE==,在Rt△ADE中,AE==5,∵∠P AF=90°,∴PF是⊙O的直径,∴∠PEF=∠ADE=90°,∵∠DAE=∠PFE,∴△ADE∽△FEP,∴=,∴=,∴PF=,在Rt△P AF中,AF===13.(2)①tan∠PFE的值不变.理由:如图1中,∵∠PFE=∠DAE,∴tan∠PFE=tan∠DAF==.②如图2中,当⊙O经过A、D时,点P与D重合,此时m=10.如图3中,当⊙O经过A、B时,在Rt△BCE中,BE==10,∵tan∠PFE=,∴PE=5,∴PD==5,∴m=P A=5.如图4中当⊙O经过AC时,作FM⊥DC交DC的延长线于M.根据对称性可知,DE=CM=BF=5,在Rt△EFM中,EF==5,∴PE=EF=,∴PD==,∴m=AD﹣PD=,综上所述,m=10或5或时,矩形ABCD恰好有2个顶点落在⊙O上(3)如图5中,当EC=CH=10时,作HI⊥CD交DC的延长线于I.∵△PDE∽△EIF,∴=,∴EI=20﹣2m,∴CI=20﹣2m﹣10=10﹣2m,在Rt△CIH中,102=(10﹣2m)2+(10﹣m)2,解得m=2或10(舍弃).如图6中当EC=EH=10时,在Rt△AEH中,AH===15,易知PF=AH=15,∵PE:EF:PF=1:2:,∴PE=3,在Rt△PDE中,DP==2,∴m=P A=AD﹣PD=10﹣2.如图7中当HC=HE时,延长FH交CD于M,则EM=CM=BF=5,∵△PDE∽△EMF,∴=,∴=,∴PD=,∴m=10﹣=如图8中,当EH=EC时,连接FH,PH,延长CD交FH于M.∵△PDE∽△EMF,∴=,∴=,∴EM=2m﹣20,在Rt△EHM中,102=(m﹣10)2+(20﹣2m)2解得:m=10+2或10﹣2(舍弃),综上所述,满足条件的m的值为2或10﹣2或或10+2.【点评】本题考查圆综合题、矩形的性质、相似三角形的判定和性质、勾股定理、锐角三角函数、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考压轴题.。
2018年温州市XX中学中考数学一模试卷含答案解析 精品

2018年浙江省温州XX中学中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4 D.2a+3b=6ab4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)26.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F 在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.410.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.二、填空题(共6小题,每小题5分,满分30分)11.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为m.12.不等式组的解是.13.某正n边形的一个内角为108°,则n=.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣1)2﹣2cos60°;(2)化简:÷.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).20.为了解我省2018届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2018年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:(1)小明以折扣价购买的商品是第次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A商品数量的2倍,购买总费用为720元,m的最小值为.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.2018年浙江省温州XX中学中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,有3条对称轴,故此选项错误;B、是轴对称图形,有4条对称轴,故此选项错误;C、轴对称图形,有6条对称轴,故此选项错误;D、是轴对称图形,有无数条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4 D.2a+3b=6ab【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方、单项式乘法、合并同类项法则的运算方法,利用排除法求解.【解答】解:A、应为(a2)3=a6,故本选项错误;B、2a×3a=6a2是正确的;C、a6与a2不是同类项,不能合并,故本选项错误;D、3a与3b不是同类项,不能合并,故本选项错误.故选:B.【点评】本题主要考查了幂的乘方的性质,单项式的乘法法则,合并同类项的法则,熟练掌握运算法则是解题的关键.4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.【点评】此题主要考查了公因式,正确分解因式是解题关键.6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】让黄灯亮的时间除以总时间即为抬头看信号灯时,是黄灯的概率.【解答】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是=.故选C.