2013年1月的自考线性代数答案

合集下载

全国2013年1月高等教育自学考试线性代数(经管类)试题与答案解析

全国2013年1月高等教育自学考试线性代数(经管类)试题与答案解析
1 2 1 3 3 D.
2
2 2 1 2 1 1 A 1 2 A1 A 2 A b b 0 b 1 1 2 3 3 3 3 3 3 3 2 是 Ax b 的解. ,3
2 0 0 0 0 0 0 0 3 相似,则下列说法错误的是( 7.若 3 阶方阵 A 与对角阵
1 1 3 4 4 5 0 k1 1 k 2 0 0 0 1
1 3 1 4 5 4 0 0 0 ,
0 2 1 1 0 0 0 0
1 4 3 2 6 2 1 3 1 2 6 2
1 1 0 2 0 0 0 0
1 2 3 1 0 0 0 0 ,
向量组的秩是 2, 1 , 2 是向量组的一个极大无关组.
第 4页
2013-2015 在最痛的日子里 自考真题--本科(会计)
2013-2015 在最痛的日子里 自考真题--本科(会计)
全国 2013 年 1 月高等教育自学考试线性代数(经管类)试题课程代码:04184
说明:本卷中,AT 表示矩阵 A 的转置,αT 表示向量 的转置,E 表示单位矩阵,|A|表示方阵 A 的行列式,A-1 表示 方阵 A 的逆矩阵,R(A)表示矩阵 A 的秩.
1 1 2 2 3 3 3 4 4 4

1 2 3 4 0 4 6 8 0 0 6 8 0 0 0 8 1 4 6 8 192
1 2
解:
1 2 3 4

5 2 1 A 0 4 2 4 3 1 , B 是三阶方阵,且满足 AB A 2 B E ,求 B . 22.设

2013年1月自学考试02198线性代数试题和答案

2013年1月自学考试02198线性代数试题和答案

线性代数---2013年1月1.设A、B为同阶方阵,则必有A、|A+B|=|A|+|B|B、AB=BAC、(AB)T=ATBTD、|AB|=|BA|正确答案:D解析:只有D选项为矩阵的性质|AB|=|BA|=|A||B|.2.设n阶方阵A、B、C满足ABC=E,则必有A、ACB=EB、CBA=EC、BCA=ED、BAC=E正确答案:C解析:因为ABC=E,可以得到矩阵AB与矩阵C互为逆矩阵,所以CAB=E矩阵A与矩阵BC互为逆矩阵,所以BCA=E。

3.设A为三阶方阵,且|A|=2,则|-2A|=A、-16B、-4C、4D、16正确答案:A解析:由矩阵的性质4.若同阶方阵A与B等价,则必有A、|A|=|B|B、A与B相似C、R(A)=R(B)D、正确答案:C解析:因为等价矩阵有相同的等价标准型,故秩相等。

5.设α1= (1,0,0)、α2=(2,0,0)、α3=(1,1,0),则A、α1,、α2、α3线性无关B、α3可由α1、α2线性表示C、α1可由α2、α3线性表示D、α1、α2、α3的秩等于3正确答案:C解析:由,秩为2.可知线性相关;的秩为2;不能由线性表示;为一个极大无关组。

所以可以由线性表示,且.6.设向量空间V={ (x1,x2,x3)|x1+x2+x3=0},则V的维数是B、1C、2D、3正确答案:C解析:向量空间V是方程x1+x2+x3=0的解空间,V的维数即为方程的基础解系的个数。

因为未知数n=3,系数矩阵的秩r=1。

所以解空间维数为n-r=2.7.若3阶方阵A与对角阵=相似,则下列说法错误的是A、|A|=0B、|A+E|=0C、A有三个线性无关特征向量D、R(A)=2正确答案:B解析:A选项:A与对角阵相似,A的特征值为2、0、3,所以B选项:A的特征值为2、0、3,则A+E的特征值分别为3、1、4,所以|A+E|=12.此选项错误。

C选项:A与对角阵相似,则A有3个线性无关的特征向量。

线性代数自考(经管类)

线性代数自考(经管类)
2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算.
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算

测试点 个维向量线性无关相应的行列式;

所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.