【点评】本题考查概率的基本计算;用到的知识点为:概率=所求情况数与总情况数之比.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F 在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°【考点】平行线的性质.【专题】应用题.【分析】先根据平行线的性质得出∠D=∠A,∠C=∠B,再由三角形外角的性质即可得出结论.【解答】解:∵AB∥DC,BE∥FC,∠A=15°,∠B=65°,∴∠D=∠A=15°,∠C=∠B=65°.∵∠AFC是△CDF的外角,∴∠AFC=∠D+∠C=15°+65°=80°.故选C.【点评】本题考查的是平行线的性质,先根据题意得出∠C及∠D的度数是解答此题的关键.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.4【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的面积为5,B(1,3),∴BE=1,AE=2∴OF=OE+AE+AF=3+2+1=6,∴点D的坐标为(2,6),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=2×6=12.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.10.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.【考点】弧长的计算;旋转的性质.【分析】根据圆的周长公式求出圆的周长以及圆转动的周数,根据题意分别求出和+的长,比较即可得到答案.【解答】解:∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了66π,∴66π÷8π=8…2π,即圆滚动8周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点,=2,∴=×8π=<2π,+=8π=4π>2π,∴此时与地面相切的弧为,故选:C.【点评】此题主要考查了旋转的性质以及圆的周长公式等知识,得出O点转动的周数是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为 2.5×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 00025=2.5×10﹣6;故答案为2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.不等式组的解是<x≤3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x≤3.则不等式组的解集是:2<x≤3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.13.某正n边形的一个内角为108°,则n=5.【考点】多边形内角与外角.【分析】易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.【解答】解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.【点评】考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为﹣1.【考点】翻折变换(折叠问题);菱形的性质.【分析】根据等腰直角三角形的性质求出BE、AE,根据翻转变换的性质得到△FCB1是等腰直角三角形,根据三角形的面积公式计算即可.【解答】解:∵AE⊥BC,∠B=45°,AB=∴BE=AE=1,∵将△AEB沿AE所在直线翻折得△AEB1,∴∠B1=∠B=45°,∴EB1=BE=1,CB1=2﹣,∴△AEB1的面积为×AE×EB1=,∵四边形ABCD是菱形,∴AB∥CD,∴∠FCB1=∠B=45°,∴△FCB1是等腰直角三角形,∴△FCB1的面积为×(2﹣)××(2﹣)=﹣,∴△AEB1与四边形AECF重叠部分的面积=﹣(﹣)=﹣1,故答案为:﹣1.【点评】本题考查的是翻转变换的性质和菱形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.【考点】相似三角形的判定与性质;坐标与图形性质;三角形的面积;锐角三角函数的定义.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,由A、B两点的坐标分别为(﹣1,y1)、(3,y2),S△AOC=1,可求得OD,OE,OC的长,继而求得△AOB的面积,求得OA•OB的值,又由三角函数的定义,即可求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵A、B两点的坐标分别为(﹣1,y1)、(3,y2),∴OD=1,OE=3,∵S△AOC=1,∴OC•OD=1,∴OC=2,∴S Rt△AOB=S△AOC+S△BOC=1+OC•OE=1+3=4,∴OA•OB=4,∴OA•OB=8,∵OA∥OC∥BE,∴∠OAD=∠AOC=α,∠OBE=∠BOC=β,∴sinα•sinβ=•==.故答案为:.【点评】此题考查了三角函数的定义、直角三角形的性质以及坐标与图形的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为9.【考点】相似三角形的判定与性质;正方形的性质;圆周角定理.【分析】连接EF、FG,GE如图,根据正方形的性质得到∠BAD=90°,∠BEA=90°证得△BPF≌△APE,根据全等三角形的性质得到BF=AE,求得DE=AF,根据圆周角定理得到GF为⊙O的直径,得到GF=4,根据勾股定理得到AF2+AG2=GF2=16,由①②联立起来组成方程组,即可得到结论.【解答】解:连接EF、FG,GE如图,∵四边形ABCD为正方形,∴∠BAD=90°,∠BEA=90°∴∠FEG=90°,∴∠BEF=∠AEG,又∵∠FBE=∠EAG=45°,在△BEF与△AGE中,,∴△BPF≌△APE,∴BF=AE,而AB=AD,∴DE=AF,∵∠BAD=90°,∴GF为⊙O的直径,而⊙O的半径为2,∴GF=4,∴AF2+AG2=GF2=16①,而DG=AF,DG2+AG2=16;又∵AD=AG+GD=AB,∴AG+GD=5②,由①②联立起来组成方程组,解得:AG=,GD=或AE=,ED=,∴AG•GD=9.故答案为:9.【点评】本题考查了全等三角形的判定和性质,圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为直角、圆内接四边形的性质、正方形的性质以及方程组的解法.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣1)2﹣2cos60°;(2)化简:÷.【考点】实数的运算;分式的乘除法;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式利用算术平方根,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+1﹣1=2;(2)原式=•=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标(4,4).【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【专题】作图题.【分析】(1)作AB的垂轴平分线和∠xOy的角平分线,它们的交点即为P点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【解答】解:(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).【考点】垂径定理的应用;勾股定理.【分析】(1)由垂径定理可得出BC 的长,在Rt △OBC 中,根据勾股定理求出OC 的长,由DC=OD ﹣OC 即可得出结论.(2)解直角三角形求得∠AOB 的度数,然后求S △AOB 和S 扇形OAB ,然后根据S 阴影=S 扇形﹣S △AOB 即可求得.【解答】解:(1)∵OD ⊥AB ,AB=4cm ,∴BC=AB=×4=2cm ,在Rt △OBC 中, ∵OB=4cm ,BC=2cm ,∴OC===2cm ,∴DC=OD ﹣OC=4﹣2=2cm . ∴水的最大深度(即CD )是2cm . (2)∵OC=2,OB=4, ∴OC=OB , ∴∠ABO=30°, ∵OA=OB ,∴∠BAO=∠ABO=30°, ∴∠AOB=120°, ∵S △AOB =AB •OC=×4×2=4,∴S 扇形OAB ==π,∴S 阴影=S 扇形﹣S △AOB =π﹣4(cm )2. 【点评】本题考查的是垂径定理的应用,解答此类问题的关键是构造出直角三角形,利用垂径定理及勾股定理进行解答.20.为了解我省2018届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60,b的值为0.15,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?C(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2018年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?【考点】条形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据A有12人,所占的频率是0.05即可求得抽查的总人数,则a,b的值即可求解;(2)根据中位数的定义即可求解;(3)利用4020乘以抽查的人数中优秀的人数所占的频率即可.【解答】解:(1)12÷0.05=240(人)240×0.25=60(人)36÷240=0.15补充后如下图:(2)根据中位数的定义即可求解;(3)0.45×4020=1809(名)答:该区九年级考生中体育成绩为优秀的学生人数有1809名.故答案为:60,0.15,C.【点评】此题考查读频数分布直方图的能力和利用统计图获取信息的能力.用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.【考点】切线的判定.【分析】(1)连接OF,由点F是BC的中点,得到BF=CF,在矩形ABCD中,∠A=90°,证得BE 是⊙O的直径,求得BO=OE,根据三角形的中位线的性质得到OF∥CE,证得OF⊥FG,即可得到结论;(2)根据平行线的性质得到BE⊥CE,由余角的性质得到∠ABE=∠DEC,证得△ABE∽△CDE,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OF,∵点F是BC的中点,∴BF=CF,在矩形ABCD中,∵∠A=90°,∴BE是⊙O的直径,∴BO=OE,∴OF∥CE,∵FG⊥CE,∴OF⊥FG,∴直线FG与⊙O相切;(2)解:∵FG∥BE,FG⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴,∵AB=2,AD=5,∴CD=AB=2,∴,∴AE=1,或AE=4.