2013-2014-1《线性代数》经济A答案

2013-2014-1《线性代数》经济A答案

考试班级: 2012级经济1,2,班 #2013-2014学年第一学期《线性代数》试卷答案及评分标准一、单项选择题(本题共5小题,每小题2分,满分10分)1.(C )2.(B )3.(C )4. (C )5. (A ) 二、填空题 (本题共5题,每题2分,满分10分)6. 47.310 8. E A 4+ 9. B AX 8= 10. ⎪⎭⎫ ⎝⎛21,43,411 三、计算题(本题共2个小题, 每题10分,满分20分)11.24333)()(100001000010100101010011001001001x c b a x x c b a x x xc x b x axcx b x a x x x c x b x axx x x x c b a x ++-=++-=---== 将4,3,2,1====c b a x 代入得:81001010100114321-=12.,300130013100110011,)(⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛+=-X A E X E A 求得⎪⎪⎪⎭⎫ ⎝⎛--=300230223X四、解答题(本题共4个小题, 每题12分,满分48分)13.解:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛+--++→⎪⎪⎪⎪⎪⎭⎫⎝⎛+--++→⎪⎪⎪⎪⎪⎭⎫⎝⎛------++10008500301032011000525103010320122012231130103201a a a a a a a a a a a a a aa=-1时 线性相关。

(2)()是一个极大无关组,,时,3214321,,0000591002010560010*******20103101,,,1ααααααα⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→-=a 321459256αααα++= 14.考试班级: 2012级经济1,2,班 #21434101131011310113214340121231101311010123107077070007211011301212000212000721a b a b a b a b -------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------- ⎪ ⎪ ⎪→→⎪ ⎪ ⎪- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭--⎛⎫ ⎪--⎪→ ⎪ ⎪++⎝⎭⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛++----→2160000610008021030101217000610002121031101a b b a ,0216≠--a b 时方程组无解;0216=--a b 时有无穷多解,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000061000802103011, 一个特解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-6083,导出组化为⎪⎩⎪⎨⎧==-=+002043231x x x x x ,基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0121γ,全部解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-6083+⎪⎪⎪⎪⎪⎭⎫⎝⎛-0121c 。

《线性代数》(经科社2013版)习题解答

《线性代数》(经科社2013版)习题解答

5. A2 − 2A − 4E = O ⇒ A2 − 2A − 3E = E ⇒ (A + E )(A − 3E ) = E , 故(A + E )−1 = (A − 3E ).
3(A − E )−1 A = 3(A−1 (A − E ))−1 = 3(E − A−1 )−1 , 其中A−1 = 9. AA∗ = |A|E ⇒ 10.
−1 1
2
1 (4)A31 + A32 + A33 + A34 = 3 1
2 3 1
−3 6 3 1 3 1 .
3 4 1 8 3.(1)第i行减去末行的ai 倍(i = 1, 2, · · · , n), 再按末列展开. (2)仿教材例1.4.4. (3)从第一行开始, 上一行的x倍加到下一行, 再按末行展开. (4)按末列展开. 4.(1)见《线性代数学习指导》P25例25. (2)见《线性代数学习指导》P26例26. 或: 第一行减去第二行, 按第一行展开, 得递推关系式; 列同样 处理. 联立解之. 注: ::::::::: 此题较难,::::::::::: 可不作要求. (3)从第一行开始, 用上一行消下一行, 化为上三角行列式. 1 5. M11 + M21 + M31 + M41 = A11 − A21 + A31 − A41 = −1 1 −1 1 A11 + A12 + A13 + A14 = 1 −1 1 1 3 1 0 1 1 −5 3 −3 . −5 1 3 −4 2 0 1 1 −5 3 .
i=1 i=1 i=1
注: :::::::::::::::::::::::::::::::::: 要牢记矩阵乘法的口诀“前行乘后列”.

全国自考 线性代数 历年考试真题与答案

全国自考 线性代数  历年考试真题与答案

全国高等教育 线性代数(经管类) 自学考试 历年(2009年07月——2013年04月)考试真题与答案全国2009年7月自考线性代数(经管类)试卷课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A的秩;|A |表示A 的行列式;E 表示单位矩阵。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。