【点评】本题考查的是切线的判定,三角形的中位线的性质,相似三角形的判定和性质,平行线的判定和性质,正确的作出辅助线是解题的关键.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为或4.【考点】两条直线相交或平行问题;全等三角形的判定与性质;勾股定理;等腰直角三角形;相似三角形的判定与性质.【专题】分类讨论.【分析】(1)易证△BOC是等腰直角三角形,从而可求出点C的坐标,然后运用待定系数法就可解决问题;(2)由于等腰三角形OPD的顶角不确定,故需分情况讨论,然后运用全等三角形的性质、相似三角形的性质及勾股定理就可解决问题.【解答】解:(1)∵A,B两点的坐标分别是(0,2),0,﹣3),∴OA=2,OB=3.∵OP=2,∴OA=OP.∵∠AOP=90°,∴∠APO=45°,∴∠CPD=∠APO=45°.∵BC⊥AP,∴∠PCD=45°.∵∠BOC=90°,∴∠OBC=∠OCB=45°,∴OC=OB=3,∴点C的坐标为(3,0).设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x﹣3;(2)①当点P在点C左边时,如图1,此时∠OPD>90°.∵△OPD为等腰三角形,∴OP=DP.在△AOP和△CDP中,∴△AOP≌△CDP,∴AP=CP,∴OC=AD.在△ADB和△COB中,∴△ADB≌△COB,∴CB=AB=5,∴AD=OC==4,设OP=x,则有AP=CP=4﹣x,在Rt△AOP中,22+x2=(4﹣x)2,解得x=,∴OP=.②当点P在点C右边时,如图2,此时∠ODP>90°.∵△OPD为等腰三角形,∴OD=DP,∴∠DOP=∠DPO.∵∠AOP=90°,∴∠OAP+∠APO=90°,∠AOD+∠DOP=90°,∴∠OAP=∠AOD,∴AD=OD,∴AD=DP.设AD=x,则有AP=2x.∵∠DAB=∠OAP,∠ADB=∠AOP=90°,∴△ADB∽△AOP,∴=,∴=,解得x=(舍去).∴AP=2,∴OP===4.综上所述:OP的值为或4.故答案为或4.【点评】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,运用分类讨论的思想是解决第(2)小题的关键.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:(1)小明以折扣价购买的商品是第二次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是100﹣x﹣y元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A商品数量的2倍,购买总费用为720元,m的最小值为18.【考点】二元一次方程组的应用.【分析】(1)分析前两次购物,发现第二次购买数量比第一次多但是价钱反而降低了,故得出小明以折扣价购买的商品是第二次购物这个结论;(2)由A、B、C三种商品单价总和为100元,得出C商品的单价,由表格得出关于x、y的二元一次方程,解方程即可求得x、y的值;(3)根据总费用=单价×数量得出购买商品数量m关于购买商品A的数量a的一次函数,结合函数的单调性以及a的取值范围可以得出m的最小值.【解答】解:(1)分析一二次购物:第二次购物比第一次购物A、B商品购买数量没有减少,C商品购买数量增加总费用反而比第一购物少,所以小明以折扣价购买的商品是第二次购物.故答案为:二.(2)①∵某超市有单价总和为100元的A、B、C三种商品,且A商品的单价为x元,B商品的单价为y元,∴C商品的单价为100﹣x﹣y元.故答案为:100﹣x﹣y.②结合一三次购物可知:,解得:.答:A商品的单价为20元,B商品的单价为50元.(3)由(2)可知C商品的单价是100﹣20﹣50=30(元),设第四次购买商品A的数量为a个,则购买商品B的数量为2a个,购买商品C的数量为m﹣3a个,依据题意可知:20a+50×2a+30×(m﹣3a)=720,即m=24﹣a.又∵m﹣3a≥0,∴24﹣4a≥0,解得:a≤6.∵m关于a的函数单调递减,∴当a=6时,m最小,此时m=24﹣6=18.故答案为:18.【点评】本题考查了一次函数的性质以及解二元一次方程组,解题的关键是:(1)第二次购物比第一次多而费用少;(2)列出关于x、y的二元一次方程;(3)找出购买商品数量m关于购买商品A的数量a的一次函数.本题属于中档题,(1)(2)难度不大,(3)需要结合一次函数的性质和解一元一次不等式得出a的取值范围,由一次函数的单调性得出最值问题.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=3﹣t(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.【考点】二次函数综合题.【分析】(1)根据题意,求出OP及OE的长度,即可求得PE的长度;(2)根据平行四边形的面积=底×高,以BE为底,OD为高,即可解答;(3)根据点P的坐标,PH=6,求出点H的坐标,然后求出抛物线的顶点坐标,用含t的式子表示出函数的解析式;①求出当t=2时,点B,E,D,F的坐标,将点F的横坐标代入解析式,看求出的y的值是否与点F的纵坐标相等,即可判断;②根据对称,求出点Q的坐标,将点Q的坐标代入抛物线,即可求出t的值.【解答】解:(1)根据题意,得:OP=8﹣2t,OE=5﹣t,∴PE=OP﹣OE=(8﹣2t)﹣(5﹣t)=3﹣t;故答案为:3﹣t;。
2018浙江温州中考数学试卷(含解析)

2018年浙江省温州市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江温州,1,4分)2,0,1-,其中负数是()A. B.2 C.0 D.1-【答案】D【解析】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数。
因为在四个数中,只有-1有负号。
故选D【知识点】实数的分类,负数2.(2018浙江温州,,4)移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【解析】根据从正面看得到的图形是主视图,注意看到的线是实线看不到的线画虚线。
可得答案选B.【知识点】三视图,简单组合体的三视图3.(2018浙江温州,3,4)计算a6·a2的结果是()A. a3B. a4C. a8D. a12【答案】C【解析】利用同底数幂相乘底数不变指数相加, 得a6a2=a6+2=a8答案选C【知识点】同底数幂乘法法则4.(2018浙江温州,4,4)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【解析】利用中位数的定义,中位数是一组数据从小到大或从大到小排列后中间位置的数(当数的个数为偶数个时为中间两个数的平均数)。
这道题的数据从小到大排列后得6,7,7,7,8,9,9所以中间位置的数就是7故选C【知识点】中位数5.(2018浙江温州,5,4)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. 12B.13C.310D.15【答案】D【解析】利用概率的求法公式,事件发生的概率P(A)=事件发生的结果数所以可能出现的结果数A 所以从袋中任意摸出一个球,是白球的概率为21=105,故选D 【知识点】随机事件概率的公式求法6.(2018浙江温州,6,4)若分式25x x -+的值为0,则的值是() A. 2 B. 0 C. -2 D. -5【答案】A【解析】本题考查了分式值为零的条件分式值为零必须满足两个条件分母为0和分子不为0,所以由x-2=0得x=2 显然当x=2时分母为7不为0,所以选A【知识点】分式值为零的条件7.(2018浙江温州,7,4)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(-1,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB’,则点B 的对应点B’的坐标是()A.(1,0)B.) C.(1) D.(-1)【答案】C【解析】本题考查了平移的性质和在平面直角坐标系的点的坐标的表示法。
浙江省温州市中考数学模拟试卷(5月份)

浙江省温州市中考数学模拟试卷(5月份)姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分)的倒数是________ .2. (1分)(2018·丹棱模拟) 分解因式: ________.3. (1分)如图,EF∥BC,AC平分∠BAF,∠B=80°,则∠C=________4. (1分)(2018·南京模拟) 若式子在实数范围内有意义,则x的取值范围是________.5. (1分) (2020九下·中卫月考) 若关于x的方程x2+2x+m=0没有实数根,则m的取值范围是________.6. (1分) (2019八上·武威月考) 请看杨辉三角(1),并观察等式(2):根据前面各式的规律,则的展开式为________.二、选择题 (共8题;共16分)7. (2分)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A .B .C .D .8. (2分)我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 2010年中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为(单位:元)()A . 4.50×102B . 0.45×103C . 4.50×1010D . 0.45×10119. (2分)(2016·青海) 下列运算正确的是()A . a3+a2=2a5B . (﹣ab2)3=a3b6C . 2a(1﹣a)=2a﹣2a2D . (a+b)2=a2+b210. (2分)某校组织语文、数学、英语、物理四科联赛,满分都是100分,甲、乙、丙三人四科的测试成绩如下表所示,若综合成绩按照语、数、英、物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩第一名的是()学科语文数学英语物理甲95858560乙80809080丙70908095A . 甲B . 乙C . 丙D . 不确定11. (2分) (2017八上·武城开学考) 已知a>b>0,那么下列不等式组中无解的是()A .B .C .D .12. (2分)(2017·百色) 五边形的外角和等于()A . 180°B . 360°C . 540°D . 720°13. (2分) (2019九上·九龙坡期末) 如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A . 5cmB . 5 cmC . 5 cmD . 