错选、多选或未选均无分。

1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A.(A +B )T =A T +B T B.|AB |=|A ||B | C.A (B +C )=BA +CA D.(AB )T =B T A T2.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( ) A.-24 B.-12 C.-6D.123.若矩阵A 可逆,则下列等式成立的是( ) A.A =*1A AB.0=AC.2112)()(--=A AD.113)3(--=A A4.若A =⎥⎦⎤⎢⎣⎡-251213,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-131224,C =⎥⎦⎤⎢⎣⎡--211230,则下列矩阵运算的结果为3×2矩阵的是( ) A.ABC B.AC T B T C.CBAD.C T B T A T5.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( ) A.α1,α3线性无关B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关6.若四阶方阵的秩为3,则( ) A.A 为可逆阵B.齐次方程组Ax =0有非零解C.齐次方程组Ax =0只有零解D.非齐次方程组Ax =b 必有解7.设A 为m×n 矩阵,则n 元齐次线性方程Ax=0存在非零解的充要条件是( ) A.A 的行向量组线性相关 B.A 的列向量组线性相关 C.A 的行向量组线性无关 D.A 的列向量组线性无关8.下列矩阵是正交矩阵的是( ) A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001B.21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011101C.⎥⎦⎤⎢⎣⎡--θθθθcos sin sin cos D.⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--3361022336603361229.二次型正定的充要条件是为实对称阵)(A Ax x T =f ( ) A.A 可逆B.|A |>0C.A 的特征值之和大于0D.A 的特征值全部大于010.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--4202000k k 正定,则( )A.k>0B.k ≥0C.k>1D.k ≥1二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数自考试题及答案

线性代数自考试题及答案

1.设3阶方阵A的行列式为2,则= 【 B 】A.-1 B.C. D.12.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,假设|A|≠|B|,则必有【 C 】 A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A+B|≠03.设,则方程的根的个数为【 B 】A.0 B. 1C.2 D.34. 设A为n阶方阵,则以下结论中不正确的选项是:【 C 】A.是对称矩阵 B. 是对称矩阵C.是对称矩阵 D.是对称矩阵5.设,其中,则矩阵A的秩为【 B 】A.0 B. 1C.2 D.36. 设阶方阵A的秩为4,则A的伴随矩阵的秩为【 A 】A.0 B. 2C.3 D.47.设向量a=(1,-2,3)与=(2,k,6)正交,则数k为【 D 】A.-10 B. -4C.4 D.108.设3的阶方阵A的特征多项式为,则|A|= 【 A 】A.-18 B. -6C.6 D.189.已知线性方程组无解,则数a= 【 D 】A. B.0C. D.110.设二次型正定,则数a的取值应满足【 C 】A.a>9 B.3 a9C.-3<a< 3 D.a-3二、填空题(本大题共10小题,每题2分,共20分)请在每题的空格中填上正确答案。

错填、不填均无分。

11.设行列式,其第三行各元素的代数余子式之和为 0 。

12.设则AB= 。

13.设线性无关的向量组可由向量组线性表示,则r与s的关系为14.设A是4x3的矩阵且r〔A〕=2,,则r〔AB〕= 215.已知向量组 =(1,2,-1), =(2,0,t), =(0,-4,5)的秩为2,则数t=316.设4元线性方程组Ax=b的三个解,已知,,r(A)=3.则方程组的通解是.17.设方程组有非零解,且 <0,则= -2 .18.设矩阵有一个特征值=2,对应的特征向量为,则数a= 219.设3阶方阵4的秩为2,且,则A的全部特征值为 0,-5,-5 .20.设实二次型,己知A的特征值为-1,1,2,则该二次型的标准形为。

2013年线性代数考研资料真题及答案解析

2013年线性代数考研资料真题及答案解析

把这个实对称矩阵称为二次型的矩阵.并把它的秩称为二次型的秩, 如果二次型 f(x1,x2,…,xn)的矩阵为 A, X=(x1,x2,…,xn)T, 则 f(x1,x2,…,xn)= X TAX. 标准二次型的矩阵为对角矩阵. 规范二次型的矩阵为规范对角矩阵.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
② 求作正交矩阵 Q 和对角矩阵 ,使得 Q T AQ . 解:(1)A 的特征值为 0、0、3,属于 0 的特征向量: c1 1 c2 2 , c1 , c 2 不全为 0, 属于 3 的特征向量: c 3,c 0 。 (2) Q T AQ 即 Q 1 AQ ,对 2 作施密特正交化, 2, 1 , 1 先不动,修改
2007 年题
T 3 阶实对称矩阵 A 的特征值为 1,2,-2, 1 =(1,-1,1) 是 A 的属于 1 的特征向
量.记 B=A5-4A3+E. (1)验证 1 也是 B 的特征向量. (2)求 B 的特征值和特征向量. (3) 求 B.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
, ) 0 ,则说 和 正交. 如果 (
如果向量组 … n 中的每个都是单位向量,并且两两正交,则称它们为 2, 1, 单位正交向量组.
2. 正交矩阵 定义 n 阶矩阵 Q 称为正交矩阵,如果它是实矩阵,并且 QQT=E(即 Q-1=QT). 命题 Q 是正交矩阵Q 的列向量组是单位正交向量组. Q 的行向量组是单位正交向量组.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
标准二次型 规范二次型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档