6cm14. (2分) (2017九上·黄岛期末) 已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y= (k <0)的图象上,那么y1 , y2与y3的大小关系是()A . y3<y1<y2B . y3<y2<y1C . y1<y2<y3D . y1<y3<y2三、解答题 (共9题;共90分)15. (5分)(2019九上·呼兰期末) 先化简,再求代数式的值,其中.16. (5分)如图:在△ABC中,∠C=90°,AC=BC,D是AC上一点,AE⊥BD交BD的延长线于E,且AE= BD,DF⊥AB于F,AE,BC的延长线相交于点G.求证:CD=DF.17. (10分) (2015八下·江东期中) 现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?18. (15分) (2019九上·梁子湖期中) 如图,在矩形 ABCD 中,AB=5,AD=3.以点 B 为中心,顺时针旋转矩形 BADC,得到矩形 BEFG,点 A、D、C 的对应点分别为 E、F、G.(1)如图1,当点 E 落在 CD 边上时,求线段 CE 的长;(2)如图2,当点 E 落在线段 DF 上时,求证:∠ABD=∠EBD;(3)在(2)的条件下,CD 与 BE 交于点 H,求线段 DH 的长.19. (15分)(2014·内江) 为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.20. (10分) (2019九下·武威月考) 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.21. (5分)(2018·乌鲁木齐) 如图,小强想测量楼CD的高度,楼在围墙内,小强只能在围墙外测量,他无法测得观测点到楼底的距离,于是小强在A处仰望楼顶,测得仰角为37°,再往楼的方向前进30米至B处,测得楼顶的仰角为53°(A,B,C三点在一条直线上),求楼CD的高度(结果精确到0.1米,小强的身高忽略不计).22. (15分)如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.23. (10分)(2020·九江模拟) 定义:若两条抛物线在x轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x轴上经过的两个相同点称为“同交点”,已知抛物线y=x2 +bx+c经过(﹣2,0)、( ﹣4,0),且一条与它是“同交点抛物线”的抛物线y=ax2 +ex+f经过点( ﹣3,3).(1)求b、c及a的值;(2)已知抛物线y =﹣x2 +2x +3与抛物线yn= x2﹣ x﹣n (n为正整数)①抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.②当直线y = x+ m与抛物线y、yn ,相交共有4个交点时,求m的取值范围.③若直线y =k(k <0)与抛物线y =﹣x2 +2x +3与抛物线yn = x2﹣ x﹣n (n为正整数)共有4个交点,从左至右依次标记为点A、点B、点C、点D,当AB =BC=CD时,求出k、n之间的关系式参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共90分)15-1、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省温州市鹿城区中考数学模拟试卷(5月份)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不
选、多选、错选,均不给分)
1.(4分)﹣2的绝对值是()
A.2B.﹣2C.D.
2.(4分)由五个小立方体搭成的几何体如图所示,其主视图是()
A.B.
C.D.
3.(4分)事件:“在只装有2个红球和8个黑球的袋子里,摸出一个白球”是()A.可能事件B.随机事件C.不可能事件D.必然事件4.(4分)不等式3x<2(x+2)的解是()
A.x>2B.x<2C.x>4D.x<4
5.(4分)在一次中学生田径运动会上,参加男子跳高的20名运动员的成绩如下表所示:成绩(米) 1.55 1.60 1.65 1.70 1.75 1.80人数435611
则这些运动员成绩的众数为()
A.1.55米B.1.65 米C.1.70米D.1.80米
6.(4分)已知点(﹣2,y1),(3,y2)在一次函数y=2x﹣3的图象上,则y1,y2,0的大小关系是()
A.y1<y2<0B.y1<0<y2C.y2<0<y1D.0<y1<y2 7.(4分)如图,一架长2.5米的梯子AB斜靠在墙上,已知梯子底端B到墙角C的距离为
1.5米,设梯子与地面所夹的锐角为α,则cosα的值为()
A.B.C.D.
8.(4分)我们知道方程组的解是,现给出另一个方程组
,它的解是()
A.B.C.D.
9.(4分)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中E,P分别是AD,CD的中点,一只蚂蚁从点A处沿图中实线爬行到出口点P处.若AB=2,则它爬行的最短路程为()
A.B.1C.2D.3
10.(4分)如图,在▱ABCD中,∠DAB=60°,AB=10,AD=6.⊙O分别切边AB,AD 于点E,F,且圆心O恰好落在DE上.现将⊙O沿AB方向滚动到与边BC相切(点O 在□ABCD的内部),则圆心O移动的路径长为()
A.4B.6C.7﹣D.10﹣2
二、填空题(本题有6题,每小题5分,共30分)(第12题)小红5月份消费情况扇形统
计图车费10%午餐40%其他30%学习用品20%
11.(5分)分解因式:m2+2m=.
12.(5分)小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上
支出100元,则在午餐上支出元.
13.(5分)如图,在⊙O中,C为优弧AB上一点,若∠ACB=40°,则∠AOB=度.
14.(5分)甲、乙两工程队分别承接了250米、150米的道路铺设任务,已知乙比甲每天多铺设5米,甲完成铺设任务的时间是乙的2倍.设甲每天铺设x米,则根据题意可列出方程:.
15.(5分)如图,点A在第一象限,作AB⊥x轴,垂足为点B,反比例函数y=的图象经过AB的中点C,过点A作AD∥x轴,交该函数图象于点D.E是AC的中点,连结OE,将△OBE沿直线OE对折到△OB′E,使OB′恰好经过点D,若B′D=AE=1,则k 的值是.
16.(5分)如图,矩形ABCD和正方形EFGH的中心重合,AB=12,BC=16,EF=.分别延长FE,GF,HG和EH交AB,BC,CD,AD于点I,J,K,L.若tan∠ALE=3,则AI的长为,四边形AIEL的面积为.
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)
17.(10分)(1)计算:(﹣2018)0.
(2)化简:(a+2)(a﹣2)﹣a(a+1).
18.(8分)如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.
(2)若∠CDE=35°,求∠A的度数.
19.(8分)电视节目“奔跑吧兄弟”播出后深受中学生喜爱,小睿想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),得到如图所示的统计图,
请结合图中提供的信息解答下列问题:
(1)若小睿所在学校有1800名学生,估计全校喜欢“鹿晗”兄弟的学生人数.
(2)小睿和小轩都喜欢“陈赫”,小彤喜欢“鹿晗”,从他们三人中随机抽选两人参加“撕名牌”游戏,求选中的两人中“一人喜欢陈赫,一人喜欢鹿晗”的概率.(要求列表或画树状图)
20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(3,4),请在所给网格上按要求画整点四边形.
(1)在图1中画一个四边形OABP,使得点P的横、纵坐标之和等于5.
(2)在图2中画一个四边形OABQ,使得点Q的横、纵坐标的平方和等于20.
21.(10分)如图,在△ABC中,CA=CB,E是边BC上一点,以AE为直径的⊙O经过点C,并交AB于点D,连结ED.
(1)判断△BDE的形状并证明.
(2)连结CO并延长交AB于点F,若BE=CE=3,求AF的长.
22.(10分)如图,在平面直角坐标系中,抛物线y=交x轴正半轴于点A,M是抛物线对称轴上的一点,OM=5,过点M作x轴的平行线交抛物线于点B,C(B在C 的左边),交y轴于点D,连结OB,OC.
(1)求OA,OD的长.
(2)求证:∠BOD=∠AOC.
(3)P是抛物线上一点,当∠POC=∠DOC时,求点P的坐标.
23.(12分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
(1)若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?(2)若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱
子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?
(3)若该工厂新购得65张规格为3×3m的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共只.
24.(14分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以P A为半径的半圆P 交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF ⊥AO于点F,连结BD,设AP=m.
(1)求证:∠BDP=90°.
(2)若m=4,求BE的长.
(3)在点P的整个运动过程中.
①当AF=3CF时,求出所有符合条件的m的值.
②当tan∠DBE=时,直接写出△CDP与△BDP面积比.
2018年浙江省温州市鹿城区中考数学模拟试卷(5月份)
参考答案
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不
选、多选、错选,均不给分)
1.A;2.D;3.C;4.D;5.C;6.B;7.A;8.D;9.B;10.B;
二、填空题(本题有6题,每小题5分,共30分)(第12题)小红5月份消费情况扇形统
计图车费10%午餐40%其他30%学习用品20%
11.m(m+2);12.200;13.80;14.;15.12;16.5;;
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.;18.;19.;20.;21.;22.;23.47或49;24.;。